
OGC® DOCUMENT: 20-089R1
External identifier of this OGC® document: http://www.opengis.net/doc/BP/eoap/1.0

OGC BEST PRACTICE
FOR EARTH
OBSERVATION
APPLICATION PACKAGE

BEST PRACTICE

PUBLISHED

Version: 1.0
Submission Date: 2021-08-27
Approval Date: 2021-11-13
Publication Date: 2021-12-14
Editor: Pedro Gonçalves

Notice: This document defines an OGC Best Practice on a particular technology or approach related to an OGC standard. This document is not
an OGC Standard and may not be referred to as an OGC Standard. It is subject to change without notice. However, this document is an official
position of the OGC membership on this particular technology topic.
Recipients of this document are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to
provide supporting documentation.

License Agreement

Permission is hereby granted by the Open Geospatial Consortium, (“Licensor”), free of charge and subject to the terms set forth below, to any
person obtaining a copy of this Intellectual Property and any associated documentation, to deal in the Intellectual Property without restriction
(except as set forth below), including without limitation the rights to implement, use, copy, modify, merge, publish, distribute, and/or sublicense
copies of the Intellectual Property, and to permit persons to whom the Intellectual Property is furnished to do so, provided that all copyright notices
on the intellectual property are retained intact and that each person to whom the Intellectual Property is furnished agrees to the terms of this
Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include, in addition to the above copyright notice, a
notice that the Intellectual Property includes modifications that have not been approved or adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY PATENTS THAT MAY BE IN FORCE
ANYWHERE IN THE WORLD. THE INTELLECTUAL PROPERTY IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND
NONINFRINGEMENT OF THIRD PARTY RIGHTS. THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE DO NOT WARRANT
THAT THE FUNCTIONS CONTAINED IN THE INTELLECTUAL PROPERTY WILL MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF
THE INTELLECTUAL PROPERTY WILL BE UNINTERRUPTED OR ERROR FREE. ANY USE OF THE INTELLECTUAL PROPERTY SHALL BE MADE
ENTIRELY AT THE USER’S OWN RISK. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR ANY CONTRIBUTOR OF INTELLECTUAL PROPERTY
RIGHTS TO THE INTELLECTUAL PROPERTY BE LIABLE FOR ANY CLAIM, OR ANY DIRECT, SPECIAL, INDIRECT OR CONSEQUENTIAL
DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF OR IN CONNECTION
WITH THE IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF THIS INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the Intellectual Property together with all copies in
any form. The license will also terminate if you fail to comply with any term or condition of this Agreement. Except as provided in the following
sentence, no such termination of this license shall require the termination of any third party end-user sublicense to the Intellectual Property
which is in force as of the date of notice of such termination. In addition, should the Intellectual Property, or the operation of the Intellectual
Property, infringe, or in LICENSOR’s sole opinion be likely to infringe, any patent, copyright, trademark or other right of a third party, you agree that
LICENSOR, in its sole discretion, may terminate this license without any compensation or liability to you, your licensees or any other party. You
agree upon termination of any kind to destroy or cause to be destroyed the Intellectual Property together with all copies in any form, whether held
by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all or part of the Intellectual Property shall not
be used in advertising or otherwise to promote the sale, use or other dealings in this Intellectual Property without prior written authorization
of LICENSOR or such copyright holder. LICENSOR is and shall at all times be the sole entity that may authorize you or any third party to use
certification marks, trademarks or other special designations to indicate compliance with any LICENSOR standards or specifications. This Agreement
is governed by the laws of the Commonwealth of Massachusetts. The application to this Agreement of the United Nations Convention on Contracts
for the International Sale of Goods is hereby expressly excluded. In the event any provision of this Agreement shall be deemed unenforceable, void
or invalid, such provision shall be modified so as to make it valid and enforceable, and as so modified the entire Agreement shall remain in full force
and effect. No decision, action or inaction by LICENSOR shall be construed to be a waiver of any rights or remedies available to it.

None of the Intellectual Property or underlying information or technology may be downloaded or otherwise exported or reexported in violation of
U.S. export laws and regulations. In addition, you are responsible for complying with any local laws in your jurisdiction which may impact your right
to import, export or use the Intellectual Property, and you represent that you have complied with any regulations or registration procedures required
by applicable law to make this license enforceable.

Copyright notice

Copyright © 2021 Open Geospatial Consortium
To obtain additional rights of use, visit http://www.ogc.org/legal/

Note

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. The Open Geospatial
Consortium shall not be held responsible for identifying any or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any relevant patent claims or other intellectual property
rights of which they may be aware that might be infringed by any implementation of the standard set forth in this document, and to provide
supporting documentation.

OPEN GEOSPATIAL CONSORTIUM 20-089R1 ii

http://www.ogc.org/legal/

CONTENTS

I. ABSTRACT ..vi

II. KEYWORDS ... vi

III. PREFACE ..vii

IV. SECURITY CONSIDERATIONS ... viii

V. SUBMITTING ORGANIZATIONS ... ix

VI. SUBMITTERS ... ix

1. SCOPE .. 2

2. CONFORMANCE .. 4

3. NORMATIVE REFERENCES ... 7

4. TERMS AND DEFINITIONS ... 9

5. CONVENTIONS ...14
5.1. Identifiers ... 14
5.2. Abbreviated terms ... 14

6. COMPONENTS OVERVIEW ..17
6.1. Introduction ...17
6.2. Earth Observation Applications ..18
6.3. Application Package .. 22
6.4. Platform ..26

7. APPLICATION BEST PRACTICE ... 30
7.1. Overview ..30
7.2. Command Line ..30
7.3. Container ..31
7.4. EO Products as Output Data ..34
7.5. Requirement Classes ... 36

8. PACKAGE BEST PRACTICE ... 40
8.1. Overview ..40
8.2. CWL Document ..40
8.3. Command-Line Tool .. 41

OPEN GEOSPATIAL CONSORTIUM 20-089R1 iii

8.4. Application ...43
8.5. Application Pattern ..47
8.6. Extended Workflows ...49
8.7. Application Additional Metadata ... 53
8.8. Resources for the runtime environment .. 54
8.9. Requirement Classes ... 55

9. PLATFORM BEST PRACTICE .. 59
9.1. Overview ..59
9.2. Process Description ...62
9.3. Input Parameters ..64
9.4. Data Flow Management ...69
9.5. Requirement Classes ... 72

ANNEX A (NORMATIVE) CONFORMANCE CLASS ABSTRACT TEST SUITE
(NORMATIVE) ..77

A.1. Conformance Class “Application” ... 77
A.2. Conformance Class “Application Staged Inputs” ...78
A.3. Conformance Class “Application Staged Outputs” ... 79
A.4. Conformance Class “Application Package” ... 80
A.5. Conformance Class “Application Package Staged Inputs”80
A.6. Conformance Class “Application Package Staged Outputs” 81
A.7. Conformance Class “Platform” .. 82
A.8. Conformance Class “Platform Staged Inputs” ..82
A.9. Conformance Class “Platform Staged Outputs” .. 83

ANNEX B (INFORMATIVE) FREE AND OPEN-SOURCE CWL IMPLEMENTATIONS
...85

ANNEX C (INFORMATIVE) STAC EXAMPLES .. 87

ANNEX D (INFORMATIVE) APPLICATION EXAMPLES ...93
D.1. Crop Application Example ..93
D.2. Scatter Crop Application Example ... 98
D.3. Composite two-step Workflow Example ..99
D.4. Multiple Inputs Composite Two-step Workflow Example103

ANNEX E (INFORMATIVE) REVISION HISTORY ...108

BIBLIOGRAPHY .. 110

LIST OF TABLES

Table 1 — Application Package additional Metadata elements ...53

OPEN GEOSPATIAL CONSORTIUM 20-089R1 iv

Table 2 — Mapping the Workflow class fields to OGC API Processes ..63
Table 3 — Mapping CWL types to OGC API Process Input elements ...65
Table E.1 .. 108

LIST OF FIGURES

Figure 1 — Application developers and application consumers interacting with the cloud
platform .. 18
Figure 2 — Data-driven application with fan-in input references where an application processes
the aggregates of n-input EO products ..19
Figure 3 — Data-driven application with fan-out input references where an application processes
several input EO products independently. ...20
Figure 4 — SENTINEL-2 product physical format ..21
Figure 5 — Architecture overview of the Application execution in a Platform 27
Figure 6 — Workflow diagram for the a simple Application with four inputs parameters and one
execution block .. 45
Figure 7 — Workflow diagram for the Application with six inputs parameters and two execution
blocks .. 51
Figure 8 — Platform steps for the EO Application Package deployment ..60
Figure 9 — Platform steps for the EO Application Package execution ... 61
Figure 10 — High level diagram of Platform Components executing an EO Application Package
..62
Figure 11 — Platform steps for data stage-in from the CWL service definition and OGC API
Processes execution request ...70
Figure 12 — Platform steps for data stage-out application execution for the the OGC API
Processes response ... 72

OPEN GEOSPATIAL CONSORTIUM 20-089R1 v

I ABSTRACT

Platforms for the exploitation of Earth Observation (EO) data have been developed by public
and private companies in order to foster the usage of EO data and expand the market of Earth
Observation-derived information. A fundamental principle of the platform operations concept is
to move the EO data processing service’s user to the data and tools, as opposed to downloading,
replicating, and exploiting data ‘at home’. In this scope, previous OGC activities initiated the
development of an architecture to allow the ad-hoc deployment and execution of applications
close to the physical location of the source data with the goal to minimize data transfer between
data repositories and application processes.

This document defines the Best Practice to package and deploy Earth Observation Applications
in an Exploitation Platform. The document is targeting the implementation, packaging and
deployment of EO Applications in support of collaborative work processes between developers
and platform owners.

The Best Practice includes recommendations for the application design patterns, package
encoding, container and data interfaces for data stage-in and stage-out strategies focusing on
three main viewpoints: Application, Package and Platform.

I I KEYWORDS

The following are keywords to be used by search engines and document catalogues.

ogcdoc, OGC document, EO, Application Package, Container, CWL, STAC

OPEN GEOSPATIAL CONSORTIUM 20-089R1 vi

I I I PREFACE

Attention is drawn to the possibility that some of the elements of this document may be the
subject of patent rights. The Open Geospatial Consortium shall not be held responsible for
identifying any or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any
relevant patent claims or other intellectual property rights of which they may be aware that
might be infringed by any implementation of the standard set forth in this document, and to
provide supporting documentation.

OPEN GEOSPATIAL CONSORTIUM 20-089R1 vii

IV SECURITY CONSIDERATIONS

This document defines Best Practice to package and deploy an Application on a Platform that
implies a trust relationship between the Application developer, the Application integrator, the
Platform and the consumer.

No security considerations have been made for this Best Practice.

OPEN GEOSPATIAL CONSORTIUM 20-089R1 viii

V SUBMITTING ORGANIZATIONS

The following organizations submitted this Document to the Open Geospatial Consortium
(OGC):

• European Space Agency

• Terradue

• CRIM

• CubeWerx Inc.

• 52°North GmbH

• SatCen

• Telespazio VEGA UK

• RHEA Group

• Pixalytics

• Solenix

• West University of Timisoara

VI SUBMITTERS

All questions regarding this submission should be directed to the editor or the submitters:

Name Representing

Pedro Gonçalves (editor) Terradue

Fabrice Brito Terradue

Tom Landry CRIM

Francis Charette-Migneault CRIM

Richard Conway Telespazio VEGA UK

Adrian Luna European Union Satellite Centre

OPEN GEOSPATIAL CONSORTIUM 20-089R1 ix

Omar Barrilero European Union Satellite Centre

Panagiotis (Peter) A. Vretanos CubeWerx Inc.

Cristiano Lopes European Space Agency (ESA)

Antonio Romeo RHEA Group

Paulo Sacramento Solenix

Samantha Lavender Pixalytics

Marian Neagul West University of Timisoara

OPEN GEOSPATIAL CONSORTIUM 20-089R1 x

1

SCOPE

OPEN GEOSPATIAL CONSORTIUM 20-089R1 1

1 SCOPE

This document defines the Best Practice to package and deploy Earth Observation Applications
in an Exploitation Platform.

The document is targeting the implementation, packaging and deployment of EO Applications in
support of collaborative work processes between developers and platform owners. It supports
developers that want to adapt and package their existing algorithms written in a specific
language to be deployed in Earth Observation Exploitation Platforms and exposed through a
Web Service endpoint, OGC API — Processes.

The Best Practice includes application design patterns, package encoding, container and data
interfaces for data stage-in and stage-out strategies.

Section 6 introduces the information material about Earth Observation (EO) Platform
architecture targeting the deployment and execution of EO Applications in distributed Cloud
Platforms. The section provides an overview of EO applications design patterns, package and
data interfaces.

Sections 7, 8 and 9 present the normative material defining the best practices to implement an
EO Application, to package an EO Application and to deploy the packaged EO Application.

OPEN GEOSPATIAL CONSORTIUM 20-089R1 2

2

CONFORMANCE

OPEN GEOSPATIAL CONSORTIUM 20-089R1 3

2 CONFORMANCE

This document defines the Best Practice for Earth Observation Application Packages targeting
three standardization targets:

• Application — defines the best practices when implementing an EO Application

• Package — defines the best practices when packaging an EO Application

• Platform — defines the best practices when deploying a packaged EO Application
in a platform

For the three standardization targets listed above, this Best Practice focuses on Earth
Observation Applications that require the staging, input, and/or output of EO Products. The
Best Practice also discusses the implications for the Application Package and hosting Platform.

In order to conform to this OGC Best Practice, an application developer shall choose to
implement the following conformance classes:

• Conformance Class “Application”

• Conformance Class “Application Staged Inputs”

• Conformance Class “Application Staged Outputs”

In order to conform to this OGC Best Practice, and according to the Application Conformance
Class, the application integrator shall implement the following conformance classes:

• Conformance Class “Application Package”

• Conformance Class “Application Package Staged Inputs”

• Conformance Class “Application Package Staged Outputs”

In order to conform to this OGC Best Practice, and according to the Application Package
Conformance Class, a platform shall choose to implement the following conformance classes:

• Conformance Class “Platform”

• Conformance Class “Platform Staged Inputs”

• Conformance Class “Platform Staged Outputs”

Conformance with this Best Practice shall be checked using all the relevant tests specified in
Annex A (normative) of this document. The framework, concepts, and methodology for testing,
and the criteria to be achieved to claim conformance are specified in the OGC Compliance
Testing Policies and Procedures and the OGC Compliance Testing web site.

OPEN GEOSPATIAL CONSORTIUM 20-089R1 4

https://portal.ogc.org/files/?artifact_id=55234
https://portal.ogc.org/files/?artifact_id=55234
https://www.ogc.org/compliance

All requirements-classes and conformance-classes described in this document are owned by the
documents(s) identified.

OPEN GEOSPATIAL CONSORTIUM 20-089R1 5

3

NORMATIVE REFERENCES

OPEN GEOSPATIAL CONSORTIUM 20-089R1 6

3 NORMATIVE REFERENCES

The following documents are referred to in the text in such a way that some or all of their
content constitutes requirements of this document. For dated references, only the edition cited
applies. For undated references, the latest edition of the referenced document (including any
amendments) applies.

Arliss Whiteside Jim Greenwood : OGC 06-121r9, OGC Web Service Common Implementation
Specification. Open Geospatial Consortium (2010). https://portal.ogc.org/files/?
artifact_id=38867

OGC API — Processes — Part 1: Core Standard, 2021. https://docs.ogc.org/is/18-062r2/18-062r2.
html

Commonwl.org: Common Workflow Language Specifications, https://w3id.org/cwl/

Radiant Earth Foundation: SpatioTemporal Asset Catalog specification, https://stacspec.org

OPEN GEOSPATIAL CONSORTIUM 20-089R1 7

https://portal.ogc.org/files/?artifact_id=38867
https://portal.ogc.org/files/?artifact_id=38867
https://docs.ogc.org/is/18-062r2/18-062r2.html
https://docs.ogc.org/is/18-062r2/18-062r2.html
https://w3id.org/cwl/
https://stacspec.org

4

TERMS AND DEFINITIONS

OPEN GEOSPATIAL CONSORTIUM 20-089R1 8

4 TERMS AND DEFINITIONS

This document uses the terms defined in OGC Policy Directive 49, which is based on the
ISO/IEC Directives, Part 2, Rules for the structure and drafting of International Standards. In
particular, the word “shall” (not “must”) is the verb form used to indicate a requirement to be
strictly followed to conform to this document and OGC documents do not use the equivalent
phrases in the ISO/IEC Directives, Part 2.

This document also uses terms defined in the OGC Standard for Modular specifications
(OGC 08-131r3), also known as the ‘ModSpec’. The definitions of terms such as standard,
specification, requirement, and conformance test are provided in the ModSpec.

For the purposes of this document, the following additional terms and definitions apply.

This document uses the terms defined in Sub-clause 5.3 of OGC 06-121r9, which is based on
the ISO/IEC Directives, Part 2, Rules for the structure and drafting of International Standards.
In particular, the word “shall” (not “must”) is the verb form used to indicate a requirement to be
strictly followed to conform to this standard.

For the purposes of this document, the following additional terms and definitions apply.

4.1. Application

A self-contained set of operations to be performed, typically to achieve a desired data
manipulation, written in a specific language (e.g. Python, R, Java, C++, C#, IDL).

4.2. Application Package

A platform independent and self-contained representation of an Application, providing
executables, metadata and dependencies such that it can be deployed to and executed within an
Exploitation Platform.

4.3. Compute Platform

The Platform providing the computational resources for the execution of the Application.

OPEN GEOSPATIAL CONSORTIUM 20-089R1 9

https://portal.ogc.org/public_ogc/directives/directives.php
https://portal.opengeospatial.org/files/?artifact_id=34762

4.4. Container

A container is a standard unit of software that packages up code and all its dependencies so that
includes everything needed to run an application: code, runtime, system tools, system libraries
and settings.

4.5. Exploitation Platform

An on-line system made of products, services and tools for exploitation of data.

4.6. Spatiotemporal Asset

Any file that represents information about the earth captured in a certain space and time.

4.7. GeoTIFF

A public domain metadata standard that allows georeferencing information to be embedded
within a TIFF file. The potential additional information includes map projection, coordinate
systems, ellipsoids, datums, and everything else necessary to establish the exact spatial
reference for the file.

4.8. HDF5

The Hierarchical Data Format version 5 (HDF5), is an open source file format that supports
large, complex, heterogeneous data. HDF5 uses a “file directory” like structure that allows you
to organize data within the file in many different structured ways, as you might do with files on
your computer

OPEN GEOSPATIAL CONSORTIUM 20-089R1 10

4.9. JPEG2000

An image compression standard and coding system

4.10. SAFE

SAFE, the Standard Archive Format for Europe, is designed to act as a standard format for
archiving and conveying Earth observation data within the European Space Agency (ESA)
archiving facilities and, potentially, within the archiving facilities of cooperating agencies.

4.11. Processing Result

The Products produced as output of a Processing Service execution.

4.12. Processing Service

A non-interactive data processing provided as a service by a platform that has a well defined set
of input data types, input parameterization, producing Processing Results with a well defined
output data type.

4.13. Processing Software

A set of predefined functions that interact to achieve a result. For the exploitation platform, it
comprises interfaces to derive data products from input data, conducted by a hosted processing
service execution.

OPEN GEOSPATIAL CONSORTIUM 20-089R1 11

4.14. Products

Earth Observation data (commercial and non-commercial) and value-added data. It is assumed
that the Exploitation Platform provides the data access mechanisms for an existing supply of
Earth Observation Products.

OPEN GEOSPATIAL CONSORTIUM 20-089R1 12

5

CONVENTIONS

OPEN GEOSPATIAL CONSORTIUM 20-089R1 13

5 CONVENTIONS

This section provides details and examples for any conventions used in the document. Examples
of conventions are symbols, abbreviations, use of XML schema, or special notes regarding how
to read the document.

5.1. Identifiers

The normative provisions in this document are denoted by the URI

http://www.opengis.net/spec/eoap-bp/1.0

All requirements and conformance tests that appear in this document are denoted by partial
URIs which are relative to this base.

5.2. Abbreviated terms

• API Application Programming Interface

• COG Cloud Optimized GeoTIFF

• CWL Common Workflow Language

• EO Earth Observation

• EP Exploitation Platform

• GDAL Geospatial Data Abstraction Library

• IW Interferometric Wide

• JSON JavaScript Object Notation

• OGC Open Geospatial Consortium

• OS Operating System

• OWS OGC Web Services

• REST Representational State Transfer

• SAFE Standard Archive Format for Europe

• SLC Single Look Complex

OPEN GEOSPATIAL CONSORTIUM 20-089R1 14

http://www.opengis.net/spec/eoap-bp/1.0

• SNAP Sentinel Application Platform toolbox

• STAC SpatioTemporal Asset Catalog

• TBD To Be Determined

• TIFF Tagged Image File Format

• URL Uniform Resource Locator

• YAML YAML Ain’t Markup Language

OPEN GEOSPATIAL CONSORTIUM 20-089R1 15

6

COMPONENTS OVERVIEW

OPEN GEOSPATIAL CONSORTIUM 20-089R1 16

6 COMPONENTS OVERVIEW

6.1. Introduction

In recent years, Platforms for the Exploitation of Earth Observation (EO) data have been
developed by public and private companies in order to foster the usage of EO data and expand
the market of Earth Observation-derived information. The domain is composed of platform
providers, service providers who use the platform to deliver a service to their users, and data
providers. The availability of free and open data (e.g. Copernicus Sentinel), together with the
availability of affordable computing resources, creates an opportunity for the wide adoption and
use of EO data in a growing number of fields in our society.

An EO exploitation platform is a collaborative virtual work environment providing the
mechanisms to deliver EO data and the tools, processors, and ICT resources required to work
with them, through one coherent set of interfaces. A fundamental principle of the platform
operations concept is to move the EO data processing service’s user to the data and tools, as
opposed to downloading, replicating, and exploiting data ‘at home’. Furthermore, platforms offer
an environment which takes care of all data processing orchestration tasks and the availability
of scalable computational resources offered by the Cloud shortens the time to market of
applications.

In this scope, OGC Testbeds 13-16 initiated the drafting of an architecture to allow the
deployment and execution of externally developed applications on Earth Observation (EO)
data and processing platforms. During the OGC Innovation Program initiative OGC Earth
Observation Applications Pilot, conducted between December 2019 and July 2020 (OGC
20-042, OGC 20-073), the participants explored and assessed the existent draft specifications,
which addressed both application description and discovery, APIs for deployment, execution,
and result access, as well as specifications for service chaining and workflow building. This
document summarizes their findings and defines a Best Practice to package and deploy Earth
Observation Applications in an Exploitation Platform.

In summary, the architecture as defined by the OGC Earth Observation Applications Pilot targets
the following requirements:

• Decouple application developers from exploitation platform operators and from
application consumers

• Allow application developers to make their applications available on any number
of platforms with minimal modifications

• Allow application developers to focus on application development by minimizing
platform specific particularities

• Enable exploitation platforms to virtually support any type of packaged EO
application

OPEN GEOSPATIAL CONSORTIUM 20-089R1 17

The figure below provides a high-level view of the interactions between the actors and the
architecture.

Figure 1 — Application developers and application
consumers interacting with the cloud platform

Application developers on the left side develop their application and make it available in the
form of an Application Package referencing one or more container images. The application
developers register their application in a platform making it available to users.

Application consumers can discover applications available in the platform, request their
execution with a given set of input products and parameters and obtain the resulting products in
their platform user space.

6.2. Earth Observation Applications

Earth Observation Applications typically offer functions that perform data operations like
processing / reprocessing, projection, visualization or analysis. The applications can be written
in a variety of coding languages (e.g. Python, R, Java, C++, C#, shell scripts) and make use of
specific software libraries (e.g. SNAP, GDAL, Orfeo Toolbox).

In the context of this Best Practice, the application is treated as a black-box that according to
its application design pattern must comply with data stage-in and data stage-out mechanisms
defined. Two main design patterns are identified: fan-in and fan-out. An application can combine
these patterns in the nodes of a Directed Acyclic Graph (DAG).

OPEN GEOSPATIAL CONSORTIUM 20-089R1 18

6.2.1. Data-driven application with a fan-in application pattern

The data driven application fan-in pattern refers to the execution of a data processing function
that aggregates several input products.

The platform application accesses a list of input products, stages the input products making
them available to the application execution block.

Figure 2 — Data-driven application with fan-in input references where
an application processes the aggregates of n-input EO products

An application following this pattern must take in consideration that it will be invoked once with
all the input products and is expected to create one output (but not necessarily a single file).

6.2.2. Data-driven application with a fan-out application pattern

The data driven application fan-out pattern refers to the execution of a data processing function
that processes concurrently several products generating independent output for each input.

The platform application loops from a list of input products, stages each of the individual
products making it available to the application execution block. The platform can apply different
strategies to parallelize the execution of each individual product.

OPEN GEOSPATIAL CONSORTIUM 20-089R1 19

Figure 3 — Data-driven application with fan-out input references where
an application processes several input EO products independently.

6.2.3. Staging Input and Output EO Products

EO product files come in different formats (e.g. GeoTIFF, HDF5, SAFE) and might have sub-
items (e.g. metadata, bands, masks) that can be encoded in the same file or follow a given folder
structure.

For example, SENTINEL-2 products are made available to users in the SENTINEL-SAFE format,
including image data in JPEG2000 format, quality indicators (e.g. defective pixels mask), auxiliary
data and metadata. The SAFE format wraps a folder containing image data in a binary data
format and product metadata in XML. A SENTINEL-2 product refers to a directory folder that
contains a collection of information that can include several files like seen in the next figure.

OPEN GEOSPATIAL CONSORTIUM 20-089R1 20

Figure 4 — SENTINEL-2 product physical format

A main concern application developers face is the different approaches through which the
products are made available (i.e. stage-in) to the applications. For example, applications might
find the same exact folder structure and return the folder root or the main XML manifest file or
have the folder structure compressed in a single archive file.

In general, the onus of navigating the input folder directory and programmatically reacting to
how the file was staged-in by the platform is on application and the application developer needs
to consider all possible cases when developing their read routines.

Conversely, the outputs of the application are fully managed by the developer that places the
resulting files in an output directory. The only information the platform might receive about the
output files is the file media type (formerly known as “MIME-type”) and is often missing critical
information like spatial footprint, sub-items (e.g. masks, bands) and additional metadata (e.g.
ground sample distance, orbit direction).

A good solution to represent the data manifest for input and output products is brought by the
SpatioTemporal Asset Catalog (STAC).

The STAC specification standardizes the way geospatial assets are exposed online and queried.
A ‘spatiotemporal asset’ is any file that represents information about the earth captured in a
certain space and time (e.g. satellites, planes, drones, balloons).

The STAC specification defines several objects:

OPEN GEOSPATIAL CONSORTIUM 20-089R1 21

• STAC Catalog: STAC Catalog is a collection of STAC Items or other STAC Catalogs
(sub-catalogs). The division of sub-catalogs is transparently managed by links to
ease online browsing.

• STAC Collection: extends the STAC Catalog with additional fields to describe a
whole set of STAC Items that share properties and metadata. STAC Collections
are meant to be compatible with OGC API — Features Collections (OGC
17-069r3).

• STAC Item: a GeoJSON Feature with additional fields (e.g. time, geo), links to
related entities and STAC Assets.

• STAC Asset: is an object that contains a link to data associated with the STAC
Item that can be downloaded or streamed (e.g. data, metadata, thumbnails) and
can contain additional metadata. Similar to atom:link it has properties like href,
title, description, type and roles; but, most significantly, it allows relative paths.

Most importantly the STAC specification can be implemented in a completely ‘static’ manner as
flat local files located near the data enabling the application to access products assets (e.g. JPEG
2000 band file, auxiliary data, browse) with a relative path (something that was not possible
using OpenSearch as defined by OGC 13-026r8, OGC 13-032r8).

This Best Practice selected a STAC Catalog with STAC Item files as the data manifests format,
for application that require staging input data and/or output results.

6.3. Application Package

The Application Package is a document that describes the data processing application by
providing information about the parameters, software item, executable, dependencies and
metadata. This file document ensures that the application is fully portable among all supporting
processing scenarios and supports automatic deployment in a Machine — To — Machine (M2M)
scenario. Most importantly, the Application Package information model allows the deployment
of the application as an OGC API — Processes (OGC 18-062) compliant web service.

The Application Package includes the following information:

• Reference to the executable block that implements the Application functionality

• Description of its input/output interface

The Application Package uses the Common Workflow Language (CWL) Workflow Description
specification as an encoding to describe the Application, its parameters, command-line tools,
their runtime environments, their arguments and their invocation within containers.

OPEN GEOSPATIAL CONSORTIUM 20-089R1 22

6.3.1. Common Workflow Language (CWL)

The CWL is a set of open standards for describing analysis workflows and tools in a way that
makes them portable and scalable across a variety of software and hardware environments, from
workstations to cluster, cloud, and high-performance computing (HPC) environments.

The CWL targets data-intensive processing scenarios and makes these portable and scalable
across platforms capable of interpreting and execute the processes by describing:

• A runtime environment

• A Workflow (Directed Acyclic Graph or “DAG”)

• Command line tool(s)

• Parameter of the process

• Inputs/outputs

The CWL contains two main specifications. The Command Line Tool Description Specification
that specifies the document schema and execution semantics for wrapping and executing
command line tools and the Workflow Description Specification that specifies the document
schema and execution semantics for composing workflows from components such as command
line tools and other workflows. The CWL file is able to reference the application container
images and also allow the definitions of the Application parameters, input/output interface and
the overall process offering parameters.

Each input to a command line tool has a name and a type (e.g., File, string) and developers
are encouraged to include documentation and labels for all components. Metadata about the
command line tool descriptions can contain well-defined hints or mandatory requirements such
as which software container to use or how much compute resources are required (memory,
number of CPU cores, disk space, and/or the maximum time or deadline to complete the step or
entire workflow.)

The CWL execution model is explicit: each command line tool’s runtime environment is explicit
and any required elements must be specified by the CWL tool-description author (in contrast
to hints, which are optional). Each tool invocation uses a separate working directory, populated
according to the CWL tool description, e.g., with the input files explicitly specified by the
workflow author. Some applications can expect particular filenames, directory layouts, and
environment variables, and there are additional constructs in the CWL Command Line Tool
standard to satisfy these needs.

The CWL standards use a declarative syntax, facilitating polylingual workflow tasks. By being
explicit about the run-time environment and any use of software containers, the CWL standards
enable portability and reuse while also providing a separation of concerns between workflow
authors and workflow platforms.

The execution block (i.e. Application Artefact) describes the ‘software’ component that
represents the execution unit in a specific container image to be executed or specific workflow

OPEN GEOSPATIAL CONSORTIUM 20-089R1 23

script that can be invoked on the processor directly. Based on the context information provided
with the processor, the execution block maps how the container image can be parameterized or
tailored.

A container image is an immutable, static file containing the dependencies for the creation of
a container. These dependencies may include a single executable binary file, system libraries,
system tools, environment variables, and other required platform settings (Cloud Native
Glossary).

In overall, a container image describes a container environment whereas a container is an
instance of that environment, ran by a container engine (e.g. Docker Engine). It is possible to run
multiple containers from the same image, and all of them will contain the same software and
configuration, as specified in the image.

In the scope of this Best Practice, the Application Package uses the Common Workflow
Language (CWL) Workflow Description specification as encoding to describe the Application,
its parameters, the command-line tools used, their arguments and their invocation within
containers.

With the use of CWL Workflow Description Standard as encoding, the Application can also
possibly yield several Application Packages that expose parameters and inputs in different
flavors and execution patterns.

There are multiple community or commercially supported systems that support the CWL
standards for executing workflows and a list of free and open-source implementations of the
CWL standards are listed in Annex B.

6.3.2. Usage Scenarios

The application package provides a well-defined set of procedures to allow “build to run”
operations. It covers five different usage scenarios from application testing, validation, and
deployment to execution in production that enables:

• Alice to package an application

• Bob to script the execution of application

• Eric to deploy an application on platform Z

• Platform Z to accept the deployment of a new process

• Platform Z to execute a process with specific parameters

The scenarios cover the three “build to run” operations: Build, Deploy and Run.

Build

Alice builds a container image with her Application and command line tool(s) and respective
runtime environments, publishes the container image on a repository and writes the Application
Package document with a workflow that invokes the command line tool(s) included in the image.

OPEN GEOSPATIAL CONSORTIUM 20-089R1 24

For Alice, the Application Package is a portable and executable document that:

• References the container image

• Describes the input parameters of the Application

• Maps the input parameters to the command line tool(s) arguments

Bob wants to run Alice’s application and scripts the application with different input parameters
in his local machine. He uses two tools to script the execution: a container engine (e.g. Docker)
and a CWL runner. The container image used is a controlled execution environment and it’s the
same used by Alice to build and test the application.

For Bob, the Application Package is a portable and executable document that:

• Is used by the CWL runner to mount the volumes for the inputs and outputs for
the container run

• Is used by the CWL runner to invoke the CLI in a specified way with parameters
passed as YAML.

• Isolates the process with no environments configured on Bob’s machine

Deploy

Eric wants to deploy Alice’s Application Package as a new Processing Service in Platform Z
where he has authorization rights.

He uses the Application Package document to create an OGC API — Processes Transaction
Extension request to dynamically add a process to a deployed OGC API — Processes server
instance.

For Eric, the Application Package is a portable and executable document that:

• Maps the application input parameters to OGC API — Processes Input Parameters

• Identifies the container image to be deployed and corresponding execution unit

• Registers an application in a platform as a process within an OGC API —
Processes server instance

Platform Z receives an OGC API — Processes deployment from Eric. The platform uses the
Application Package CWL to create a new process in the OGC API — Processes server instance.
For the Platform Z, the Application Package is a document that:

• Defines the process metadata (including the Input Parameters)

• Identifies the container image to be deployed and corresponding execution unit

• Creates a new process in the OGC API — Processes instance

OPEN GEOSPATIAL CONSORTIUM 20-089R1 25

Run

Platform Z receives an OGC API — Processes execution request for Eric’s deployed process.

The platform uses the Application Package CWL to retrieve the specified container image,
create the container, map the instantiated parameters with the execution values and execute the
application.

For the Platform Z, the Application Package is a portable and executable document that:

• Describes the application metadata of the process

• Maps the OGC API — Processes input parameters to the application input
parameters

• Identifies the container image to be deployed, the corresponding execution unit,
to monitor the execution and retrieve the results

6.4. Platform

An Earth Observation Exploitation Platform provides interfaces, processing functions, tools and
processing services invoked individually or utilized in workflows. Developers are able to test
and execute their own applications, register them into the platform and make them available for
exploitation by other users also individually or in their own workflows.

Connected from Client Portals, users of Earth Observation applications are able to find and
exploit on the Platform the services matching their needs, out of a large offer gathered from
multiple contributors.

Interfaced with Cloud Computing providers, Earth Observation Exploitation Platform executes
the data processing tasks requested by users and retrieves the information produced for delivery
back to the processing requester.

To support the application integration activities, a platform might also provide developers with
an environment where they can integrate, build, test & debug their applications as part of
their business use case. The ultimate goal of such an environment is to produce an Application
Package. However, these steps are outside the scope of this Best Practice that focuses on the
platform as the environment where the data processing application is registered and executed.

6.4.1. Platform Architecture

This best practice focuses on the scenario where an application is directly packaged as an
Application Package, registered in a Platform and made available as an implementation of OGC
API — Processes. The Web Service allows end-user portals and B2B client applications to pass
processing parameters, trigger on-demand or systematic data processing requests and establish
the data pipeline to retrieve the information produced.

OPEN GEOSPATIAL CONSORTIUM 20-089R1 26

Figure 5 — Architecture overview of the Application execution in a Platform

In the context of this Best Practice, the main responsibilities of the Platform are to:

OPEN GEOSPATIAL CONSORTIUM 20-089R1 27

• Validate and accept an application deployment request (OGC API — Processes
Transaction Extension)

• Validate and accept an execution request (OGC API — Processes)

• Submit the process execution to the processing cluster (CWL)

• Monitor the process execution (OGC API — Processes)

• Retrieve the processing results (OGC API — Processes)

For applications that require staged EO products and/or generate products that need to be
staged-out the platform is responsible for the EO Product data flow management operations for:

• Data stage-in of the process input EO Product.

• Data stage-out of the process outputs.

6.4.2. EO Products Data Flow Management

This Best Practice addresses data flow management of the input and output EO Products files
by defining rules for the data stage-in and data stage-out for Applications that require staged
files and/or generate files that need to be staged-out.

Data stage-in is the process to retrieve the inputs and make these available for the processing.
Processing inputs are provided as catalogue references and the Platform is responsible for
translating those references into inputs available as files for the local processing.

Data stage-out is the process to upload the output files generated by the processing onto
external system(s), and make them available for later usage. The Platform retrieves the
processing outputs and automatically stores them onto an external persistent storage.
Additionally, the Platform should publish the metadata of the outputs onto a Catalogue and
provide their references as an output.

For the data stage-in, the Platform creates a local STAC Catalog with a STAC Item whose Assets
have an accessible href (either local or remote e.g. COG) as the input files manifest for the
application.

For the data stage-out, the Application creates a local STAC Catalog as the output files manifest
describing the results metadata and assets’ location thus enabling the Platform to provide the
processing results in the OGC API — Processes response.

OPEN GEOSPATIAL CONSORTIUM 20-089R1 28

7

APPLICATION BEST
PRACTICE

OPEN GEOSPATIAL CONSORTIUM 20-089R1 29

7 APPLICATION BEST PRACTICE

The following section describes the Application Best Practice.

7.1. Overview

An Application that complies with the Best Practice for Earth Observation Application Package
needs to be:

• Executable as a command-line tool.

• Delivered in a container image with all the necessary software, libraries and
configuration files.

This section described the best practice for the command line tools, how to consider input data,
output data and how to create a container.

7.2. Command Line

The Application is executed as a command-line interface (CLI) tool that runs as a non-interactive
executable program: it receives input arguments, performs a computation, and terminates after
producing some output.

The Application can have any number of command-line arguments.

When executed, the Application working directory is also the Application output directory. Any
file created by the Application should be added under that directory.

#!/bin/bash

if ["$#" -lt 3]
then
 echo "Usage: provide file, bbox and proj"
 exit 1
fi

file to process
file=$1
bbox processing argument
bbox=$2
EPSG code used to express bbox coordinates
proj=$3

gdal_translate \
 -projwin \

OPEN GEOSPATIAL CONSORTIUM 20-089R1 30

 "$(echo $bbox | cut -d ',' -f 1)" \
 "$(echo $bbox | cut -d ',' -f 4)" \
 "$(echo $bbox | cut -d ',' -f 3)" \
 "$(echo $bbox | cut -d ',' -f 2)" \
 -projwin_srs \
 ${proj} \
 ${file} \
 cropped.tif

If the EO Products are already staged on the local computer this command-line could be
executed with the parameters.

computer:~ user$ crop "S2B_53HPA_20210723_0_L2A/B02.tif" "136.522,-36.062,137.
027,-35.693" "EPSG:4326"

7.3. Container

The environment, libraries, binaries and configuration files necessary to execute the command-
line tools need to be bundled in a container image.

The example below shows how Docker, one of the available container engine solutions to
deliver software in containers, defines all the necessary commands to assemble an image.

FROM osgeo/gdal

RUN apt update && \
 apt-get install -y jq

ADD functions.sh /functions.sh

ADD crop /usr/bin/crop

RUN chmod +x /usr/bin/crop

Build the docker image with:

docker build -t crop_docker:0.1 .

Test the CLI with:

docker run --rm -it crop_docker:0.1 crop

7.3.1. EO Products as Input Data

To support Applications that required the input EO Products to be previously staged-in, this Best
Practice recommends the usage of a STAC Catalog with STAC Item files as the format of the
data manifest.

The command-line tool must have an argument that represents the path to the folder where the
STAC Catalog file is located. The input products are defined by the STAC Catalog with one or
more STAC Items (and associated STAC Assets) as input files for processing.

OPEN GEOSPATIAL CONSORTIUM 20-089R1 31

The Application is a wrapper command-line tool that reads the STAC Catalog, selects the input
Item Assets href and executes another command-line tool taking as argument the asset href (i.e.
path to local file).

#!/bin/bash

if ["$#" -lt 3]
then
 echo "Usage: provide file, bbox and proj"
 exit 1
fi

generic STAC functions
source /functions.sh

processing arguments
in_dir=$1 # folder where the EO product is staged-in
bbox=$2 # bbox processing argument
proj=$3 # EPSG code used to express bbox coordinates

Read the input STAC Catalog
catalog="${in_dir}/catalog.json"

get the item path
item=$(get_items ${catalog})

get the B02 asset href (local path)
asset_href=$(get_asset ${item} B02)

gdal_translate \
 -projwin \
 "$(echo $bbox | cut -d ',' -f 1)" \
 "$(echo $bbox | cut -d ',' -f 4)" \
 "$(echo $bbox | cut -d ',' -f 3)" \
 "$(echo $bbox | cut -d ',' -f 2)" \
 -projwin_srs \
 ${proj} \
 ${asset_href} \
 cropped.tif

The command-line tool reads the input EO product from the assets of the items included in the
STAC Catalog file (catalog.json) in the specified directory.

The STAC items can be selected by the tool according to their respective metadata (e.g. bands,
format, time).

Inside each STAC Item feature there are the corresponding STAC Assets for the product files
(e.g. bands). The STAC Asset contains a link to the file associated with the STAC Item that can be
downloaded or streamed (e.g. data, metadata, thumbnails) and can contain additional metadata.

{
 "id": "catalog",
 "stac_version": "1.0.0",
 "links": [
 {
 "type": "application/geo+json",
 "rel": "item",
 "href": "S2B_53HPA_20210723_0_L2A/S2B_53HPA_20210723_0_L2A.json"
 }
],
 "type": "Catalog",

OPEN GEOSPATIAL CONSORTIUM 20-089R1 32

 "description": "Root catalog"
}
{
 "stac_version": "1.0.0",
 "stac_extensions": ["eo", "proj", "view"],
 "type": "Feature",
 "id": "S2B_53HPA_20210723_0_L2A",
 "geometry": {
 "type": "Polygon",
 "coordinates": [[
 [136.11273785955868, -36.22788818051635],[136.09905192261127,
 -35.238096451039816],[137.30513468251897, -35.22113204961173],[137.
33381497932513, -36.21029815477051], [136.11273785955868, -36.22788818051635]
]]
 },
 "properties": {
 "datetime": "2021-07-23T00:57:07Z",
 "platform": "sentinel-2b",
 "constellation": "sentinel-2",
 ...
 },
 "bbox": [136.09905192261127, -36.22788818051635, 137.33381497932513, -35.
22113204961173],
 "assets": {
 ...
 "B02": {
 "type": "image/tiff; profile=cloud-optimized; application=geotiff",
 "roles": ["data"],
 "title": "Band 2 (blue)",
 "href": "B02.tif",
 "gsd": 10,
 "eo:bands": [
 {
 "name": "B02",
 "common_name": "blue",
 "center_wavelength": 0.4966,
 "full_width_half_max": 0.098
 }
],
 "proj:shape": [10980, 10980],
 "proj:transform": [10, 0, 600000, 0, -10, 6100000, 0, 0, 1],
 "file:size": 206117177
 },
 ...
 },
 "links": [
 {
 "type": "application/json",
 "rel": "canonical",
 "href": "https://sentinel-cogs.s3.us-west-2.amazonaws.com/sentinel-s2-
l2a-cogs/53/H/PA/2021/7/S2B_53HPA_20210723_0_L2A/S2B_53HPA_20210723_0_L2A.json"
 },
 {
 "rel": "parent",
 "href": "../catalog.json"
 }
]
}

Below is another example of a shell script that retrieves the location of the “B02” band of the
first STAC Item and executes the gdal_translate command line application.

OPEN GEOSPATIAL CONSORTIUM 20-089R1 33

parse the catalog.json file and get the first STAC item
item="$(jq -r '.links | select(.. | .rel? == \"item\")[0].href' catalog.json)"

get asset B02 href
asset_href=$(dirname ${item})/$(cat ${item} | jq -r ".assets.B02.href")

gdal_translate ${asset_href} output.png

7.4. EO Products as Output Data

An Application that creates EO product files that need to be staged-out must also create in the
output directory a STAC Catalog that enumerates and documents the produced files.

Below is a catalog.json produced by the Application with the one result referenced as a STAC
Item.

{
 "id": "catalog",
 "stac_version": "1.0.0",
 "type": "catalog",
 "description": "Result catalog",
 "links": [
 {
 "type": "application/geo+json",
 "rel": "item",
 "href": "result-item.json"
 }
]
}

The STAC Item files contain the corresponding STAC Assets with the results of the processing.
Each STAC Asset contains a reference to the associated data (e.g. data, metadata, thumbnails).

{
 "id": "item_id",
 "stac_version": "1.0.0",
 "type": "Feature",
 "bbox": [136.522, -36.062, 137.027, -35.693
],
 "geometry": {
 "type": "Polygon",
 "coordinates": [
 [
 [136.522, -36.062],
 [137.027, -36.062],
 [137.027, 137.027],
 [136.522, 137.027],
 [136.522, -36.062]
]
]
 },
 "properties": {
 "datetime": "2021-07-23T00:57:07Z",
 "gsd": 10
 },
 "assets": {
 "B02": {

OPEN GEOSPATIAL CONSORTIUM 20-089R1 34

 "role": ["data"],
 "href": "./cropped.tif",
 "type": "image/tiff",
 "title": "Cropped B02 band"
 }
 }
}

The STAC Catalog created by the Application must include metadata elements defining
properties as the start time & end time or the geographical footprint. These two elements are
the minimum set of metadata elements to enable their discovery but depending on the context,
the application can convey further elements.

It is assumed that all output files not referenced in the STAC Catalog local file are not relevant to
the process and can be discarded by any subsequent action and thus not staged out.

Please note that, as with the input data, nothing hampers the Application to be a wrapper
command-line tool that, after executing a command-line, creates the STAC Catalog referencing
the output files.

The example below complements the previous examples with the creation of the STAC Catalog
for the data output manifest.

#!/bin/bash

if ["$#" -lt 3]
then
 echo "Usage: provide file, bbox and proj"
 exit 1
fi

generic STAC functions
source /functions.sh

processing arguments
in_dir=$1 # folder where the EO product is staged-in
bbox=$2 # bbox processing argument
proj=$3 # EPSG code used to express bbox coordinates

Read the input STAC Catalog
catalog="${in_dir}/catalog.json"

get the item path
item=$(get_items ${catalog})

get the B02 asset href (local path)
asset_href=$(get_asset ${item} B02)

gdal_translate \
 -projwin \
 "$(echo $bbox | cut -d ',' -f 1)" \
 "$(echo $bbox | cut -d ',' -f 4)" \
 "$(echo $bbox | cut -d ',' -f 3)" \
 "$(echo $bbox | cut -d ',' -f 2)" \
 -projwin_srs \
 ${proj} \
 ${asset_href} \
 cropped.tif

result as STAC
get the properties from the input STAC item

OPEN GEOSPATIAL CONSORTIUM 20-089R1 35

as these are the same for the output STAC item
datetime=$(get_item_property ${item} "datetime")
gsd=$(get_item_property ${item} "gsd")

initialise a STAC item
init_item ${datetime} "${bbox}" "${gsd}" > result-item.json

add an asset
add_asset result-item.json "B02" "./cropped.tif" "image/tiff" "Cropped B02
 band"

initialise the output catalog
init_catalog > catalog.json

add the item to the catalog
add_item catalog.json result-item.json

7.5. Requirement Classes

7.5.1. Requirements Class “Application”

This class contains the requirements for any Application to comply with the Best Practice for
Earth Observation Application Package.

Requirements Class

http://www.opengis.net/spec/eoap-bp/1.0/req/app

Target Type Application

Dependency

Requirement 1

req/app/cmd-line

The Application SHALL be a non-interactive executable as a command-line
application.

Requirement 2

req/app/container

The environment, libraries, binaries, executable and configuration files
necessary to execute the Application SHALL be bundled in a container image.

OPEN GEOSPATIAL CONSORTIUM 20-089R1 36

http://www.opengis.net/spec/eoap-bp/1.0/req/app

Requirement 3
req/app/registry

The Application container image SHALL be accessible in a container registry.

7.5.2. Requirements Class “Application Staged Inputs”

This class contains the requirements for an Application that requires staged files as input.

Requirements Class

http://www.opengis.net/spec/eoap-bp/1.0/req/app-stage-in

Target Type Application

Dependency
Requirements Class “Application”

SpatioTemporal Asset Catalog

Requirement 4

req/app/stac-input

An Application input argument that requires staged EO product files SHALL
be defined as an argument that points to a folder where a STAC Catalog,
named catalog.json, contains a list of one or more STAC Items and associated
STAC Assets referencing the files.

7.5.3. Requirements Class “Application Staged Outputs”

This class contains the requirements for an Application that creates files that need to be staged-
out.

Requirements Class

http://www.opengis.net/spec/eoap-bp/1.0/req/app-stage-out

Target Type Application

Dependency Requirements Class “Application” + SpatioTemporal Asset Catalog

Requirement 5
req/app/stac-out

OPEN GEOSPATIAL CONSORTIUM 20-089R1 37

http://www.opengis.net/spec/eoap-bp/1.0/req/app-stage-in
http://www.opengis.net/spec/eoap-bp/1.0/req/app-stage-out

An Application that creates EO product files to be stage-out SHALL generate
a valid STAC Catalog, named catalog.json, and include the STAC Item(s) and
corresponding STAC Assets pointing to the results of the processing.

Requirement 6

rec/app/stac-out-metadata

The STAC Catalog created by the Application SHALL include metadata
elements for each STAC Item with at least their spatial (geometry, box) and
temporal (datetime) properties.

OPEN GEOSPATIAL CONSORTIUM 20-089R1 38

8

PACKAGE BEST PRACTICE

OPEN GEOSPATIAL CONSORTIUM 20-089R1 39

8 PACKAGE BEST PRACTICE

This section describes the Package Best Practice for EO Applications.

8.1. Overview

A Package that complies with the Best Practice for Earth Observation Application Package
needs to:

• Be a valid CWL document with a single Workflow Class and at least one
CommandLineTool Class

• Define the command-line and respective arguments and container for each
CommandLineTool

• Define the Application parameters

• Define the Application Design Pattern

• Define the requirements for runtime environment

The Workflow class steps field orchestrates the execution of the application command line and
retrieves all the outputs of the processing steps.

8.2. CWL Document

The CWL Document references the Application parameters with the class Workflow and the
command lines tools and arguments with the CommandLineTool classes.

cwlVersion: v1.0
$graph:
- class: Workflow
 id: s2-cropper
 ...

- class: CommandLineTool
 id: crop-cl
 ...

OPEN GEOSPATIAL CONSORTIUM 20-089R1 40

8.3. Command-Line Tool

As stated previously, the command-line tool is a non-interactive executable program that reads
some input, performs a computation, and terminates after producing some output.

The CommandLineTool class defines the actual interface of the command-line tool and its
arguments according to the CWL CommandLineTool standard.

The CWL explicitly supports the use of software container technologies, such as Docker or
Singularity, to enable portability of the underlying analysis tools. The Application Package
needs to explicitly provide for each command-line tool the container requirements defining the
container image needed.

The field DockerRequirement indicates that the component should be run in a container, and
specifies how to fetch or build the image.

cwlVersion: v1.0
$graph:
- class: Workflow
 id: s2-cropper
 ...

- class: CommandLineTool
 id: crop-cl
 requirements:
 DockerRequirement:
 dockerPull: docker.io/terradue/crop_container
 baseCommand: crop
 arguments: []
 inputs:
 ...
 outputs:
 ...

The field inputs defines the list of input parameters of the command-line that control how to run
the tool. Each parameter has an id for the name of parameter, and a type field describing what
types of values are valid for that parameter (e.g. string, int, double, null, File, Directory, Any).
Additionally, if there are command-line bindings not directly associated with input parameters
(e.g. fixed values or environment run-time values), the field arguments can also be used.

cwlVersion: v1.0
$graph:
- class: Workflow
 id: s2-cropper
 ...

- class: CommandLineTool
 id: crop-cl
 ...
 baseCommand: crop
 arguments: []
 inputs:
 ...
 bbox:
 type: string
 inputBinding:

OPEN GEOSPATIAL CONSORTIUM 20-089R1 41

 position: 2
 epsg:
 type: string
 inputBinding:
 position: 3
 outputs:
 ...

When the command-line is executed under CWL, the starting working directory is the
designated output directory. The underlying tool or script records its results in the form of files
created in the output directory.

All the outputs of the command line tool are retrieved at this level.

cwlVersion: v1.0
$graph:
- class: Workflow
 id: s2-cropper
 ...

- class: CommandLineTool
 id: crop-cl
 ...
 outputs:
 cropped_tif:
 outputBinding:
 glob: .
 type: Directory
...

8.3.1. Staging Input and Output EO Products

A command-line tool that requires staged EO product files must have an input field of the type
Directory that will convey the path to the folder. When mounting the environment, this path is
used for the data stage-in and STAC Catalog file location.

A command-line tool that generates products that need to be staged-out it must have the
results of the type Directory and collect all the files available.

The example below defines a CommandLineTool class called crop-cl that maps to a command line
application called crop, that accepts three inputs: product, bbox and epsg, and that is available in a
container named docker.io/terradue/crop_container.

cwlVersion: v1.0
$graph:
- class: Workflow
 id: s2-cropper
 ...

- class: CommandLineTool
 id: crop-cl
 requirements:
 DockerRequirement:
 dockerPull: docker.io/terradue/crop_container
 baseCommand: crop
 arguments: []
 inputs:
 product:

OPEN GEOSPATIAL CONSORTIUM 20-089R1 42

 type: Directory
 inputBinding:
 position: 1
 band:
 type: string
 inputBinding:
 position: 2
 bbox:
 type: string
 inputBinding:
 position: 3
 epsg:
 type: string
 inputBinding:
 position: 4
 outputs:
 cropped_tif:
 outputBinding:
 glob: .
 type: Directory
...

8.4. Application

The CWL Workflow class defines the Application as an analysis task represented by a directed
graph describing a sequence of operations that transform an input data set to output.

The Workflow class includes four basic blocks: identification, inputs, steps and outputs.

For the identification block, the Workflow class supports the definition of a unique identifier
(id), a short human-readable title (label) and a long human-readable description (doc) of the
Application.

cwlVersion: v1.0
$graph:
- class: Workflow
 id: s2-cropper
 label: Sentinel-2 band crop
 doc: This application crops a band from a Copernicus Sentinel-2 product using
 GDAL
 ...

- class: CommandLineTool
 id: crop-cl
 ...

For the inputs, the Workflow class supports the definition of the input parameters of the process.
Each input parameter has a corresponding identifier (the field’s name), title (label), abstract (doc)
and a type (type) that is mandatory according to the CWL Workflow specification.

cwlVersion: v1.0
$graph:
- class: Workflow
 id: s2-cropper
 ...
 inputs:

OPEN GEOSPATIAL CONSORTIUM 20-089R1 43

 ...
 bbox:
 type: string
 label: bounding box
 doc: Area of interest expressed as a bounding box
 proj:
 type: string
 label: EPSG code
 doc: Projection EPSG code for the bounding box
 default: "EPSG:4326"
 steps:
 ...
 outputs:
 ...
 - class: CommandLineTool
 id: crop-cl
 ...

The workflow is managed by the steps field of the Workflow class that links the corresponding
parameters with arguments of the command-line class defined in the previous section.

cwlVersion: v1.0
$graph:
- class: Workflow
 label: Sentinel-2 band crop
 doc: This application crops a Sentinel-2 band
 id: s2-cropper
 inputs:
 product:
 ...
 band:
 ...
 bbox:
 ...
 proj:
 ...
 steps:
 node_crop:
 run: "#crop-cl"
 in:
 product: product
 band: band
 bbox: bbox
 epsg: proj
 out:
 - cropped_tif
 outputs:
 ...

- class: CommandLineTool
 id: crop-cl
 ...
 inputs:
 product:
 ...
 band:
 ...
 bbox:
 ...
 epsg:
 ...
 outputs:

OPEN GEOSPATIAL CONSORTIUM 20-089R1 44

 ...

The previous workflow can be visualized as shown in the next figure.

Figure 6 — Workflow diagram for the a simple Application
with four inputs parameters and one execution block

For the outputs, the Workflow class includes the outputs section. This is a list of output fields
where each field consists of an identifier and a data type.

cwlVersion: v1.0
$graph:
- class: Workflow
 id: s2-cropper
 ...
 inputs:
 ...
 steps:
 ...
 outputs:
 results:
 outputSource:
 - node_crop/cropped_tif
 type: Directory

 - class: CommandLineTool
 id: crop-cl
 ...

8.4.1. Staging Input and Output EO Products

An Application that includes command-line tools that require staged EO products must have an
inputs field of the type Directory that will convey the path where the data will be staged-in and
STAC Catalog file located.

An Application that generates products that need to be staged-out it must have a field outputs
of the type Directory and collect the available files and STAC Catalog.

cwlVersion: v1.0
$graph:
- class: Workflow

OPEN GEOSPATIAL CONSORTIUM 20-089R1 45

 id: s2-cropper
 label: Sentinel-2 band crop
 doc: This application crops a Sentinel-2 band
 inputs:
 product:
 type: Directory
 label: Sentinel-2 inputs
 doc: Sentinel-2 Level-1C or Level-2A input reference
 band:
 type: string
 label: Sentinel-2 band
 doc: Sentinel-2 band to crop (e.g. B02)
 bbox:
 ...
 proj:
 ...
 steps:
 node_crop:
 run: "#crop-cl"
 in:
 product: product
 band: band
 bbox: bbox
 epsg: proj
 out:
 - cropped_tif
 outputs:
 results:
 outputSource:
 - node_crop/cropped_tif
 type: Directory

- class: CommandLineTool
 id: crop-cl
 ...

Together with the cropped TIFF file, the application produces a STAC Catalog file with the list of
items produced.

{
 "id": "catalog",
 "stac_version": "1.0.0",
 "type": "catalog",
 "description": "Result catalog",
 "links": [
 {
 "type": "application/geo+json",
 "rel": "item",
 "href": "result-item.json"
 }
]
}

The application also produces a STAC item describing the output product.

{
 "id": "item_id",
 "stac_version": "1.0.0",
 "type": "Feature",
 "bbox": [136.522, -36.062, 137.027, -35.693],
 "geometry": {
 "type": "Polygon",
 "coordinates": [

OPEN GEOSPATIAL CONSORTIUM 20-089R1 46

 [[136.522, -36.062],
 [137.027, -36.062],
 [137.027, -35.693],
 [136.522, -35.693],
 [136.522, -36.062]]
]
 },
 "properties": {
 "datetime": "2021-07-23T00:57:07Z",
 "gsd": 10
 },
 "assets": {
 "B02": {
 "role": ["data"],
 "href": "./cropped.tif",
 "type": "image/tiff",
 "title": "Cropped B02 band"
 }
 }
}

All the necessary files for this example (shell scripts, Docker container, Application Package and
execution parameters) are included in Annex D.

8.5. Application Pattern

The fan-in application design pattern, shown in the previous examples, is the simplest case
where all the EO inputs are used for the single processing. This pattern is the default behavior of
a CWL workflow execution step.

For the fan-out application design pattern to be expressed in CWL, it is necessary to use
the ScatterFeatureRequirement requirement. This requirement tells the CWL runner that the
application will run multiple times over a list of inputs. The workflow then takes the input(s)
as an array and will run the specified step(s) on each element of the array as if it were a single
input.

For the fan-out design pattern the Workflow class needs to change the type of input to
an array (i.e. a string with square brackets string[]), and add a new requirement with the
ScatterFeatureRequirement field to change the specific step as shown below where the input
parameter band was changed to bands for the fan-out behavior.

cwlVersion: v1.0
$graph:
- class: Workflow
 label: Sentinel-2 band crop
 doc: This application crops a Sentinel-2 band
 id: s2-cropper

 requirements:
 - class: ScatterFeatureRequirement

 inputs:
 ...
 bands:
 type: string[]

OPEN GEOSPATIAL CONSORTIUM 20-089R1 47

 label: Sentinel-2 bands
 doc: Sentinel-2 list of bands to crop
 ...
 outputs:
 results:
 outputSource:
 - node_crop/cropped_tif
 type: Directory[]

 steps:
 node_crop:
 run: "#crop-cl"
 in:
 product: product
 band: bands
 bbox: bbox
 epsg: proj
 out:
 - cropped_tif
 scatter: band
 scatterMethod: dotproduct

- class: CommandLineTool
 id: crop-cl
 ...
 inputs:
 ...
 band:
 type: string
 inputBinding:
 position: 2
 ...
 outputs:
 ...
...

In the definition above the fan-out pattern is applied to the bands workflow field is mapped to a
band parameter at step level.

The field scatter is used to define which step input parameter is scattered in the workflow step
requirements and the fan-out method is defined with the scatterMethod field. Its value is one of:
dotproduct, nested_crossproduct, or flat_crossproduct:

• dotproduct specifies that each of the input arrays are aligned and one element
taken from each array to construct each job. It is an error if all input arrays are not
the same length.

• nested_crossproduct specifies the Cartesian product of the inputs, producing a
job for every combination of the scattered inputs. The output must be nested
arrays for each level of scattering, in the order that the input arrays are listed in
the scatter field.

• flat_crossproduct specifies the Cartesian product of the inputs, producing a job for
every combination of the scattered inputs. The output arrays must be flattened
to a single level, but otherwise listed in the order that the input arrays are listed in
the scatter field.

OPEN GEOSPATIAL CONSORTIUM 20-089R1 48

The full Application Package file is included in Annex D.

8.6. Extended Workflows

The Workflow class can orchestrate one or more command-line applications in a directed acyclic
graph describing a sequence of operations that transform input data sets to output.

The example below shows a new tool, called composite that creates a RGB image from three
inputs for the red, green and blue channels.

cwlVersion: v1.0
$graph:
- class: Workflow
 ...

- class: CommandLineTool
 id: composite-cl
 requirements:
 DockerRequirement:
 dockerPull: docker.io/terradue/composite-container
 InlineJavascriptRequirement: {}
 baseCommand: composite
 arguments:
 - $(inputs.tifs[0].path)
 - $(inputs.tifs[1].path)
 - $(inputs.tifs[2].path)
 inputs:
 tifs:
 type: File[]
 lineage:
 type: Directory
 inputBinding:
 position: 4
 outputs:
 rgb_composite:
 outputBinding:
 glob: .
 type: Directory
...

Adding this tool to a new workflow of two command-line tools it is possible to define an
application that accepts a Sentinel-2 product, selects the bands, crops them and creates a
composite. Below is the interface for the application with input product, the red, green and blue
bands together with the bounding box and projection.

cwlVersion: v1.0
$graph:
- class: Workflow
 label: Sentinel-2 RGB composite
 doc: This application generates a Sentinel-2 RGB composite over an area of
 interest
 id: s2-compositer
 inputs:
 product:
 type: Directory
 label: Sentinel-2 inputs

OPEN GEOSPATIAL CONSORTIUM 20-089R1 49

 doc: Sentinel-2 Level-1C or Level-2A input reference
 red:
 type: string
 label: red channel
 doc: Sentinel-2 band for red channel
 green:
 type: string
 label: green channel
 doc: Sentinel-2 band for green channel
 blue:
 type: string
 label: blue channel
 doc: Sentinel-2 band for blue channel
 bbox:
 type: string
 label: bounding box
 doc: Area of interest expressed as a bounding box
 proj:
 type: string
 label: EPSG code
 doc: Projection EPSG code for the bounding box coordinates
 default: "EPSG:4326"
 outputs:
 ...
- class: CommandLineTool
 id: crop-cl
 ...
- class: CommandLineTool
 id: composite-cl
 ...
...

The workflow orchestration is managed by the steps field where the crop tool extracts an area
of a Sentinel-2 product then the composite tool that creates an image of the product with the
selection of three bands for the red, green and blue channels.

cwlVersion: v1.0
$graph:
- class: Workflow
 id: s2-compositer
 ...
 inputs:
 ...
 outputs:
 results:
 outputSource:
 - node_composite/rgb_composite
 type: Directory
 steps:
 node_crop:
 run: "#crop-cl"
 in:
 product: product
 band: [red, green, blue]
 bbox: bbox
 epsg: proj
 out:
 - cropped_tif
 scatter: band
 scatterMethod: dotproduct
 node_composite:
 run: "#composite-cl"
 in:

OPEN GEOSPATIAL CONSORTIUM 20-089R1 50

 tifs:
 source: node_crop/cropped_tif
 lineage: product
 out:
 - rgb_composite

- class: CommandLineTool
 id: crop-cl
 ...
 outputs:
 cropped_tif:
 outputBinding:
 glob: '*.tif'
 type: File

- class: CommandLineTool
 id: composite-cl
 ...
 outputs:
 rgb_composite:
 outputBinding:
 glob: .
 type: Directory

...

This workflow can be visualized as shown in the next figure.

Figure 7 — Workflow diagram for the Application
with six inputs parameters and two execution blocks

To execute the previous workflow with multiple input EO products it is only necessary to create
a parent workflow that will replicate the input parameters and an array of input products.
Together with the scatter requirements this workflow will process multiple composite images.

This workflow below takes a list of products as input and invokes a two-step sub-workflow that
crops (using scatter over the bands) and creates a composite.

cwlVersion: v1.0
$graph:
- class: Workflow
 id: s2-composites
 label: Sentinel-2 RGB composites

OPEN GEOSPATIAL CONSORTIUM 20-089R1 51

 doc: This application generates a Sentinel-2 RGB composite over an area of
 interest with selected bands
 requirements:
 - class: SubworkflowFeatureRequirement
 - class: ScatterFeatureRequirement
 inputs:
 products:
 type: Directory[]
 label: Sentinel-2 inputs
 doc: Sentinel-2 Level-1C or Level-2A input references
 red:
 type: string
 label: red channel
 doc: Sentinel-2 band for red channel
 green:
 type: string
 label: green channel
 doc: Sentinel-2 band for green channel
 blue:
 type: string
 label: blue channel
 doc: Sentinel-2 band for blue channel
 bbox:
 type: string
 label: bounding box
 doc: Area of interest expressed as a bounding bbox
 proj:
 type: string
 label: EPSG code
 doc: Projection EPSG code for the bounding box coordinates
 default: "EPSG:4326"

 outputs:
 wf_results:
 outputSource:
 - node_rgb/results
 type: Directory[]

 steps:
 node_rgb:
 run: "#s2-compositer"
 in:
 product: products
 red: red
 green: green
 blue: blue
 bbox: bbox
 proj: proj
 out:
 - results
 scatter: product
 scatterMethod: dotproduct

- class: Workflow
 id: s2-compositer
 label: Sentinel-2 RGB composite
 doc: This sub-workflow generates a Sentinel-2 RGB composite over an area of
 interest

- class: CommandLineTool
 id: crop-cl
 ...
- class: CommandLineTool

OPEN GEOSPATIAL CONSORTIUM 20-089R1 52

 id: composite-cl
 ...

The full Application Package file is included in Annex D.

8.7. Application Additional Metadata

The Application Package can include additional metadata in CWL descriptions and developers
should provide a minimal amount of authorship information to encourage correct citation.

It is recommended to include additional metadata in the Application Package using schema.org
class Person to define the author and contributions and properties like citation, codeRepository,
dateCreated and license as seen in the next example.

cwlVersion: v1.0
$graph:
- class: Workflow
 id: s2-cropper
 ...
- class: CommandLineTool
 id: crop-cl
 ...
$namespaces:
 s: https://schema.org/
s:softwareVersion: 1.0.0
schemas:
- http://schema.org/version/9.0/schemaorg-current-http.rdf

It is recommended that concepts from schema.org are used whenever possible and linked with
their RDF encoding. Table 1 lists the selected elements recommended by the Best Practice for
Earth Observation Application Package.

Table 1 — Application Package additional Metadata elements

NAME DESCRIPTION ELEMENT MANDATORY

author
The main author of the
Application Package

https://schema.org/author NO

citation
A citation or reference to
a publication, web page,
scholarly article, etc.

https://schema.org/citation NO

codeRepository

Link to the repository
where the Application
code is located (e.g. SVN,
github).

https://schema.org/codeRepository NO

contributor
A secondary contributor
to the Application
Package

https://schema.org/contributor NO

OPEN GEOSPATIAL CONSORTIUM 20-089R1 53

https://schema.org/author
https://schema.org/citation
https://schema.org/codeRepository
https://schema.org/contributor

NAME DESCRIPTION ELEMENT MANDATORY

dateCreated
The date on which the
Application Package was
created.

https://schema.org/dateCreated NO

keywords

Keywords used to
describe this application.
 Multiple entries in
a keywords list are
delimited by commas.

https://schema.org/keywords NO

license
An URL to the license
document that applies to
this application.

https://schema.org/license NO

releaseNotes
Description of what
changed in this version.

https://schema.org/releaseNotes NO

version
The version of the
Application Package.

https://schema.org/version YES

8.8. Resources for the runtime environment

CWL provides a mechanism for expressing runtime environment resource requirements with the
simple rule:

• min is the minimum amount of a resource that must be reserved to schedule a
job. If min cannot be satisfied, the job should not be run.

• max is the maximum amount of a resource that the job shall be permitted to use.
If a node has sufficient resources, multiple jobs may be scheduled on a single
node provided each job’s “max” resource requirements are met. If a job attempts
to exceed its “max” resource allocation, an implementation may deny additional
resources, which may result in job failure.

Hardware resources are expressed with the CWL “ResourceRequirement” allowing the definition
of:

• coresMin for the minimum reserved number of CPU cores

• coresMax for the maximum reserved number of CPU cores

• ramMin for the minimum reserved RAM in mebibytes

• ramMax for the maximum reserved RAM in mebibytes

This definition covers most of the application resource requirements needs.

OPEN GEOSPATIAL CONSORTIUM 20-089R1 54

https://schema.org/dateCreated
https://schema.org/keywords
https://schema.org/license
https://schema.org/releaseNotes
https://schema.org/version

If appropriate the Application Package can define resources for the runtime environment with
ResourceRequirement class either at the level of each CommandLineTool classes or at the level of
the Workflow class (that will be inherited to all CommandLineTool classes)

cwlVersion: v1.0
$graph:
- class: Workflow
 id: s2-cropper
 ...
 requirements:
 ResourceRequirement:
 ramMin: 10240
 coresMin: 3

- class: CommandLineTool
 id: crop-cl
 ...

8.9. Requirement Classes

8.9.1. Requirements Class “Application Package”

This class contains the requirements for any Application Package to comply with the Best
Practice for Earth Observation Application Package.

Requirements Class

http://www.opengis.net/spec/eoap-bp/1.0/req/app-pck/

Target Type Application Package

Dependency Requirements Class “Application” Common Workflow Language

Requirement 7

req/app-pck/cwl

The Application Package SHALL be a valid CWL document with a “Workflow”
class and one or more “CommandLineTool” classes.

Requirement 8

req/app-pck/clt

The Application Package CWL CommandLineTool classes SHALL contain the
following elements:
— Identifier (“id”)

OPEN GEOSPATIAL CONSORTIUM 20-089R1 55

http://www.opengis.net/spec/eoap-bp/1.0/req/app-pck/

— Command line name (“baseCommand”)
— Input parameters (“inputs”)
— Environment requirements (“requirements”)
— Docker information (“DockerRequirement”)

Requirement 9

req/app-pck/wf

The Application Package CWL Workflow class SHALL contain the following
elements:
— Identifier (“id”)
— Title (“label”)
— Abstract (“doc”)

Requirement 10

req/app-pck/wf-inputs

The Application Package CWL Workflow class “inputs” fields SHALL contain
the following elements:
— Identifier (“id”)
— Title (“label”)
— Abstract (“doc”)

Requirement 11

req/app-pck/metadata

The Application Package CWL Workclass classes SHALL include additional
metadata as defined in Table 1

Recommendation 1

rec/app-pck/fan-out

For applications with the fan-out design pattern, the Application Package
CWL Workclass class SHOULD include the “ScatterFeatureRequirement”
class in the “requirements” section and include the “scatterMethod” in the
corresponding input of the step.

8.9.2. Requirements Class “Application Package Staged Inputs”

This class contains the requirements of an Application Package when packaging an Application
that requires staged files as input.

Requirements Class

http://www.opengis.net/spec/eoap-bp/1.0/req/app-pck-stage-in/

OPEN GEOSPATIAL CONSORTIUM 20-089R1 56

http://www.opengis.net/spec/eoap-bp/1.0/req/app-pck-stage-in/

Target Type Application Package

Dependency
Requirements Class “Application Package”

Requirements Class “Application Staged Inputs”

Requirement 12

req/app-pck-stage-in/clt-stac

All input parameters of the CWL ComandLineTool that require the staging of
EO products SHALL be of type Directory.

Requirement 13

req/app-pck-stage-in/wf-stac

Input parameters of the CWL Workflow that require the staging of EO
products SHALL be of type Directory.

8.9.3. Requirements Class “Application Package Staged Outputs”

This class contains the requirements of an Application Package when packaging an Application
that creates files that need to be staged-out.

Requirements Class

http://www.opengis.net/spec/eoap-bp/1.0/req/app-pck-stage-out/

Target Type Application Package

Dependency
Requirements Class “Application Package”

Requirements Class “Application Staged Outputs”

Requirement 14

req/app-pck-stage-out/output-stac

The outputs field of the CommandLineTool that requires the stage-out of EO
products SHALL retrieve all the files produced in the working directory.

OPEN GEOSPATIAL CONSORTIUM 20-089R1 57

http://www.opengis.net/spec/eoap-bp/1.0/req/app-pck-stage-out/

9

PLATFORM BEST PRACTICE

OPEN GEOSPATIAL CONSORTIUM 20-089R1 58

9 PLATFORM BEST PRACTICE

The following section describes the Platform Best Practice.

9.1. Overview

A Platform that complies with the Best Practice for Earth Observation Application Package
needs to provide a mechanism to deploy the Application Package and a mechanism to execute
the process defined by the Application Package (i.e. create a new job) with specific parameters.

For the deployment, the platform needs to:

• Accept a Post request with an Application Package (OGC API — Processes)

• Translate Application Package metadata to create a new process in the OGC API
— Processes instance

• Translate Application Package Workflow Inputs defined in the CWL document as
OGC API — Processes parameters

• Create a new Process offering in the OGC API — Processes

OPEN GEOSPATIAL CONSORTIUM 20-089R1 59

Figure 8 — Platform steps for the EO Application Package deployment

For the execution, the platform needs to:

• Translate OGC API — Processes execute parameters to the Workflow Inputs
defined in the Application Package (CWL document)

• If applicable, execute the data stage-in for the input EO products

• Orchestrate and execute CWL

• Translate output to OGC API process outputs

OPEN GEOSPATIAL CONSORTIUM 20-089R1 60

Figure 9 — Platform steps for the EO Application Package execution

A possible diagram of such a platform is shown in the next figure where the Platform presents
an OGC API Processes interface for a CWL Conformant Executor that performs the service
request in a processing cluster.

OPEN GEOSPATIAL CONSORTIUM 20-089R1 61

Figure 10 — High level diagram of Platform Components executing an EO Application Package

9.2. Process Description

The Application Package defined in the previous section provides the document that formally
defines the inputs, outputs and other necessary metadata about a process that is to be deployed
through the API.

For the Application Package, the Workflow class level is the interface used to map the
parameters of the OGC API — Processes Web Service and respective mapping with the exposed
service. The CWL Workflow class defines the overall processing service and includes two main
sections: one for Service definition and the other for Service parameters.

OPEN GEOSPATIAL CONSORTIUM 20-089R1 62

As shown in the next example there is a main section for the Workflow class (extended with the
schema.org classes) and two additional sections for the inputs and outputs. These fields are used
to comply with the required information for an OGC process description.

cwlVersion: v1.0
$graph:
- class: Workflow
 id: s2-cropper
 label: This application crops a Sentinel-2 band
 doc: This application crops a band from a Copernicus Sentinel-2 product using
 GDAL
 ...
 inputs:
 ...
 outputs:
 ...
s:version: 1.0
s:keywords: Sentinel-2, Copernicus

$namespaces:
 s: https://schema.org/
$schemas:
 - http://schema.org/version/latest/schemaorg-current-http.rdf

The Application Package properties defined in CWL are mapped according to the process
description of the OGC API Processes as shown below.

{
 "id": "s2-cropper",
 "title": "This application crops a Sentinel-2 band",
 "description": "This application crops a band from a Copernicus Sentinel-2
 product using GDAL",
 "keywords": ["Sentinel-2", "Copernicus"],
 "inputs": [
 ...
],
 "outputs": [
 ...
],
 "version": 1.1,
 "jobControlOptions": ["async-execute"],
 "outputTransmission": ["reference"],
 "links": [
 ..
]
}

The Workflow fields id, label and doc describe respectively the Process Description elements id,
title and description as shown in Table 2.

Table 2 — Mapping the Workflow class fields to OGC API Processes

FIELD DESCRIPTION TYPE REQUIRED OGC API PROCESSES

id
The unique identifier for this
object.

string Required id

label
A short, human-readable label
of this object.

string Optional title

OPEN GEOSPATIAL CONSORTIUM 20-089R1 63

FIELD DESCRIPTION TYPE REQUIRED OGC API PROCESSES

doc
A documentation string for this
object, or an array of strings
that should be concatenated.

string Optional description

s:keywords

Keywords used to describe this
Application. Multiple entries in
a keywords list are delimited by
commas.

string or array of
strings

Optional keywords

s:version
The version of the Application
Package.

string Required version

9.3. Input Parameters

 The input parameters of the application package are defined on the inputs section and are used
to map the input parameters defined in the CWL to the OGC process description as used in the
OGC API — Processes implementation. The process description language may use JSON Schema
fragments to define the input and output parameters of a process.

cwlVersion: v1.0
$graph:
- class: Workflow
 id: s2-cropper
 ...
 inputs:
 ...
 band:
 type: string
 label: Sentinel-2 band to crop
 doc: Sentinel-2 band to crop (e.g. B02)
 ...

The workflow call properties are mapped accordingly to the process description of the OGC API
Processes as shown below.

{
 "id": "s2-cropper",
 ...
 "inputs": {
 ...
 "band": {
 "title": "Sentinel-2 band to crop ",
 "description": "Sentinel-2 band to crop (e.g. B02)"
 "schema": {
 "type": "string"
 }
 },
 ...
 },
 ...
 "outputs": {
 ...
 },

OPEN GEOSPATIAL CONSORTIUM 20-089R1 64

 ...
}

The following sections describe the rules for mapping the input parameters.

9.3.1. Single CWL type Parameter

The CWL types are mapped to a LiteralData Type in the Process Description with the specific
rules for each type defined in the following table.

Table 3 — Mapping CWL types to OGC API Process Input elements

CWL TYPE DESCRIPTION OGC API PROCESSES

null no value No mapping

boolean A binary value type=boolean

int 32-bit signed integer type=integer

long 64-bit signed integer type=integer

float
single precision (32-bit) IEEE 754
floating-point number

type=number

double
double precision (64-bit) IEEE 754
floating-point number

type=number

string Unicode character sequence type=string

enum List of possible values See Enumeration Parameters

File File object
Complex data type (see Inputs by
reference)

Directory Directory object
Complex data type (see Input EO
Products)

9.3.2. Optional Parameters

In CWL, each type can be suffixed with a ‘?’ indicating that the parameter is optional. This
parameter specification is mapped to the corresponding specification in OGC API Processes
with nullable equal to true.

cwlVersion: v1.0
$graph:
- class: Workflow
 id: any-service
 ...
 inputs:

OPEN GEOSPATIAL CONSORTIUM 20-089R1 65

 ...
 my_parameter:
 label: Title of integer parameter
 doc: Abstract describing integer parameter
 type: int?
 default: 100
 ...

With the corresponding Process Description.

{
 ...
 "inputs": {
 ...
 "my_parameter": {
 "title": "Title of integer parameter ",
 "description": "Abstract describing integer parameter"
 "schema": {
 "type": "integer"
 "nullable": "true"
 }
 },
 ...
 }
 ...
}

9.3.3. Array Parameters

There are two ways to specify an array parameter in CWL. First is to provide the “type” field
with “type: array” and items defining the valid data types that may appear in the array.

Alternatively, square brackets [] may be added after the type name to indicate that the input
parameter is an array of that type.

cwlVersion: v1.0
$graph:
- class: Workflow
 id: any-service
 ...
 inputs:
 ...
 my_array_parameter:
 label: Title of integer array parameter
 doc: Abstract describing integer array parameter
 type: int[]
 ...

The array will be represented as shown below in the OGC Process Description.

{
 ...
 "inputs": {
 ...
 "my_array_parameter": {
 "title": "Title of integer array parameter",
 "description": "Abstract describing integer array parameter",
 "schema": {
 "type": "array",
 "minItems": 1,

OPEN GEOSPATIAL CONSORTIUM 20-089R1 66

 "maxItems": unbounded,
 "items": {
 "type": "integer"
 }
 }
 },
 ...
 }
 ...
}

9.3.4. Enumeration Parameters

The CWL enumeration type specifies value definitions into a LiteralData Type in the OGC API
parameters.

cwlVersion: v1.0
$graph:
- class: Workflow
 id: any-service
 ...
 inputs:
 ...
 string_with_options_parameter:
 label: Title of string_with_options_parameter
 doc: This parameter accepts a list of possible values
 type:
 type: enum
 Symbols: [‘option1’, ‘options2’, ‘option3’]
 ...

With the corresponding OGC Process Description.

{
 ...
 "inputs": {
 ...
 "string_with_options_parameter": {
 "title": "Title of string_with_options_parameter",
 "description": "This parameter accepts a list of possible values",
 "schema": {
 "type": "string",
 "enum": [
 "option1",
 "option2",
 "option3"
]
 }
 },
 ...
 }
 ...
}

OPEN GEOSPATIAL CONSORTIUM 20-089R1 67

9.3.5. Inputs by reference (File)

The workflow parameters of the type “File” correspond to files that need to be staged on a file
system made available for the command line.

In the following example, the command line was extended with a new auxiliary file parameter. In
this definition the file needs to be available for the application to execute.

cwlVersion: v1.0
$graph:
- class: Workflow
 id: any-service
 ...
 inputs:
 ...
 aux_file:
 label: Auxiliary File
 doc: This is an auxiliary file needed for the processing
 type: File
 format: text/xml
 ...

The corresponding Process Description will contain the auxiliary file as an input.

 {
 ...
 "inputs": {
 ...
 "aux_file" : {
 "title": "Auxiliary File",
 "description": "This is an auxiliary file needed for the processing",
 "minOccurs": "1", "maxOccurs": "1",
 "schema": {
 "type" : "string",
 "contentMediaType" : "text/xml"
 }
 },
 ...
 }
 ...
 }

These parameters must be managed by the platform as physical files in the processing runtime
environment.

At job submission, the inputs passed as references (as HTTP link, S3 link, etc.) must be fetched
and made available for processing by executing the CWL document.

9.3.6. Input EO Products (Directory)

The input parameters of the CWL Workflow representing the EO products have the type
“Directory” and must be mapped to a GeoJSON feature collection file with STAC Items.

{
 ...
 "inputs": {

OPEN GEOSPATIAL CONSORTIUM 20-089R1 68

 ...
 "input_reference" : {
 ...
 "formats": [
 {
 "mimeType": "application/json",
 "schema" : "https://raw.githubusercontent.com/stac-extensions/single-
file-stac/main/json-schema/schema.json"
 "default": true
 },
 {
 "mimeType": "application/geo+json",
 "schema" : "https://raw.githubusercontent.com/stac-extensions/single-
file-stac/main/json-schema/schema.json"
 }
]
 ...
 }
 ...
 }
}

The platform may accept alternative formats for the EO products (e.g. Atom feed) but in either
case it must translate them to a STAC Catalog file with STAC Items when executing the CWL
document.

The platform may adopt a strategy to download and stage-in the files defined in the STAC assets
but will need to update their respective addresses.

9.4. Data Flow Management

The Platform is responsible for the data flow management by using a local catalogue encoded
using the SpatioTemporal Asset Catalog (STAC) specification as a data manifest for application
inputs and outputs. The local catalogue provides knowledge about the input and output files
data contents like spatial footprint, sub-items (e.g. masks, bands) and additional metadata.

This section describes the strategy to Data stage-in, locally retrieving the inputs products for
the processing, and Data stage-out, making the outputs of the processing available for the
subsequent steps (locally or on external systems).

9.4.1. Data Stage-In

The processing inputs are provided as EO Catalogue references and the Platform is responsible
for translating those references into inputs available for the local processing.

For each File or Directory parameter, the platform resolves the resources, stages the data for
processing. The full steps of the Platform for data stage-in are described in the Figure below.

OPEN GEOSPATIAL CONSORTIUM 20-089R1 69

Figure 11 — Platform steps for data stage-in from the CWL
service definition and OGC API Processes execution request

OPEN GEOSPATIAL CONSORTIUM 20-089R1 70

9.4.2. Data Stage-Out

The data stage-out is the Platform operation of retrieving the application execution results and
pushing them to a persistent storage.

The application package uses CWL statements to define what results are pushed from the
execution container to the Platform local file system. A typical CWL execution engine also
provides a simple manifest with the list of generated results.

The application execution provides a local STAC Catalog including items and assets describing
the results generated. This local STAC Catalog is the application results manifest.

The Platform takes the STAC Catalog (catalog.json) file as the generated results entry point
and uses the href links to items and assets and uses the found metadata and physical files to
push them to a persistent storage and/or catalog and finally provide the OGC API Processes
execution response.

The diagram below shows how the Platform does the steps explained above.

OPEN GEOSPATIAL CONSORTIUM 20-089R1 71

Figure 12 — Platform steps for data stage-out application
execution for the the OGC API Processes response

9.5. Requirement Classes

9.5.1. Requirements Class “Platform”

This class contains the requirements for any Platform to comply with the Best Practice for Earth
Observation Application Package when deploying an Application Package and executing the

OPEN GEOSPATIAL CONSORTIUM 20-089R1 72

process defined by the Application Package with specific parameters as defined by the OGC API
Processes Specification (OGC 18-062r2)

Requirements Class

http://www.opengis.net/spec/eoap-bp/1.0/req/plt/

Target Type Application Package

Dependency
Requirements Class “Application Package”

OGC API — Processes — Part 1: Core

Requirement 15

req/plt/api

The Platform SHALL deploy the Application Package as a new process in a
web service according to the OGC API Processes specification.

In particular, the Platform SHALL map the top elements of the Application
Package Workflow class to the OGC API Processes elements as defined in
Table 2.

Requirement 16

req/plt/inputs

The Platform SHALL map workflow input parameters types for the OGC API
Processes input description types defined in Table 3.
The Platform SHALL treat as optional all input parameters that the type has
the suffix “?”.
The Platform SHALL treat as array all input parameters that are defined as
such in the CWL document (type array or have a double square brackets “[]”
suffix).
The Platform SHALL treat as enumerations all input parameters that are
defined as such in the CWL document (type enum).

Requirement 17

req/plt/file

The Platform MUST must map all inputs of type File as an input by reference
and make them available as local files when executing the application.

9.5.2. Requirements Class “Platform Staged Inputs”

This class contains the requirements of a Platform to comply with the Best Practice for Earth
Observation Application Package when deploying an Application Package and executing the

OPEN GEOSPATIAL CONSORTIUM 20-089R1 73

http://www.opengis.net/spec/eoap-bp/1.0/req/plt/

process defined by the Application Package with specific parameters as defined by the OGC API
Processes Specification (OGC 18-062r2) that requires staged files as input.

Requirements Class

http://www.opengis.net/spec/eoap-bp/1.0/req/plt-stage-in/

Target Type Platform

Dependency
Requirements Class “Platform”

Requirements Class “Application Package Staged Inputs”

Requirement 18

req/plt-stage-in/input-stac

The Platform SHALL map workflow input parameters of type “Directory” to a
GeoJSON feature collection with STAC Items in the Process description.

Requirement 19

req/plt-stage-in/stac-stage

The Platform SHALL stage-in all the files present on the STAC file provided by
the input parameters of type “Directory”. A STAC Catalog file SHALL also be
created with STAC Items referencing the files made available during execution.

9.5.3. Requirements Class “Platform Staged Outputs”

This class contains the requirements of a Platform to comply with the Best Practice for Earth
Observation Application Package when deploying an Application Package and executing the
process defined by the Application Package with specific parameters as defined by the OGC API
Processes Specification (OGC 18-062r2) that requires staged files as output.

Requirements Class

http://www.opengis.net/spec/eoap-bp/1.0/req/plt-stage-out/

Target Type Platform

Dependency
Requirements Class “Platform”

Requirements Class “Application Package Staged Outputs”

OPEN GEOSPATIAL CONSORTIUM 20-089R1 74

http://www.opengis.net/spec/eoap-bp/1.0/req/plt-stage-in/
http://www.opengis.net/spec/eoap-bp/1.0/req/plt-stage-out/

Requirement 20

req/plt-stage-out/stac-stage

The Platform SHALL stage-out all the files present on the STAC file created
by the Application and create A STAC Catalog with all the outputs of the
processing .

OPEN GEOSPATIAL CONSORTIUM 20-089R1 75

A

ANNEX A (NORMATIVE)
CONFORMANCE CLASS
ABSTRACT TEST SUITE
(NORMATIVE)

OPEN GEOSPATIAL CONSORTIUM 20-089R1 76

A ANNEX A
(NORMATIVE)
CONFORMANCE CLASS ABSTRACT TEST
SUITE (NORMATIVE)

A.1. Conformance Class “Application”

Conformance Class

http://www.opengis.net/spec/eoap-bp/1.0/conf/app

Target Type Application

Requirement Class Requirements Class “Application”

A.1.1. Command-Line Application

Abstract Test 1 /conf/app/cmd-line

Test Purpose Validate that the Application is a non-interactive executable as a
command-line application.

Requirement req/app/cmd-line

Test Method Execute the application and validate that no-interactive input is
required

A.1.2. Container

Abstract Test 2 /conf/app/container

OPEN GEOSPATIAL CONSORTIUM 20-089R1 77

http://www.opengis.net/spec/eoap-bp/1.0/conf/app

Test Purpose
Validate that all the environment, libraries, binaries, executable
and configuration files necessary to execute the Application are
bundled in a container image.

Requirement req/app/container

Test Method Test the container image and validate the successful execution.

Abstract Test 3 /conf/app/registry

Test Purpose Validate that the Application container is accessible in a
container registry.

Requirement req/app/registry

Test Method Execute the command to download the container image from a
public or private registry.

A.2. Conformance Class “Application Staged Inputs”

Conformance Class

http://www.opengis.net/spec/eoap-bp/1.0/conf/app-stage-in

Target Type Application

Requirement Class Requirements Class “Application Staged Inputs”

A.2.1. STAC Catalog Input

Abstract Test 4 /conf/app/stac-input

Test Purpose

Validate that the Application requires staged EO product files
listed in a STAC Catalog, named catalog.json that contains a
list of one or more STAC Items and associated STAC Assets
referencing the files.

Requirement req/app/stac-input

OPEN GEOSPATIAL CONSORTIUM 20-089R1 78

http://www.opengis.net/spec/eoap-bp/1.0/conf/app-stage-in

Test Method Execute the application with STAC Catalog input and validate
the successful execution.

A.3. Conformance Class “Application Staged Outputs”

Conformance Class

http://www.opengis.net/spec/eoap-bp/1.0/conf/app-stage-out

Target Type Application

Requirement Class Requirements Class “Application Staged Outputs”

A.3.1. STAC Catalog Ouput

Abstract Test 5 /conf/app/stac-out

Test Purpose

Validate that the Application creates a valid STAC Catalog,
named catalog.json, and include the STAC Item(s) and
corresponding STAC Assets pointing to the results of the
processing.

Requirement req/app/stac-out

Test Method Execute the Application and validate that a valid STAC Catalog is
created with the STAC Items listing the results of the processing.

A.3.2. STAC Metadata

Abstract Test 6 /conf/app/stac-out-metadata

Test Purpose Validate that the STAC Catalog created by the Application
includes the necessary metadata elements .

Requirement req/app/stac-input

OPEN GEOSPATIAL CONSORTIUM 20-089R1 79

http://www.opengis.net/spec/eoap-bp/1.0/conf/app-stage-out

Test Method
Validate that the STAC Catalog created by the Application
contains for each STAC Item their spatial (geometry, box) and
temporal (datetime) properties.

A.4. Conformance Class “Application Package”

Conformance Class

http://www.opengis.net/spec/eoap-bp/1.0/conf/app-pck

Target Type Application Package

Requirement Class Requirements Class “Application Package”

Abstract Test 7 /conf/app-pck/cwl

Test Purpose Validate that the Application Package is a valid CWL and
contains the expected fields.

Requirement

req/app-pck/cwl
req/app-pck/clt
req/app-pck/wf
req/app-pck/wf-inputs
req/app-pck/metadata

Test Method
Verify that the Application Pakcage is a valid CWL file and
contains all the required Workflow, CommandLineTool, inputs and
metadata fields.

A.5. Conformance Class “Application Package Staged
Inputs”

Conformance Class

http://www.opengis.net/spec/eoap-bp/1.0/conf/app-pck-stage-in

OPEN GEOSPATIAL CONSORTIUM 20-089R1 80

http://www.opengis.net/spec/eoap-bp/1.0/conf/app-pck
http://www.opengis.net/spec/eoap-bp/1.0/conf/app-pck-stage-in

Target Type Application Package

Requirement Class Requirements Class “Application Package Staged Inputs”

Abstract Test 8 /conf/app-pck/stage-in

Test Purpose Validate that the Application Package is correctly defining an
Application that requires staged files as input.

Requirement req/app-pck-stage-in/clt-stac
req/app-pck-stage-in/wf-stac

Test Method
Verify that the Application Pakcage inputs that require the
staging of files in the Workflow and CommandLineTool classes are
of type Directory.

A.6. Conformance Class “Application Package Staged
Outputs”

Conformance Class

http://www.opengis.net/spec/eoap-bp/1.0/conf/app-pck-stage-out

Target Type Application Package

Requirement Class Requirements Class “Application Package Staged Outputs”

Abstract Test 9 /conf/app-pck/stage-out

Test Purpose Validate that the Application Package is correctly defining an
Application that requires staged files as output.

Requirement req/app-pck-stage-out/output-stac

Test Method Verify that the Application Pakcage main Workflow class is
retrieve all the results and STAC Catalog.

OPEN GEOSPATIAL CONSORTIUM 20-089R1 81

http://www.opengis.net/spec/eoap-bp/1.0/conf/app-pck-stage-out

A.7. Conformance Class “Platform”

Conformance Class

http://www.opengis.net/spec/eoap-bp/1.0/conf/plt

Target Type Application Package

Requirement Class Requirements Class “Platform”

Abstract Test 10 /conf/plt/deploy

Test Purpose Validate that the Application Package is correctly deployed on
the Platform.

Requirement
req/plt/api
req/plt/inputs
req/plt/file

Test Method
Verify that the Application Pakcage deployed on the Platform as
a new Process and verify that the Process Description contains
all the necessary elements.

A.8. Conformance Class “Platform Staged Inputs”

Conformance Class

http://www.opengis.net/spec/eoap-bp/1.0/conf/plt-stage-in

Target Type Application Package

Requirement Class Requirements Class “Platform Staged Inputs”

Abstract Test 11 /conf/plt-stage-in/input-stac

OPEN GEOSPATIAL CONSORTIUM 20-089R1 82

http://www.opengis.net/spec/eoap-bp/1.0/conf/plt
http://www.opengis.net/spec/eoap-bp/1.0/conf/plt-stage-in

Test Purpose
Validate that the input parameters for stage-in files are mapped
to GeoJSON feature collection with STAC Items in the Process
description.

Requirement req/plt-stage-in/input-stac

Test Method
Verify that the Process Description of the deployed Application
Package the inputs parameters for stage-in products have the
correct format and schema.

Abstract Test 12 /conf/plt-stage-in/stac-stage

Test Purpose Validate that the files listed on the STAC Catalog are staged and
made available for the Application execution.

Requirement req/plt-stage-in/input-stac-stage

Test Method Submit a test execution of the Application and verify that all the
files listed in the STAC Catalog are made available.

A.9. Conformance Class “Platform Staged Outputs”

Conformance Class

http://www.opengis.net/spec/eoap-bp/1.0/conf/plt-stage-out

Target Type Application Package

Requirement Class Requirements Class “Platform Staged Outputs”

Abstract Test 13 /conf/plt-stage-out/stac-stage

Test Purpose Validate that the files listed produced during the execution of
the Application are staged-out.

Requirement req/plt-stage-out/stac-stage

Test Method
Submit a test execution of the Application and verify that
the result is a STAC Catalog and all the files listed are made
available.

OPEN GEOSPATIAL CONSORTIUM 20-089R1 83

http://www.opengis.net/spec/eoap-bp/1.0/conf/plt-stage-out

B

ANNEX B (INFORMATIVE)
FREE AND OPEN-SOURCE
CWL IMPLEMENTATIONS

OPEN GEOSPATIAL CONSORTIUM 20-089R1 84

B ANNEX B
(INFORMATIVE)
FREE AND OPEN-SOURCE CWL
IMPLEMENTATIONS

The following table lists free and open-source implementations of the CWL standards.

IMPLEMENTATION PLATFORM

CWLTOOL Linux, macOS, Windows (via WSL 2) local
execution only

ARVADOS in the cloud on AWS, Azure and GCP, on
premise & hybrid clusters using Slurm

TOIL

AWS, Azure, GCP, Grid Engine, HTCondor, LSF,
Mesos, OpenStack, Slurm, PBS/Torque also
local execution on Linux, macOS, MS Windows
(via WSL 2)

CWL-AIRFLOW Local execution on Linux, OS X or via dedicated
Airflow enabled cluster.

REANA Kubernetes, CERN OpenStack, OpenStack
Magnum

CALRISSIAN CWL implementation designed to run inside a
Kubernetes cluster

STREAMFLOW StreamFlow framework is a container-native
Workflow Management System

OPEN GEOSPATIAL CONSORTIUM 20-089R1 85

C

ANNEX C (INFORMATIVE)
STAC EXAMPLES

OPEN GEOSPATIAL CONSORTIUM 20-089R1 86

C ANNEX C
(INFORMATIVE)
STAC EXAMPLES

{
 "stac_version": "1.0.0",
 "stac_extensions": ["eo", "proj", "view"],
 "type": "Feature",
 "id": "S2B_53HPA_20210723_0_L2A",
 "geometry": {
 "type": "Polygon",
 "coordinates": [[
 [136.11273785955868, -36.22788818051635],[136.09905192261127,
 -35.238096451039816],[137.30513468251897, -35.22113204961173],[137.
33381497932513, -36.21029815477051], [136.11273785955868, -36.22788818051635]
]]
 },
 "properties": {
 "datetime": "2021-07-23T00:57:07Z",
 "platform": "sentinel-2b",
 "constellation": "sentinel-2",
 "instruments": ["msi"],
 "gsd": 10,
 "view:off_nadir": 0,
 "proj:epsg": 32753,
 "sentinel:utm_zone": 53,
 "sentinel:latitude_band": "H",
 "sentinel:grid_square": "PA",
 "sentinel:sequence": "0",
 "sentinel:product_id": "S2B_MSIL2A_20210723T004709_N0301_R102_T53HPA_
20210723T022813",
 "sentinel:data_coverage": 100,
 "eo:cloud_cover": 9.52,
 "sentinel:valid_cloud_cover": true,
 "created": "2021-07-23T04:02:10.55Z",
 "updated": "2021-07-23T04:02:10.55Z"
 },
 "bbox": [136.09905192261127, -36.22788818051635, 137.33381497932513, -35.
22113204961173],
 "assets": {
 "thumbnail": {
 "type": "image/png",
 "roles": ["thumbnail"],
 "title": "Thumbnail",
 "href": "preview.jpg",
 "file:size": 123551
 },
 "overview": {
 "type": "image/tiff; profile=cloud-optimized; application=geotiff",
 "roles": ["overview"],
 "title": "True color image",
 "href": "L2A_PVI.tif",
 "gsd": 10,

OPEN GEOSPATIAL CONSORTIUM 20-089R1 87

 "eo:bands": [
 {
 "name": "B04", "common_name": "red",
 "center_wavelength": 0.6645, "full_width_half_max": 0.038
 },
 { "name": "B03", "common_name": "green", "center_wavelength": 0.
56,"full_width_half_max": 0.045 },
 {
 "name": "B02",
 "common_name": "blue",
 "center_wavelength": 0.4966,
 "full_width_half_max": 0.098
 }
],
 "proj:shape": [343, 343],
 "proj:transform": [320, 0, 600000, 0, -320, 6100000, 0, 0, 1],
 "file:size": 273345
 },
 "info": {
 "type": "application/json",
 "roles": ["metadata"],
 "title": "Original JSON metadata",
 "href": "tileInfo.json",
 "file:size": 1491
 },
 "metadata": {
 "type": "application/xml",
 "roles": ["metadata"],
 "title": "Original XML metadata",
 "href": "metadata.xml",
 "file:size": 631511
 },
 "visual": {
 "type": "image/tiff; profile=cloud-optimized; application=geotiff",
 "roles": ["overview"],
 "title": "True color image",
 "href": "TCI.tif",
 "gsd": 10,
 "eo:bands": [
 { "name": "B04","common_name": "red", "center_wavelength": 0.6645,
 "full_width_half_max": 0.038},
 { "name": "B03", "common_name": "green", "center_wavelength": 0.56,
 "full_width_half_max": 0.045},
 { "name": "B02", "common_name": "blue", "center_wavelength": 0.4966,
 "full_width_half_max": 0.098}
],
 "proj:shape": [10980, 10980],
 "proj:transform": [10, 0, 600000, 0, -10, 6100000, 0, 0, 1],
 "file:size": 242697374
 },
 "B01": {
 "type": "image/tiff; profile=cloud-optimized; application=geotiff",
 "roles": ["data"],
 "title": "Band 1 (coastal)",
 "href": "B01.tif",
 "gsd": 60,
 "eo:bands": [{ "name": "B01", "common_name": "coastal", "center_
wavelength": 0.4439, "full_width_half_max": 0.027 }],
 "proj:shape": [1830, 1830],
 "proj:transform": [60, 0, 600000, 0, -60, 6100000, 0, 0, 1],
 "file:size": 6156076
 },
 "B02": {

OPEN GEOSPATIAL CONSORTIUM 20-089R1 88

 "type": "image/tiff; profile=cloud-optimized; application=geotiff",
 "roles": ["data"],
 "title": "Band 2 (blue)",
 "href": "B02.tif",
 "gsd": 10,
 "eo:bands": [{ "name": "B02", "common_name": "blue", "center_
wavelength": 0.4966, "full_width_half_max": 0.098 }],
 "proj:shape": [10980, 10980],
 "proj:transform": [10, 0, 600000, 0, -10, 6100000, 0, 0, 1],
 "file:size": 206117177
 },
 "B03": {
 "type": "image/tiff; profile=cloud-optimized; application=geotiff",
 "roles": ["data"],
 "title": "Band 3 (green)",
 "href": "B03.tif",
 "gsd": 10,
 "eo:bands": [{ "name": "B03", "common_name": "green", "center_
wavelength": 0.56, "full_width_half_max": 0.045 }],
 "proj:shape": [10980, 10980],
 "proj:transform": [10, 0, 600000, 0, -10, 6100000, 0, 0, 1],
 "file:size": 201505523
 },
 "B04": {
 "type": "image/tiff; profile=cloud-optimized; application=geotiff",
 "roles": ["data"],
 "title": "Band 4 (red)",
 "href": "B04.tif",
 "gsd": 10,
 "eo:bands": [{ "name": "B04", "common_name": "red", "center_wavelength":
 0.6645, "full_width_half_max": 0.038 }],
 "proj:shape": [10980, 10980],
 "proj:transform": [10, 0, 600000, 0, -10, 6100000, 0, 0, 1],
 "file:size": 192143151
 },
 "B05": {
 "type": "image/tiff; profile=cloud-optimized; application=geotiff",
 "roles": ["data"],
 "title": "Band 5",
 "href": "B05.tif",
 "gsd": 20,
 "eo:bands": [{ "name": "B05", "center_wavelength": 0.7039, "full_width_
half_max": 0.019 }],
 "proj:shape": [5490,5490],
 "proj:transform": [20,0,600000,0,-20,6100000,0,0,1],
 "file:size": 49644807
 },
 "B06": {
 "type": "image/tiff; profile=cloud-optimized; application=geotiff",
 "roles": ["data"],
 "title": "Band 6",
 "href": "B06.tif",
 "gsd": 20,
 "eo:bands": [{ "name": "B06", "center_wavelength": 0.7402," full_width_
half_max": 0.018 }],
 "proj:shape": [5490,5490] ,
 "proj:transform": [20, 0, 600000, 0, -20, 6100000, 0, 0, 1],
 "file:size": 46787561
 },
 "B07": {
 "type": "image/tiff; profile=cloud-optimized; application=geotiff",
 "roles": ["data"],
 "title": "Band 7",

OPEN GEOSPATIAL CONSORTIUM 20-089R1 89

 "href": "B07.tif",
 "gsd": 20,
 "eo:bands": [{ "name": "B07", "center_wavelength": 0.7825, "full_width_
half_max": 0.028 }
],
 "proj:shape": [5490, 5490],
 "proj:transform": [20, 0, 600000, 0, -20, 6100000, 0, 0, 1],
 "file:size": 49482530
 },
 "B08": {
 "type": "image/tiff; profile=cloud-optimized; application=geotiff",
 "roles": ["data"],
 "title": "Band 8 (nir)",
 "href": "B08.tif",
 "gsd": 10,
 "eo:bands": [{ "name": "B08", "common_name": "nir", "center_wavelength":
 0.8351, "full_width_half_max": 0.145 }],
 "proj:shape": [10980, 10980],
 "proj:transform": [10, 0, 600000, 0, -10, 6100000, 0, 0, 1],
 "file:size": 176605232
 },
 "B8A": {
 "type": "image/tiff; profile=cloud-optimized; application=geotiff",
 "roles": ["data"],
 "title": "Band 8A",
 "href": "B8A.tif",
 "gsd": 20,
 "eo:bands": [{ "name": "B8A", "center_wavelength": 0.8648, "full_width_
half_max": 0.033 }],
 "proj:shape": [5490, 5490],
 "proj:transform": [20, 0, 600000, 0, -20, 6100000, 0, 0, 1],
 "file:size": 46667884
 },
 "B09": {
 "type": "image/tiff; profile=cloud-optimized; application=geotiff",
 "roles": ["data"],
 "title": "Band 9",
 "href": "B09.tif",
 "gsd": 60,
 "eo:bands": [{ "name": "B09", "center_wavelength": 0.945, "full_width_
half_max": 0.026 }],
 "proj:shape": [1830, 1830],
 "proj:transform": [60, 0, 600000, 0, -60, 6100000, 0, 0, 1],
 "file:size": 4854967
 },
 "B11": {
 "type": "image/tiff; profile=cloud-optimized; application=geotiff",
 "roles": ["data"],
 "title": "Band 11 (swir16)",
 "href": "B11.tif",
 "gsd": 20,
 "eo:bands": [{ "name": "B11", "common_name": "swir16", "center_
wavelength": 1.6137, "full_width_half_max": 0.143 }],
 "proj:shape": [5490, 5490],
 "proj:transform": [20, 0, 600000, 0, -20, 6100000, 0, 0, 1],
 "file:size": 50874908
 },
 "B12": {
 "type": "image/tiff; profile=cloud-optimized; application=geotiff",
 "roles": ["data"],
 "title": "Band 12 (swir22)",
 "href": "B12.tif",
 "gsd": 20,

OPEN GEOSPATIAL CONSORTIUM 20-089R1 90

 "eo:bands": [{ "name": "B12", "common_name": "swir22", "center_
wavelength": 2.22024, "full_width_half_max": 0.242 }],
 "proj:shape": [5490, 5490],
 "proj:transform": [20, 0, 600000, 0, -20, 6100000, 0, 0, 1],
 "file:size": 50482209
 },
 "AOT": {
 "type": "image/tiff; profile=cloud-optimized; application=geotiff",
 "roles": ["data"],
 "title": "Aerosol Optical Thickness (AOT)",
 "href": "AOT.tif",
 "proj:shape": [1830, 1830],
 "proj:transform": [60, 0, 600000, 0, -60, 6100000, 0, 0, 1],
 "file:size": 135032
 },
 "WVP": {
 "type": "image/tiff; profile=cloud-optimized; application=geotiff",
 "roles": ["data"],
 "title": "Water Vapour (WVP)",
 "href": "WVP.tif",
 "proj:shape": [10980, 10980],
 "proj:transform": [10, 0, 600000, 0, -10, 6100000, 0, 0, 1],
 "file:size": 11314834
 },
 "SCL": {
 "type": "image/tiff; profile=cloud-optimized; application=geotiff",
 "roles": ["data"],
 "title": "Scene Classification Map (SCL)",
 "href": "SCL.tif",
 "proj:shape": [5490, 5490],
 "proj:transform": [20, 0, 600000, 0, -20, 6100000, 0, 0, 1],
 "file:size": 2850898
 }
 },
 "links": [
 {
 "type": "application/json",
 "rel": "canonical",
 "href": "https://sentinel-cogs.s3.us-west-2.amazonaws.com/sentinel-s2-
l2a-cogs/53/H/PA/2021/7/S2B_53HPA_20210723_0_L2A/S2B_53HPA_20210723_0_L2A.json"
 },
 {
 "rel": "parent",
 "href": "../catalog.json"
 }
]
}

OPEN GEOSPATIAL CONSORTIUM 20-089R1 91

D

ANNEX D (INFORMATIVE)
APPLICATION EXAMPLES

OPEN GEOSPATIAL CONSORTIUM 20-089R1 92

D ANNEX D
(INFORMATIVE)
APPLICATION EXAMPLES

D.1. Crop Application Example

This example includes all the files for an application that crops a band from a Sentinel-2 product.
It includes the shell scripts (crop and functions.sh), docker container (Dockerfile.composite), the
Application Package as a CWL file, and execution parameters as a YAML file (params.yml).

cwlVersion: v1.0
$graph:
- class: Workflow
 label: Sentinel-2 band crop
 doc: This application crops a Sentinel-2 band
 id: s2-cropper

 inputs:
 product:
 type: Directory
 label: Sentinel-2 inputs
 doc: Sentinel-2 Level-1C or Level-2A input reference
 band:
 type: string
 label: Sentinel-2 band
 doc: Sentinel-2 band to crop (e.g. B02)
 bbox:
 type: string
 label: bounding box
 doc: Area of interest expressed as a bounding bbox
 proj:
 type: string
 label: EPSG code
 doc: Projection EPSG code for the bounding box
 default: "EPSG:4326"

 outputs:
 results:
 outputSource:
 - node_crop/cropped_tif
 type: Directory

 steps:

 node_crop:

 run: "#crop-cl"

OPEN GEOSPATIAL CONSORTIUM 20-089R1 93

 in:
 product: product
 band: band
 bbox: bbox
 epsg: proj

 out:
 - cropped_tif

- class: CommandLineTool

 id: crop-cl

 requirements:
 DockerRequirement:
 dockerPull: docker.io/terradue/crop-container

 baseCommand: crop
 arguments: []

 inputs:
 product:
 type: Directory
 inputBinding:
 position: 1
 band:
 type: string
 inputBinding:
 position: 2
 bbox:
 type: string
 inputBinding:
 position: 3
 epsg:
 type: string
 inputBinding:
 position: 4

 outputs:
 cropped_tif:
 outputBinding:
 glob: .
 type: Directory

$namespaces:
 s: https://schema.org/
s:softwareVersion: 1.0.0
schemas:
- http://schema.org/version/9.0/schemaorg-current-http.rdf

app-package.cwl

#!/bin/bash

source /functions.sh

processing arguments
in_dir=$1 # folder where the EO product is staged-in
band=$2 # asset key to crop
bbox=$3 # bbox processing argument
proj=$4 # EPSG code used to express bbox coordinates

OPEN GEOSPATIAL CONSORTIUM 20-089R1 94

Read the input STAC catalog
STAC catalog path
catalog="${in_dir}/catalog.json"

get the item path
item=$(get_items ${catalog})

get the B02 asset href (local path)
asset_href=$(get_asset ${item} ${band})

gdal_translate \
 -projwin \
 "$(echo $bbox | cut -d ',' -f 1)" \
 "$(echo $bbox | cut -d ',' -f 4)" \
 "$(echo $bbox | cut -d ',' -f 3)" \
 "$(echo $bbox | cut -d ',' -f 2)" \
 -projwin_srs \
 ${proj} \
 ${asset_href} \
 ${band}_cropped.tif

result as STAC
get the properties from the input STAC item
as these are the same for the output STAC item
datetime=$(get_item_property ${item} "datetime")
gsd=$(get_item_property ${item} "gsd")

initialise a STAC item
init_item ${datetime} "${bbox}" "${gsd}" > result-item.json

add an asset
add_asset result-item.json "${band}" "./cropped.tif" "image/tiff" "Cropped
 ${band} band" "data"

initialise the output catalog
init_catalog > catalog.json

add the item
add_item catalog.json result-item.json

crop

function get_items {
 # returns the list of items in catalog
 # args:
 # STAC catalog
 catalog=$1
 for item in $(jq -r '.links[] | select(.. | .rel? == "item") | .href'
 ${catalog})
 do
 echo $(dirname ${catalog})/${item}
 done
}
export -f get_items

function get_asset {
 # returns the asset href
 # args:
 # STAC item
 # asset key
 item=$1

OPEN GEOSPATIAL CONSORTIUM 20-089R1 95

 asset=$2
 echo $(dirname $item)/$(jq --arg asset $asset -r ".assets.$asset.href"
 $item)
}
export -f get_asset

function get_item_property {
 # return an item property value
 # args:
 # STAC item
 # property key
 item=$1
 property=$2
 echo $(jq --arg property $property ".properties.$property" $item)
}
export -f get_item_property

function init_catalog {
 # returns a STAC catalog without items
 echo '{}' |
 jq '.["id"]="catalog"' |
 jq '.["stac_version"]="1.0.0"' |
 jq '.["type"]="catalog"' |
 jq '.["description"]="Result catalog"' |
 jq '.["links"]=[]'
}
export -f init_catalog

function add_item {
 # adds an item to a STAC catalog
 # args:
 # STAC catalog
 # STAC item href
 catalog=$1
 item=$2
 jq -e \
 --arg item ${item} \
 '.links += [{ "type":"application/geo+json", "href":$item}]' ${catalog}
 > ${catalog}.tmp && mv ${catalog}.tmp ${catalog}
}
export -f add_item

function init_item {
 datetime=$1
 bbox=$2
 gsd=$3
 echo '{}' |
 jq '.["id"]="item_id"' | # set the item id
 jq '.["stac_version"]="1.0.0"' |
 jq '.["type"]="Feature"' | # set the item type
 jq --arg c "$(echo $bbox | cut -d ',' -f 1)" '.bbox[0]=$c' | # set the
 bbox elements
 jq --arg c "$(echo $bbox | cut -d ',' -f 2)" '.bbox[1]=$c' |
 jq --arg c "$(echo $bbox | cut -d ',' -f 3)" '.bbox[2]=$c' |
 jq --arg c "$(echo $bbox | cut -d ',' -f 4)" '.bbox[3]=$c' |
 jq '.bbox[] |= tonumber' | # convert the bbox to number
 jq '.["geometry"].type="Polygon"' | # set the geometry type
 jq '.["geometry"].coordinates=[]' |
 jq '.["geometry"].coordinates[0]=[]' |
 jq --arg min_lon "$(echo $bbox | cut -d ',' -f 1)" \
 --arg min_lat "$(echo $bbox | cut -d ',' -f 2)" \
 --arg max_lon "$(echo $bbox | cut -d ',' -f 3)" \
 --arg max_lat "$(echo $bbox | cut -d ',' -f 4)" \

OPEN GEOSPATIAL CONSORTIUM 20-089R1 96

 '.["geometry"].coordinates[0][0]=[$min_lon | tonumber, $min_lat | tonumber]
 | .["geometry"].coordinates[0][1]=[$max_lon | tonumber, $min_lat | tonumber]
 | .["geometry"].coordinates[0][2]=[$max_lon | tonumber, $max_lat | tonumber]
 | .["geometry"].coordinates[0][3]=[$min_lon | tonumber, $max_lat | tonumber]
 | .["geometry"].coordinates[0][4]=[$min_lon | tonumber, $min_lat | tonumber]'
 | # set the geojson Polygon coordinates
 jq --arg dt ${datetime} '.properties.datetime=$dt' | # set the datetime
 jq --arg gsd "${gsd}" '.properties.gsd=$gsd' | # set the gsd
 jq '.properties.gsd |= tonumber' | # convert the gsd to number
 jq -r '.["assets"]={}'
}
export -f init_item

function add_asset {
 # adds an asset to a STAC item
 # args:
 # STAC item
 # asset key
 # asset href
 # asset mime-type
 # asset title
 # asset role
 item=$1
 asset_key=$2
 href="$3"
 type="$4"
 title="$5"
 role="$6"
 jq -e -r \
 --arg asset_key $asset_key \
 --arg href ${href} \
 --arg type "${type}" \
 --arg title "${title}" \
 --arg role "${role}" \
 '.assets += { ($asset_key) : { "role":[$role], "href":$href, "type":
$type, "title":$title}}' ${item} > ${item}.tmp && mv ${item}.tmp ${item}
}
export -f add_asset

functions.sh

FROM osgeo/gdal

RUN apt update && \
 apt-get install -y jq

ADD functions.sh /functions.sh

ADD composite /usr/bin/composite

RUN chmod +x /usr/bin/composite

Dockerfile.composite

product:
 class: Directory
 path: /tmp/docker_tmpoj8r5t9a
band: B02
bbox: "136.522,-36.062,137.027,-35.693"
proj: "EPSG:4326"

params.yml

OPEN GEOSPATIAL CONSORTIUM 20-089R1 97

D.2. Scatter Crop Application Example

This section extends the previous example with an Application Package that scatters the
processing from an array of input values.

cwlVersion: v1.0
$graph:
- class: Workflow
 label: Sentinel-2 product crop
 doc: This application crops bands from a Sentinel-2 product
 id: s2-cropper

 requirements:
 - class: ScatterFeatureRequirement

 inputs:
 product:
 type: Directory
 label: Sentinel-2 input
 doc: Sentinel-2 Level-1C or Level-2A input reference
 bands:
 type: string[]
 label: Sentinel-2 bands
 doc: Sentinel-2 list of bands to crop
 bbox:
 type: string
 label: bounding box
 doc: Area of interest expressed as a bounding box
 proj:
 type: string
 label: EPSG code
 doc: Projection EPSG code for the bounding box
 default: "EPSG:4326"

 outputs:
 results:
 outputSource:
 - node_crop/cropped_tif
 type: Directory[]

 steps:

 node_crop:

 run: "#crop-cl"

 in:
 product: product
 band: bands
 bbox: bbox
 epsg: proj

 out:
 - cropped_tif

 scatter: band
 scatterMethod: dotproduct

- class: CommandLineTool

OPEN GEOSPATIAL CONSORTIUM 20-089R1 98

 id: crop-cl

 requirements:
 DockerRequirement:
 dockerPull: docker.io/terradue/crop-container

 baseCommand: crop
 arguments: []

 inputs:
 product:
 type: Directory
 inputBinding:
 position: 1
 band:
 type: string
 inputBinding:
 position: 2
 bbox:
 type: string
 inputBinding:
 position: 3
 epsg:
 type: string
 inputBinding:
 position: 4

 outputs:
 cropped_tif:
 outputBinding:
 glob: .
 type: Directory

$namespaces:
 s: https://schema.org/
s:softwareVersion: 1.0.0
schemas:
- http://schema.org/version/9.0/schemaorg-current-http.rdf

app-package-scatter.cwl

D.3. Composite two-step Workflow Example

This section extends the previous example with an Application Package that is a two-step
workflow that crops (using scatter over the bands) and creates a composite image.

cwlVersion: v1.0
$graph:
- class: Workflow
 label: Sentinel-2 RGB composite
 doc: This application generates a Sentinel-2 RGB composite over an area of
 interest
 id: s2-compositer
 requirements:
 - class: ScatterFeatureRequirement
 - class: InlineJavascriptRequirement
 - class: MultipleInputFeatureRequirement

OPEN GEOSPATIAL CONSORTIUM 20-089R1 99

 inputs:
 product:
 type: Directory
 label: Sentinel-2 input
 doc: Sentinel-2 Level-1C or Level-2A input reference
 red:
 type: string
 label: red channel
 doc: Sentinel-2 band for red channel
 green:
 type: string
 label: green channel
 doc: Sentinel-2 band for green channel
 blue:
 type: string
 label: blue channel
 doc: Sentinel-2 band for blue channel
 bbox:
 type: string
 label: bounding box
 doc: Area of interest expressed as a bounding bbox
 proj:
 type: string
 label: EPSG code
 doc: Projection EPSG code for the bounding box coordinates
 default: "EPSG:4326"
 outputs:
 results:
 outputSource:
 - node_composite/rgb_composite
 type: Directory
 steps:
 node_crop:
 run: "#crop-cl"
 in:
 product: product
 band: [red, green, blue]
 bbox: bbox
 epsg: proj
 out:
 - cropped_tif
 scatter: band
 scatterMethod: dotproduct
 node_composite:
 run: "#composite-cl"
 in:
 tifs:
 source: node_crop/cropped_tif
 lineage: product
 out:
 - rgb_composite

- class: CommandLineTool
 id: crop-cl
 requirements:
 DockerRequirement:
 dockerPull: docker.io/terradue/crop-container
 baseCommand: crop
 arguments: []
 inputs:
 product:
 type: Directory
 inputBinding:

OPEN GEOSPATIAL CONSORTIUM 20-089R1 100

 position: 1
 band:
 type: string
 inputBinding:
 position: 2
 bbox:
 type: string
 inputBinding:
 position: 3
 epsg:
 type: string
 inputBinding:
 position: 4
 outputs:
 cropped_tif:
 outputBinding:
 glob: '*.tif'
 type: File

- class: CommandLineTool
 id: composite-cl
 requirements:
 DockerRequirement:
 dockerPull: docker.io/terradue/composite-container
 InlineJavascriptRequirement: {}
 baseCommand: composite
 arguments:
 - $(inputs.tifs[0].path)
 - $(inputs.tifs[1].path)
 - $(inputs.tifs[2].path)
 inputs:
 tifs:
 type: File[]
 lineage:
 type: Directory
 inputBinding:
 position: 4
 outputs:
 rgb_composite:
 outputBinding:
 glob: .
 type: Directory

$namespaces:
 s: https://schema.org/
s:softwareVersion: 1.0.0
schemas:
- http://schema.org/version/9.0/schemaorg-current-http.rdf

app-package-two-steps-rgb.cwl

#!/bin/bash

processing arguments
red_channel=$1 # tif file for composite red channel
green_channel=$2 # tif file for composite green channel
blue_channel=$3 # tif file for composite blue channel
in_dir=$4 # input STAC to retrieve the metadata (folder where the EO product is
 staged-in)
bbox=$5 # area of interest

gdalbuildvrt \
 -separate composite.vrt \

OPEN GEOSPATIAL CONSORTIUM 20-089R1 101

 ${red_channel} \
 ${green_channel} \
 ${blue_channel}

gdal_translate \
 composite.vrt \
 composite.tif

gdal_translate \
 -ot Byte \
 composite.vrt \
 composite-preview.tif

rm -f composite.vrt

result as STAC
source /functions.sh
Read the input STAC catalog
STAC catalog path
catalog="${in_dir}/catalog.json"

get the item path
item=$(get_items ${catalog})

get the properties from the input STAC item
as these are the same for the output STAC item
datetime=$(get_item_property ${item} "datetime")
gsd=$(get_item_property ${item} "gsd")

initialise a STAC item
init_item ${datetime} "${bbox}" "${gsd}" > composite-item.json

add an asset
add_asset composite-item.json "composite" "./composite.tif" "image/tiff" "RGB
 composite" "data"

add an asset
add_asset composite-item.json "preview" "./composite-preview.tif" "image/tiff"
 "RGB composite preview" "preview"

initialise the output catalog
init_catalog > catalog.json

add the item
add_item catalog.json composite-item.json

composite

FROM osgeo/gdal

RUN apt update && \
 apt-get install -y jq

ADD functions.sh /functions.sh

ADD composite /usr/bin/composite

RUN chmod +x /usr/bin/composite

Dockerfile.composite

product:
 class: Directory

OPEN GEOSPATIAL CONSORTIUM 20-089R1 102

 path: /tmp/docker_tmpoj8r5t9a
red: B04
green: B03
blue: B02
bbox: "136.522,-36.062,137.027,-35.693"
proj: "EPSG:4326"

params-rgb.yml

D.4. Multiple Inputs Composite Two-step Workflow
Example

This section extends the previous example by creating a workflow that takes a list of products as
input and invokes a two-step sub-workflow that crops (using scatter over the bands) and creates
a composite.

cwlVersion: v1.0
$graph:
- class: Workflow
 label: Sentinel-2 RGB composites
 doc: This application generates a Sentinel-2 RGB composite over an area of
 interest with selected bands
 id: s2-composites
 requirements:
 - class: SubworkflowFeatureRequirement
 - class: ScatterFeatureRequirement
 inputs:
 products:
 type: Directory[]
 label: Sentinel-2 inputs
 doc: Sentinel-2 Level-1C or Level-2A input references
 red:
 type: string
 label: red channel
 doc: Sentinel-2 band for red channel
 green:
 type: string
 label: green channel
 doc: Sentinel-2 band for green channel
 blue:
 type: string
 label: blue channel
 doc: Sentinel-2 band for blue channel
 bbox:
 type: string
 label: bounding box
 doc: Area of interest expressed as a bounding bbox
 proj:
 type: string
 label: EPSG code
 doc: Projection EPSG code for the bounding box coordinates
 default: "EPSG:4326"
 outputs:
 wf_results:
 outputSource:
 - node_rgb/results

OPEN GEOSPATIAL CONSORTIUM 20-089R1 103

 type: Directory[]
 steps:
 node_rgb:
 run: "#s2-compositer"
 in:
 product: products
 red: red
 green: green
 blue: blue
 bbox: bbox
 proj: proj
 out:
 - results
 scatter: product
 scatterMethod: dotproduct

- class: Workflow
 label: Sentinel-2 RGB composite
 doc: This sub-workflow generates a Sentinel-2 RGB composite over an area of
 interest
 id: s2-compositer
 requirements:
 - class: ScatterFeatureRequirement
 - class: InlineJavascriptRequirement
 - class: MultipleInputFeatureRequirement
 inputs:
 product:
 type: Directory
 label: Sentinel-2 input
 doc: Sentinel-2 Level-1C or Level-2A input reference
 red:
 type: string
 label: red channel
 doc: Sentinel-2 band for red channel
 green:
 type: string
 label: green channel
 doc: Sentinel-2 band for green channel
 blue:
 type: string
 label: blue channel
 doc: Sentinel-2 band for blue channel
 bbox:
 type: string
 label: bounding box
 doc: Area of interest expressed as a bounding bbox
 proj:
 type: string
 label: EPSG code
 doc: Projection EPSG code for the bounding box coordinates
 default: "EPSG:4326"
 outputs:
 results:
 outputSource:
 - node_composite/rgb_composite
 type: Directory
 steps:
 node_crop:
 run: "#crop-cl"
 in:
 product: product
 band: [red, green, blue]
 bbox: bbox

OPEN GEOSPATIAL CONSORTIUM 20-089R1 104

 epsg: proj
 out:
 - cropped_tif
 scatter: band
 scatterMethod: dotproduct
 node_composite:
 run: "#composite-cl"
 in:
 tifs:
 source: node_crop/cropped_tif
 lineage: product
 out:
 - rgb_composite

- class: CommandLineTool
 id: crop-cl
 requirements:
 DockerRequirement:
 dockerPull: docker.io/terradue/crop-container
 baseCommand: crop
 arguments: []
 inputs:
 product:
 type: Directory
 inputBinding:
 position: 1
 band:
 type: string
 inputBinding:
 position: 2
 bbox:
 type: string
 inputBinding:
 position: 3
 epsg:
 type: string
 inputBinding:
 position: 4
 outputs:
 cropped_tif:
 outputBinding:
 glob: '*.tif'
 type: File

- class: CommandLineTool
 id: composite-cl
 requirements:
 DockerRequirement:
 dockerPull: docker.io/terradue/composite-container
 InlineJavascriptRequirement: {}
 baseCommand: composite
 arguments:
 - $(inputs.tifs[0].path)
 - $(inputs.tifs[1].path)
 - $(inputs.tifs[2].path)
 inputs:
 tifs:
 type: File[]
 lineage:
 type: Directory
 inputBinding:
 position: 4
 outputs:

OPEN GEOSPATIAL CONSORTIUM 20-089R1 105

 rgb_composite:
 outputBinding:
 glob: .
 type: Directory

$namespaces:
 s: https://schema.org/
s:softwareVersion: 1.0.0
schemas:
- http://schema.org/version/9.0/schemaorg-current-http.rdf

app-package-multiple-products.cwl

OPEN GEOSPATIAL CONSORTIUM 20-089R1 106

E

ANNEX E (INFORMATIVE)
REVISION HISTORY

OPEN GEOSPATIAL CONSORTIUM 20-089R1 107

E ANNEX E
(INFORMATIVE)
REVISION HISTORY

Table E.1

DATE RELEASE EDITOR
PRIMARY
CLAUSES
MODIFIED

DESCRIPTION

2020-11-
10 0.1 Pedro Gonçalves all initial version

2021-03-
19 0.2 Pedro Gonçalves all consolidated draft

2021-05-
03 0.3 Pedro Gonçalves all improved for DWG

evaluations

2021-08-
21 1.0 Pedro Gonçalves all

improved with
comments and
suggestion received

added requeriments
and conformance
classes

OPEN GEOSPATIAL CONSORTIUM 20-089R1 108

BIBLIOGRAPHY

OPEN GEOSPATIAL CONSORTIUM 20-089R1 109

BIBLIOGRAPHY

1. Cloud Native Glossary — CNCF Business Value Subcommittee (BVS), 2021, https://glossary.
cncf.io/

2. Commonwl.org: Common Workflow Language (CWL) Command Line Tool Description v1.2,
2020, https://www.commonwl.org/v1.2/CommandLineTool.html

3. Commonwl.org: Common Workflow Language (CWL) Workflow Description v1.2, 2020,
https://www.commonwl.org/v1.2/Workflow.html

4. Pedro Gonçalves: OGC 20-042, OGC Earth Observations Applications Pilot: Terradue
Engineering Report. Open Geospatial Consortium (2020). http://docs.ogc.org/
per/20-042.html

5. Ingo Simonis: OGC 20-073, OGC Earth Observation Applications Pilot: Summary
Engineering Report. Open Geospatial Consortium (2020). https://docs.ogc.org/
per/20-073.html

OPEN GEOSPATIAL CONSORTIUM 20-089R1 110

https://glossary.cncf.io/
https://glossary.cncf.io/
https://www.commonwl.org/v1.2/CommandLineTool.html
https://www.commonwl.org/v1.2/Workflow.html
http://docs.ogc.org/per/20-042.html
http://docs.ogc.org/per/20-042.html
https://docs.ogc.org/per/20-073.html
https://docs.ogc.org/per/20-073.html

	I. Abstract
	II. Keywords
	III. Preface
	IV. Security Considerations
	V. Submitting Organizations
	VI. Submitters
	1. Scope
	2. Conformance
	3. Normative references
	4. Terms and definitions
	5. Conventions
	5.1. Identifiers
	5.2. Abbreviated terms

	6. Components Overview
	6.1. Introduction
	6.2. Earth Observation Applications
	6.2.1. Data-driven application with a fan-in application pattern
	6.2.2. Data-driven application with a fan-out application pattern
	6.2.3. Staging Input and Output EO Products

	6.3. Application Package
	6.3.1. Common Workflow Language (CWL)
	6.3.2. Usage Scenarios

	6.4. Platform
	6.4.1. Platform Architecture
	6.4.2. EO Products Data Flow Management

	7. Application Best Practice
	7.1. Overview
	7.2. Command Line
	7.3. Container
	7.3.1. EO Products as Input Data

	7.4. EO Products as Output Data
	7.5. Requirement Classes
	7.5.1. Requirements Class “Application”
	7.5.2. Requirements Class “Application Staged Inputs”
	7.5.3. Requirements Class “Application Staged Outputs”

	8. Package Best Practice
	8.1. Overview
	8.2. CWL Document
	8.3. Command-Line Tool
	8.3.1. Staging Input and Output EO Products

	8.4. Application
	8.4.1. Staging Input and Output EO Products

	8.5. Application Pattern
	8.6. Extended Workflows
	8.7. Application Additional Metadata
	8.8. Resources for the runtime environment
	8.9. Requirement Classes
	8.9.1. Requirements Class “Application Package”
	8.9.2. Requirements Class “Application Package Staged Inputs”
	8.9.3. Requirements Class “Application Package Staged Outputs”

	9. Platform Best Practice
	9.1. Overview
	9.2. Process Description
	9.3. Input Parameters
	9.3.1. Single CWL type Parameter
	9.3.2. Optional Parameters
	9.3.3. Array Parameters
	9.3.4. Enumeration Parameters
	9.3.5. Inputs by reference (File)
	9.3.6. Input EO Products (Directory)

	9.4. Data Flow Management
	9.4.1. Data Stage-In
	9.4.2. Data Stage-Out

	9.5. Requirement Classes
	9.5.1. Requirements Class “Platform”
	9.5.2. Requirements Class “Platform Staged Inputs”
	9.5.3. Requirements Class “Platform Staged Outputs”

	Annex A (normative) Conformance Class Abstract Test Suite (Normative)
	A.1. Conformance Class “Application”
	A.1.1. Command-Line Application
	A.1.2. Container

	A.2. Conformance Class “Application Staged Inputs”
	A.2.1. STAC Catalog Input

	A.3. Conformance Class “Application Staged Outputs”
	A.3.1. STAC Catalog Ouput
	A.3.2. STAC Metadata

	A.4. Conformance Class “Application Package”
	A.5. Conformance Class “Application Package Staged Inputs”
	A.6. Conformance Class “Application Package Staged Outputs”
	A.7. Conformance Class “Platform”
	A.8. Conformance Class “Platform Staged Inputs”
	A.9. Conformance Class “Platform Staged Outputs”

	Annex B (informative) Free and open-source CWL implementations
	Annex C (informative) STAC Examples
	Annex D (informative) Application Examples
	D.1. Crop Application Example
	D.2. Scatter Crop Application Example
	D.3. Composite two-step Workflow Example
	D.4. Multiple Inputs Composite Two-step Workflow Example

	Annex E (informative) Revision History
	Bibliography
	—————
	List of Tables
	Table 1 — Application Package additional Metadata elements
	Table 2 — Mapping the Workflow class fields to OGC API Processes
	Table 3 — Mapping CWL types to OGC API Process Input elements
	Table E.1

	List of Figures
	Figure 1 — Application developers and application consumers interacting with the cloud platform
	Figure 2 — Data-driven application with fan-in input references where an application processes the aggregates of n-input EO products
	Figure 3 — Data-driven application with fan-out input references where an application processes several input EO products independently.
	Figure 4 — SENTINEL-2 product physical format
	Figure 5 — Architecture overview of the Application execution in a Platform
	Figure 6 — Workflow diagram for the a simple Application with four inputs parameters and one execution block
	Figure 7 — Workflow diagram for the Application with six inputs parameters and two execution blocks
	Figure 8 — Platform steps for the EO Application Package deployment
	Figure 9 — Platform steps for the EO Application Package execution
	Figure 10 — High level diagram of Platform Components executing an EO Application Package
	Figure 11 — Platform steps for data stage-in from the CWL service definition and OGC API Processes execution request
	Figure 12 — Platform steps for data stage-out application execution for the the OGC API Processes response

