License Agreement

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of charge and subject to the terms set forth below, to any person obtaining a copy of this Intellectual Property and any associated documentation, to deal in the Intellectual Property without restriction (except as set forth below), including without limitation the rights to implement, use, copy, modify, merge, publish, distribute, and/or sublicense copies of the Intellectual Property, and to permit persons to whom the Intellectual Property is furnished to do so, provided that all copyright notices on the intellectual property are retained intact and that each person to whom the Intellectual Property is furnished agrees to the terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include, in addition to the above copyright notice, a notice that the Intellectual Property includes modifications that have not been approved or adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY PATENTS THAT MAY BE IN FORCE ANYWHERE IN THE WORLD.

THE INTELLECTUAL PROPERTY IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE DO NOT WARRANT THAT THE FUNCTIONS CONTAINED IN THE INTELLECTUAL PROPERTY WILL MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF THE INTELLECTUAL PROPERTY WILL BE UNINTERRUPTED OR ERROR FREE. ANY USE OF THE INTELLECTUAL PROPERTY SHALL BE MADE ENTIRELY AT THE USER’S OWN RISK. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR ANY CONTRIBUTOR OF INTELLECTUAL PROPERTY RIGHTS TO THE INTELLECTUAL PROPERTY BE LIABLE FOR ANY CLAIM, OR ANY DIRECT, SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF OR IN CONNECTION WITH THE IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF THIS INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the Intellectual Property together with all copies in any form. The license will also terminate if you fail to comply with any term or condition of this Agreement. Except as provided in the following sentence, no such termination of this license shall require the termination of any third party end-user sublicense to the Intellectual Property which is in force as of the date of notice of such termination. In addition, should the Intellectual Property, or the operation of the Intellectual Property, infringe, or in LICENSOR’s sole opinion be likely to infringe, any patent, copyright, trademark or other right of a third party, you agree that LICENSOR, in its sole discretion, may terminate this license without any compensation or liability to you, your licensees or any other party. You agree upon termination of any kind to destroy or cause to be destroyed the Intellectual Property together with all copies in any form, whether held by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all or part of the Intellectual Property shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Intellectual Property without prior written authorization of LICENSOR or such copyright holder. LICENSOR is and shall at all times be the sole entity that may authorize you or any third party to use certification marks, trademarks or other special designations to indicate compliance with any LICENSOR standards or specifications. This Agreement is governed by the laws of the Commonwealth of Massachusetts. The application to this Agreement of the United Nations Convention on Contracts for the International Sale of Goods is hereby expressly excluded. In the event any provision of this Agreement shall be deemed unenforceable, void or invalid, such provision shall be modified so as to make it valid and enforceable, and as so modified the entire Agreement shall remain in full force and effect. No decision, action or inaction by LICENSOR shall be construed to be a waiver of any rights or remedies available to it.


 

i. Abstract

This document proposes a set of best practices and guidelines for implementing and using the Open Geospatial Consortium (OGC) Web Map Service (WMS) to serve maps which are members of an ensemble of maps, each of which is a valid possible alternative for the same time and location. In the meteorological and oceanographic communities, it is Best Practice to produce a large number of simultaneous forecasts, whether for a short range of hours, a few days, seasonal or climatological predictions. These ensembles of forecasts indicate the probability distributions of specific outcomes. This document describes how to unambiguously specify an individual member of an ensemble, or one of a limited set of map products derived from a full ensemble.

In particular, clarifications and restrictions on the use of WMS are defined to allow unambiguous and safe interoperability between clients and servers, in the context of expert meteorological and oceanographic usage and non-expert usage in other communities. This Best Practice document applies specifically to WMS version 1.3, but many of the concepts and recommendations will be applicable to other versions of WMS or to other OGC services, such as the Web Coverage Service.

ii.          Keywords

The following are keywords to be used by search engines and document catalogues:

meteorology, oceanography, ensemble, member, time, elevation, time-dependent, elevation-dependent, wms, web map service 1.3, 1.3.0, ogc, best practice, ogcdoc

iii.          Preface

This Best Practice document is the result of discussions within the Meteorology and Oceanography Domain Working Group (MetOcean DWG) of the Technical Committee (TC) of the Open Geospatial Consortium (OGC) regarding the use of the OGC Web Map Service (WMS) to provide map visualizations from the various types of data regularly produced, analyzed, and shared by those communities. The discussion considered the differences in the types of data as well as the issues, concerns, and responsibilities of data producers when sharing those data as maps with end users, including analysts within the meteorological and oceanographic communities, users with specific needs and the general public. The limited scope of the requirements and recommendations in this document reflects the consensus reached by groups with vastly different types of data, limitations in the current design of the WMS specification, and compromises to ensure these services remain applicable to a mass market audience. Future work includes extending this Best Practice once the community gains more experience with implementing the provisions of this document. This document does not require any changes to other OGC specifications, but it is hoped that the WMS specification will evolve to address issues encountered in this work such as providing a mechanism to define exclusive dimensions and to define sparse combinations of dimensions.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. The Open Geospatial Consortium shall not be held responsible for identifying any or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any relevant patent claims or other intellectual property rights of which they may be aware that might be infringed by any implementation of the standard set forth in this document, and to provide supporting documentation when possible.

iv.          Submitting organizations

The following organizations submitted this Document to the Open Geospatial Consortium Inc.

  • Deutscher Wetterdienst, Germany
  • ECWMF
  • KNMI, Ministry of Infrastructure and the Environment, Netherlands
  • Météo-France
  • Meteorological Service of Canada, Environment and Climate Change Canada
  • UK Met Office
  • US Air Force Directorate of Weather

v.          Submitters

All questions regarding this submission should be directed to the editors or the submitters:

Name

Affiliation

Chris Little

UK Met Office

Jürgen Seib

Deutscher Wetterdienst

Marie-Françoise Voidrot-Martinez

Météo-France

Stephan Siemen

ECWMF

Ernst de Vreede

KNMI

Tom Kralidis

MSC

Eric Wise

USAF Directorate of Weather

 

1.             Introduction

The meteorological and oceanographic communities have been exchanging information internationally for at least 150 years and well understand the importance of geospatial standards for interoperability. These standards have typically defined data formats, interfaces, processes, shared conceptual models, and sustainable maintenance processes.

Because of the demanding nature of meteorological and oceanographic data processing, the communities have evolved domain specific solutions. However, as computers have become more powerful, it has become feasible to use general geospatial software for day-to-day operational purposes, and interoperability problems have arisen. There has also been an increasing need to combine meteorological and oceanographic data with other forms of geospatial data from other domains, in ways convenient for those domains.

Meteorological and oceanographic data are inherently multidimensional, not just in time and space but also over other dimensions, such as probability. In the meteorological and oceanographic communities, it is best practice to produce a number of simultaneous forecasts, whether for a short range of hours, a few days, a season or climatological predictions for a century. These ensembles of forecasts give an indication of the probability of specific outcomes.

This document describes and justifies a set of best practices for offering and requesting maps representing meteorological and oceanographic data selected from an ensemble of possibilities through WMS. This set of best practices is intended to meet the interoperability requirements of the meteorological and oceanographic communities and enable them and their customers to gain the economic benefits of using commercial, off the shelf, software implementations of WMS servers and clients.

1.1           Ensemble Forecast

Ensemble forecasts are the output of a numerical weather prediction system that facilitates the estimation of uncertainty in a weather forecast as well as the most likely outcome.

Instead of running the prediction once (a deterministic forecast), many predictions are computed, where each prediction uses slightly different input conditions. The result is called an ensemble forecast.

An ensemble forecast is a set of forecasts for the same times and locations. They are based on a set of equally likely scenarios, produced e.g. by perturbing the initial state, modifying the simulated physics, equation approximations, or boundary conditions. Any convergent or divergent distribution of the resulting set of forecasts can give an indication of the likelihood of the forecasts. Ensemble forecasts are not exact evolutions of a Probability Distribution Function for the atmosphere or oceans, as calculating these is currently an intractable problem.

When more ensemble forecasts are made, rather than fewer, the ensemble of possible outcomes is more likely to capture the most likely and the most extreme possibilities.

Generally, ensembles of about 10 forecasts are not enough, but 100 forecasts are more than ample to capture a practical range of possible outcomes.

There is also real value in combining ensembles, for the same times and locations, from different forecasting organizations, to produce a larger, multi-sourced ensemble which has improved skill compared to smaller, single-sourced, ensembles or even a similarly sized, single-sourced ensemble.

The production system is usually known as an EPS, Ensemble Prediction System.

1.2           Ensemble Member

The individual forecasts that comprise an ensemble are referred to as ensemble members. A forecasting service may select one member of an ensemble as the most appropriate prediction to offer to a customer (see Figure 1). Such a selection may be automatic or manual. A different organization’s ensemble may even be used, for example, as a back-up. Consequently, there is a need to identify a complete ensemble, a specific member, and the source or sources of that ensemble.

An ensemble of 50 parallel forecasts based on perturbations from one ‘control’ forecast. These maps are all four day forecasts of mean sea level pressure for NW Europe.
Figure : An ensemble of 50 parallel forecasts based on perturbations from one ‘control’ forecast. These maps are all four day forecasts of mean sea level pressure for NW Europe.

Contrast:

Member 5 shows high pressure over the UK, with calm weather and clear skies;

Member 10 shows low pressure over the UK, with strong winds and precipitation.

As all the ensemble members are, a priori, equally likely, there is no simple, easy to calculate, concept of two members being ‘near’ or ‘far’ from each other, or any one being the ‘most likely’.

1.3           Ensemble Product

This section describes the most common ensemble products and it briefly explains how they may be used. In general, two different types of ensemble products can be distinguished. One type delivers a chart that visualizes the data of all members. In the following, this type is called an all-member map. The other type produces new data as the result of a production process which takes all members as input. Some examples of this product type are aggregation maps, quantile maps or probability maps.

1.3.1      All-member maps

So-called postage stamp maps and spaghetti maps are the two most common ways to give an overview of all members.

A postage stamp map is a set of small maps showing plots of each individual ensemble member (see Figure 1). This allows the forecaster to view the scenarios in each member forecast and assess the possible risks of extreme events. However, this presents a large amount of information that can be difficult to comprehend.

A spaghetti map is a chart showing the contours of one or more variables from all ensemble members. This can provide a useful image of the predictability of the field. Where all ensemble member contours lie close together the predictability is higher; where they look like spaghetti on a plate, there is less predictability.

Consider for example Figure 2 and Figure 3. The graph in Figure 2 shows a 10-day temperature forecast for Brussels. There is confidence that it will become warmer for 4 or 5 days, and then probably cool, but the amount of cooling is less certain.

An ensemble of forecasts, for 10 days, of air temperature for a single location
Figure : An ensemble of forecasts, for 10 days, of air temperature for a single location

Figure 3 below shows a ‘spaghetti map’ of a North Atlantic, four day forecast of the ‘thickness’ of the lower atmosphere. Thickness is a measure of how warm or cold a layer of the atmosphere is. Usually a layer in the lower troposphere is chosen, between pressures of 1000 hPa and 500 hPa. The thickness is the difference in the heights of these two pressure levels, usually measured in decameters (Dm). A thicker layer is warmer than a ‘thinner’ layer. Thus, thickness acts as a proxy for the average temperature of the layer of atmosphere.

For example, a 1000-500hPa thickness of 528 Dm is relatively cold and indicative of snow rather than rain at sea level in Western Europe. The ensemble members, shown in the map of Figure 3, all consistently forecast this. But the forecasts of the warmer areas, indicated by a thickness of 564 Dm, are less certain.

the 528, 546 and 564 Dm thickness contours of  an ensemble 500 hPa geopotential height forecast for 11 February 2001 at 12 UTC (T+96 from 2001-02-07, 12 UTC)
Figure : the 528, 546 and 564 Dm thickness contours of  an ensemble 500 hPa geopotential height forecast for 11 February 2001 at 12 UTC (T+96 from 2001-02-07, 12 UTC)

Source:  UK Met Office using data from ECMWF, © UK Crown Copyright

Trajectory data present another example of meteorological data that often have multiple possibilities. A trajectory is the path that a moving object follows through space as a function of time. Trajectories are well recognized as often being very sensitive to the starting conditions, thus producing an ensemble of possible tracks is eminently sensible.

The distribution of possible trajectories can be shown by displaying all of them, or perhaps the extremes cases and an ‘average’ or ‘most likely’ track, though objectively defining what these are is a research topic and dependent on the detailed use case (see [Cheung 2014]).

Trajectories can run forward or backward. Good examples of forward trajectories are those for volcanic ash. They are usually calculated using the data of a numerical weather forecast. Such a forward trajectory predicts the movement of air masses from a given geographical position, in this case the location of the volcano. The trajectory has the same temporal and probabilistic associations as the numerical weather forecast because it is based on these data. An example of a backward trajectory is to find the upwind source of a nuclear pollution observation.

Figure 4 below shows two ensembles of forecasts for the tracks of two hurricanes, not unlike trajectories. A particular track could be chosen as the most likely. However, an ‘envelope’ of all possible forecast tracks could be constructed to be displayed with the most likely track, as in Figure 5.