
OGC® DOCUMENT: 21-027
External identifier of this OGC® document: http://www.opengis.net/doc/PER/t17-D012

OGC TESTBED 17:
GEO DATA CUBE API
ENGINEERING REPORT

ENGINEERING REPORT

PUBLISHED

Submission Date: 2022-02-09
Approval Date: 2022-03-04
Publication Date: 2022-04-08
Editor: Jérôme Jacovella-St-Louis

Notice: This document is not an OGC Standard. This document is an OGC Public Engineering Report created as a deliverable in an OGC
Interoperability Initiative and is not an official position of the OGC membership. It is distributed for review and comment. It is subject to change
without notice and may not be referred to as an OGC Standard.
Further, any OGC Engineering Report should not be referenced as required or mandatory technology in procurements. However, the discussions
in this document could very well lead to the definition of an OGC Standard.

License Agreement

Permission is hereby granted by the Open Geospatial Consortium, (“Licensor”), free of charge and subject to the terms set forth below, to any
person obtaining a copy of this Intellectual Property and any associated documentation, to deal in the Intellectual Property without restriction
(except as set forth below), including without limitation the rights to implement, use, copy, modify, merge, publish, distribute, and/or sublicense
copies of the Intellectual Property, and to permit persons to whom the Intellectual Property is furnished to do so, provided that all copyright notices
on the intellectual property are retained intact and that each person to whom the Intellectual Property is furnished agrees to the terms of this
Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include, in addition to the above copyright notice, a
notice that the Intellectual Property includes modifications that have not been approved or adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY PATENTS THAT MAY BE IN FORCE
ANYWHERE IN THE WORLD. THE INTELLECTUAL PROPERTY IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND
NONINFRINGEMENT OF THIRD PARTY RIGHTS. THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE DO NOT WARRANT
THAT THE FUNCTIONS CONTAINED IN THE INTELLECTUAL PROPERTY WILL MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF
THE INTELLECTUAL PROPERTY WILL BE UNINTERRUPTED OR ERROR FREE. ANY USE OF THE INTELLECTUAL PROPERTY SHALL BE MADE
ENTIRELY AT THE USER’S OWN RISK. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR ANY CONTRIBUTOR OF INTELLECTUAL PROPERTY
RIGHTS TO THE INTELLECTUAL PROPERTY BE LIABLE FOR ANY CLAIM, OR ANY DIRECT, SPECIAL, INDIRECT OR CONSEQUENTIAL
DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF OR IN CONNECTION
WITH THE IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF THIS INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the Intellectual Property together with all copies in
any form. The license will also terminate if you fail to comply with any term or condition of this Agreement. Except as provided in the following
sentence, no such termination of this license shall require the termination of any third party end-user sublicense to the Intellectual Property
which is in force as of the date of notice of such termination. In addition, should the Intellectual Property, or the operation of the Intellectual
Property, infringe, or in LICENSOR’s sole opinion be likely to infringe, any patent, copyright, trademark or other right of a third party, you agree that
LICENSOR, in its sole discretion, may terminate this license without any compensation or liability to you, your licensees or any other party. You
agree upon termination of any kind to destroy or cause to be destroyed the Intellectual Property together with all copies in any form, whether held
by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all or part of the Intellectual Property shall not
be used in advertising or otherwise to promote the sale, use or other dealings in this Intellectual Property without prior written authorization
of LICENSOR or such copyright holder. LICENSOR is and shall at all times be the sole entity that may authorize you or any third party to use
certification marks, trademarks or other special designations to indicate compliance with any LICENSOR standards or specifications. This Agreement
is governed by the laws of the Commonwealth of Massachusetts. The application to this Agreement of the United Nations Convention on Contracts
for the International Sale of Goods is hereby expressly excluded. In the event any provision of this Agreement shall be deemed unenforceable, void
or invalid, such provision shall be modified so as to make it valid and enforceable, and as so modified the entire Agreement shall remain in full force
and effect. No decision, action or inaction by LICENSOR shall be construed to be a waiver of any rights or remedies available to it.

None of the Intellectual Property or underlying information or technology may be downloaded or otherwise exported or reexported in violation of
U.S. export laws and regulations. In addition, you are responsible for complying with any local laws in your jurisdiction which may impact your right
to import, export or use the Intellectual Property, and you represent that you have complied with any regulations or registration procedures required
by applicable law to make this license enforceable.

Copyright notice

Copyright © 2022 Open Geospatial Consortium
To obtain additional rights of use, visit http://www.ogc.org/legal/

Note

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. The Open Geospatial
Consortium shall not be held responsible for identifying any or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any relevant patent claims or other intellectual property
rights of which they may be aware that might be infringed by any implementation of the standard set forth in this document, and to provide
supporting documentation.

OPEN GEOSPATIAL CONSORTIUM 21-027 ii

http://www.ogc.org/legal/

CONTENTS

I. ABSTRACT ...vii

II. EXECUTIVE SUMMARY ...vii
II.A. Key findings ... vii
II.B. Results .. viii
II.C. Business value .. ix
II.D. Requirements addressed ... ix
II.E. Motivation for defining a Geo Data Cube API .. x
II.F. Recommendations for future work ...x

III. KEYWORDS ... xi

IV. PREFACE ..xii

V. SECURITY CONSIDERATIONS ... xiii

VI. SUBMITTING ORGANIZATIONS ... xiv

VII. SUBMITTERS ... xiv

1. NORMATIVE REFERENCES ...17

2. TERMS, DEFINITIONS AND ABBREVIATED TERMS ..19
2.1. Terms and definitions ..19
2.2. Abbreviated terms ... 25

3. INTRODUCTION ...28

4. GEO DATA CUBE CONCEPTS ..30
4.1. What is a Geo Data Cube? ... 30
4.2. Goals of a Geo Data Cube API .. 31
4.3. Nature of a Geo Data Cube API ..40

5. AN API FOR GEO DATA CUBES ..42
5.1. OGC API framework for providing GDC capabilities ..42
5.2. Data access ..44
5.3. Analytics ...51
5.4. Data discovery, queries and catalogs ..53
5.5. Visualization .. 55
5.6. Managing data and algorithms ... 55

OPEN GEOSPATIAL CONSORTIUM 21-027 iii

6. MACHINE LEARNING WITHIN A GEO DATA CUBE API ..57
6.1. Use case ... 57
6.2. Data preparation .. 57
6.3. Model training .. 59
6.4. Model prediction ..59
6.5. Technology Integration Experiments with D123 — GDC API Service (Wuhan University) 66
6.6. Future work ...67

7. IMPLEMENTED SERVER COMPONENTS ..70
7.1. 52°North Geo Data Cube API Server Implementation (D122) ... 71
7.2. Wuhan University Geo Data Cube API Server Implementation (D123) ..79
7.3. MEEO Geo Data Cube API Server Implementation (D177) .. 93
7.4. Ecere Geo Data Cube API Server Implementation (in-kind) .. 95

8. IMPLEMENTED CLIENT COMPONENTS ..104
8.1. Solenix Geo Data Cube API Client Implementation (D124) ..105
8.2. Ethar Geo Data Cube API Client Implementation (D125) ... 111
8.3. Ecere Geo Data Cube API Client Implementation (in-kind) ...116

9. STANDARDIZING A GEO DATA CUBE API ..128
9.1. Next steps for a Geo Data Cube API ...128
9.2. Recommendations relating to data discovery ...128
9.3. Recommendations relating to data access .. 129
9.4. Recommendations relating to analytics ... 130

ANNEX A (INFORMATIVE) SELECTED GEO DATA CUBE API CAPABILITIES 133
A.1. Common-1: Core ...133
A.2. Common-2: Collections ... 133
A.3. Coverages-1 ..134
A.4. Coverages-1 (Subsetting) .. 134
A.5. Coverages-1 (Range subsetting) .. 135
A.6. Coverages-1 (Scaling) ... 135
A.7. Processes-1 (Sync execution) ...135
A.8. Processes-1 (Async execution) ...136
A.9. Processes-3: Workflows (Collection Input) ...137
A.10. Processes-3: Workflows (Collection Output) ...137
A.11. Records-1: Core .. 138
A.12. DAPA ... 138

ANNEX B (INFORMATIVE) TECHNOLOGY INTEGRATION EXPERIMENTS140
B.1. TIEs Table ..140
B.2. Summary ..141

ANNEX C (INFORMATIVE) REVISION HISTORY .. 143

BIBLIOGRAPHY .. 145

OPEN GEOSPATIAL CONSORTIUM 21-027 iv

LIST OF TABLES

Table 1 — Server components .. 70
Table 2 — GDC API Capabilities ...70
Table 3 — Clients components ... 104
Table 4 — GDC API Capabilities .. 104
Table B.1 — Successful Geo Data Cube API Technology Integration Experiments 140
Table B.2 — GDC API Capabilities ...140

LIST OF FIGURES

Figure 1 — Illustration of a data cube with multiple imagery bands and time axis31
Figure 2 — Figure from openEO showing layers of a data cube across imagery bands and time
axis. ..34
Figure 3 — Figure from openEO illustrating data trimming by time, range subsetting (selecting a
single band) and intersection with a spatial area. ..36
Figure 4 — Figure from openEO illustrating data slicing, reducing dimensions of the data. 37
Figure 5 — Figure from openEO illustrating temporal resampling. .. 37
Figure 6 — Figure from openEO illustrating spatial resampling. ...38
Figure 7 — Geo Data Cube API Architectural Framework ...44
Figure 8 — Data Preparation steps to obtain registered label and input datasets.58
Figure 9 — Process workflow ... 63
Figure 10 — Execute request example json body ..65
Figure 11 — Land cover prediction for the bounding box "[-104.6, 51.8, -103.7, 52.6]" (dark
blue=water, turquoise=herbs, dark green=coniferous, transparent grey=no change)65
Figure 12 — Land cover prediction for the bounding box "[113.05, 30.85, 113.2, 30.95]" (dark
blue=water, turquoise=herbs, dark green=coniferous, transparent grey=no change)67
Figure 13 — ODC architecture (source:) ... 72
Figure 14 — Architecture of 52°North’s service implementation ...73
Figure 15 — Architecture of MEEO service implementation .. 93
Figure 16 — NRCan HRDEM for Red River area in Manitoba at 1 and 2 m resolution rendered by
Ecere’s GNOSIS Map Server ... 96
Figure 17 — NRCan HRDEM for Ottawa river area rendered by Ecere’s GNOSIS Map Server
..97
Figure 18 — CHS NONNA at 10m resolution rendered by Ecere’s GNOSIS Map Server 97
Figure 19 — CHS NONNA at 100m resolution rendered by Ecere’s GNOSIS Map Server98
Figure 20 — HRDEM from RedRiver and CHS NONNA at 10m resolution visualized accessed
from Ecere’s GNOSIS Map Server and visualized in GNOSIS Cartographer98

OPEN GEOSPATIAL CONSORTIUM 21-027 v

Figure 21 — WebWorldWind client visualizing Blue Marble spatio-temporal data cube from
Ecere GDC API ...106
Figure 22 — WebWorldWind client visualizing elevation data from the 52°North GDC API 108
Figure 23 — WebWorldWind client visualizing processing results from Ecere GDC API using
Workflows & Chaining (collection output) .. 109
Figure 24 — WebWorldWind demonstrator application showing successful Coverages TIE with
Wuhan University GDC API ... 110
Figure 25 — WebWorldWind demonstrator application showing successful Coverages TIE with
Wuhan University GDC API at a smaller scale .. 110
Figure 26 — Ethar GDC WebXR Client Screenshot .. 113
Figure 27 — Ecere’s GNOSIS Cartographer client visualizing 10-meter resolution bathymetry
from CHS NONNA ... 117
Figure 28 — Ecere’s Cartographer client visualizing Landsat-8 imagery from 52°North Coverages
implementation .. 117
Figure 29 — Ecere’s Cartographer client visualizing Landsat-8 imagery as NDVI from 52°North
Coverages implementation ..118
Figure 30 — Ecere’s Cartographer client visualizing Digital Terrain Model from 52°North
Coverages implementation ..119
Figure 31 — Ecere’s Cartographer client visualizing Landsat-8 from Wuhan University’s
Coverages implementation ..120
Figure 32 — Ecere’s Cartographer client accessing MEEO’s OGC API implementation120
Figure 33 — Configuration of workflow using GUI tool in Cartographer client to process
HRDREM-Ottawa dataset elevation contours ... 121
Figure 34 — Visualizing vector lines output of contour generation process 122
Figure 35 — Accessing Wuhan University Processes Implementation in Workflow Editor123
Figure 36 — Accessing 52°North Processes Implementation in Workflow Editor 124
Figure 37 — Visualizing of HRDEM-Ottawa as map tiles ..125
Figure 38 — Visualizing HRDEM-Ottawa-LinesContours as vector tiles 125
Figure 39 — Visualizing map tiles from MEEO service’s CA_harvest_year data cube, together
with NASA’s Blue Marble Next Generation, SRTM elevation from Jonathan de Ferranti’s View
Finder Panoramas and ESA’s Gaia Sky in Color ...126

OPEN GEOSPATIAL CONSORTIUM 21-027 vi

I ABSTRACT

This OGC Testbed 17 Engineering Report (ER) documents the results and recommendations
of the Geo Data Cube API task. The ER defines a draft specification for an interoperable Geo
Data Cube (GDC) API leveraging OGC API building blocks, details implementation of the draft
API, and explores various aspects including data retrieval and discovery, cloud computing and
Machine Learning. Implementations of the draft GDC API are demonstrated with use cases
including the integration of terrestrial and marine elevation data and forestry information for
Canadian wetlands.

I I EXECUTIVE SUMMARY

I I .A. Key findings

An architecture for a Geo Data Cube API framework is proposed. The framework is built using
approved OGC standards and draft OGC API specifications. OGC API — Common provides a
cohesive consistency for presenting an API landing page, conformance declaration and API
description in Part 1: Core OGC 19-072, while defining collections of spatiotemporal data
corresponding to the GDC API data cube resources in Part 2: Geospatial data OGC 20-024.
Multi-resolution data can be stored, indexed, and represented as such Geo Data Cube resources.
These resources can be transformed by performing different operations such as resampling,
subsetting, aggregation, filtering, band arithmetic calculations, or processing algorithms. This
also includes using complex workflows, queried by multiple data access mechanisms defined in
OGC API building blocks, and returned as outputs in suitable negotiated formats.

The following OGC standards and specifications were considered and/or used in defining the
GDC API.

• OGC API — Coverages is considered a key GDC capability with its subsetting, range (fields)
subsetting, scaling and tiles conformance classes, as well as proposed extensions for
supporting filtering expressions, band arithmetic calculations and varying resolution.

• Cloud Optimized GeoTIFF (COG) was considered as both a backend data store and an
efficient distribution mechanism.

• OGC API — Tiles and OGC API — Features are also considered as data access mechanisms.

• OGC API — Environmental Data Retrieval (EDR) which offers queries for typical
meteorological use cases such as data along a trajectory or within a corridor.

OPEN GEOSPATIAL CONSORTIUM 21-027 vii

http://docs.opengeospatial.org/DRAFTS/19-072.html
https://docs.ogc.org/DRAFTS/20-024.html

• OGC API — Discrete Global Grid Systems is suggested as an important component to
integrate within a GDC API framework.

• Complex analytics can be achieved using OGC API — Processes — Part 1: Core, while
simpler analytics capabilities should be conveniently integrated directly within OGC API —
Coverages and EDR data requests.

• The OGC API — Processes — Part 2: Deploy, Replace, Update draft specification is highlighted
as a way to deploy new complex algorithms close to data.

• The OGC API — Processes — Part 3: Workflows & Chaining draft specification is highlighted
as a way to present the output of a process or workflow as a data cube, while supporting
integration of distributed data cubes and analytics capabilities.

• The OGC API — Maps and OGC API — Tiles specifications were identified as ways to directly
integrate server-side visualization capabilities within a GDC framework.

• The role of OGC API — Records, STAC and OGC API — Common for data discovery was
explored.

Some overlap between the OGC API — EDR Standard and draft OGC API — Coverages
specification were identified, particularly in terms of describing a data cube and the EDR cube
queries. Some current incompatibilities between the APIs specified in OGC API — EDR and OGC
API — Common were also identified.

A Scenes API is proposed as a way to provide a unified data cube while still providing direct
access to individual scenes making it up as well as to their metadata. The Scenes API is also
proposed as a mechanism to manage multiple scenes making up a data cube. This approach is
based on the work from the Testbed 15 — Images API.

The new analytics capabilities defined by Testbed 16 — Data Access & Processing API (DAPA) are
proposed as extensions for the Coverages and EDR APIs rather than as a new separate API. The
definition of well-known processes supporting convenient processing languages is suggested.
The need for identifying data cubes for use as input to particular processes was identified.

I I .B. Results

The initiative participants developed four servers (provided by Wuhan University, 52°North,
MEEO, and Ecere) and three clients (provided by Solenix, Ethar and Ecere) implementing selected
Geo Data Cube API capabilities based on OGC API standards and specifications:

• OGC API — Common — Part 1: Core;

• OGC API — Common — Part 2: Geospatial data;

• OGC API — Coverages — Part 1: Core, supporting subsetting, range subsetting, i.e. fields
selection, scaling;

OPEN GEOSPATIAL CONSORTIUM 21-027 viii

• OGC API — Processes — Part 1: Core, supporting synchronous and asynchronous
execution;

• OGC API — Processes — Part 3: Workflows and Chaining, supporting collection input and
collection output.

52°North demonstrated the use of the GDC API in the context of machine learning for land
cover prediction from Earth Observation imagery. Ethar additionally demonstrated the use of
the GDC API in the context of Augmented Reality.

I I .C. Business value

This Engineering Report (ER) describes the results of discussions and experiments evaluating
OGC API standards and draft specifications. Further, other data cube implementations
developed outside of the OGC were evaluated in the context of a Geo Data Cube API for
data access, analytics and discovery. The ER makes recommendations for the OGC Standards
Program to improve interoperability of data cubes. The ER also highlights the interoperability
drawbacks of defining different specifications for the same functionality within the same family
of OGC API standards. Capabilities missing from OGC standards for accessing and performing
analytics on data cubes are also identified which should be standardized in a uniform manner by
extending the current approved standards and draft specifications. This should in turn facilitate
the rapid implementation of interoperable spatiotemporal data cube capabilities within various
technologies and spur further innovation.

I I .D. Requirements addressed

In the Testbed-17 GDC task, the participants addressed requirements for defining an OGC API
for Geo Data Cubes, leveraging existing building blocks, which would support:

• access and processing in the cloud,

• data discovery and querying information of diverse collections of data,

• interoperability with STAC, registries & catalogs,

• interoperability of data formats and access methods,

• interoperability across different cloud providers,

• interoperable workflows,

• machine learning for detection from Earth Observation imagery and deriving insights from
spatiotemporal data, and

OPEN GEOSPATIAL CONSORTIUM 21-027 ix

• interoperability between different Geo Data Cubes and APIs.

I I .E. Motivation for defining a Geo Data Cube API

The motivation for defining a GDC API was to provide efficient access to data cubes, performing
analytics close to the data ranging from some simple aggregation and band arithmetic to more
complex algorithms, discovering data and analytics capabilities, as well as potentially integrating
visualization and analytics management capabilities. Such an API will enable the use of these
capabilities in client applications, allowing to derive useful insights from very large collections of
data, in particular multi-spectral Earth Observation imagery, which are an important source of
information in the context of solving global challenges such as climate change.

I I .F. Recommendations for future work

The GDC task demonstrated the value of the OGC API family of standards, including those
already approved (Features Part 1: Core & Part 2: CRS by reference, EDR, and Processes), and
those still in draft stage (e.g. Common Part 1: Core & Part 2: Geospatial Data, Features —
Part 3: Filtering, CQL2, Tiles, Coverages, Maps, DGGS, Records/STAC, Processes — Part 2:
Deploy, Replace, Update & Part 3 — Workflows & Chaining), and recommends prioritizing their
completion.

The importance of completing OGC API — Common — Part 1 & Part 2 as a framework for
integrating capabilities in particular is highlighted. For example, resolving some incompatibilities
that already identified with the EDR and OGC API — Common — Part 2 specifications. These
could be resolved, allowing to offer the same data cube using the EDR API plus additional access
mechanisms.

The role of the draft OGC API — Coverages specification as a baseline for describing data
cubes and providing a simple and convenient data access mechanism should be clarified. This
includes support for subsetting domain and range (fields / bands), and resampling. Further, this
also includes support for accessing coverage data as tiles, following a fixed pyramidal multi-
dimensional tiling scheme. Additional capabilities for filtering based on CQL expressions should
be considered as an extension for coverages.

If possible, an attempt should be made to re-align and harmonize the EDR specification’s
data description mechanism and its cube query with OGC API — Coverages. The analytics
capabilities defined in the Testbed 16 — DAPA specification should be integrated directly within
OGC API — Coverages and possibly OGC API — EDR as well as extensions rather than defining
a new specification. OGC should ensure separate OGC API standards do not re-define the
same capabilities with only superficial variations that could reduce interoperability. This also
introduces a significant burden on implementers of clients & services in terms of additional
standards to implement.

OPEN GEOSPATIAL CONSORTIUM 21-027 x

A Scenes API should be defined making it possible to support both a unified data cube while
providing direct access to the data and metadata of individual scenes, thereby enabling
integrated discovery, as well as scenes management capabilities.

Defining well-known processes expecting specific inputs — including a particular convenient
processing language — to facilitate flexible coverage processing should be considered.

The need for Executable Test Suites for the different OGC API standards was highlighted.

The value of defining a set of standardized OGC API building blocks as a GDC meta-standard
should be considered.

Further defining and leveraging the draft OGC API — Processes — Part 3: Workflows and Chaining
specification would support presentation of the results of analytics capabilities as a virtual data
cube and facilitating the integration of analytics capabilities in visualization clients, as well as
facilitating the integration of remote data cubes with processing algorithms. This should be an
important priority.

I I I KEYWORDS

The following are keywords to be used by search engines and document catalogues.

ogcdoc, OGC document, API, OpenAPI, OGC API, Coverage, Data Cube

OPEN GEOSPATIAL CONSORTIUM 21-027 xi

IV PREFACE

Attention is drawn to the possibility that some of the elements of this document may be the
subject of patent rights. The Open Geospatial Consortium shall not be held responsible for
identifying any or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any
relevant patent claims or other intellectual property rights of which they may be aware that
might be infringed by any implementation of the standard set forth in this document, and to
provide supporting documentation.

OPEN GEOSPATIAL CONSORTIUM 21-027 xii

V SECURITY CONSIDERATIONS

No security considerations have been made for this document.

OPEN GEOSPATIAL CONSORTIUM 21-027 xiii

VI SUBMITTING ORGANIZATIONS

The following organizations submitted this Document to the Open Geospatial Consortium
(OGC):

• Ecere Corporation

VI I SUBMITTERS

All questions regarding this document should be directed to the editor or the contributors:

NAME ORGANIZATION ROLE

Jérôme Jacovella-St-Louis Ecere Editor

Tony Hodgson Ethar, Inc. Contributor

Karri Ojala Solenix GmbH Contributor

Alexander Lais Solenix GmbH Contributor

Peng Yue Wuhan University Contributor

Martin Pontius 52°North GmbH Contributor

Eike Hinderk Jürrens 52°North GmbH Contributor

Sufian Zaabalawi 52°North GmbH Contributor

Joshua Lieberman OGC Contributor

Patrick Dion Ecere Contributor

Diego Caraffini Ecere Contributor

Fabio Govoni MEEO Contributor

Fan Gao Wuhan University Contributor

OPEN GEOSPATIAL CONSORTIUM 21-027 xiv

NAME ORGANIZATION ROLE

Shuaifeng Zhao Wuhan University Contributor

Colin Steinmann Ethar, Inc., Open AR Cloud Contributor

Nazih Fino Ethar, Inc., Open AR Cloud Contributor

Panagiotis (Peter) A.
 Vretanos CubeWerx Inc. Contributor

OPEN GEOSPATIAL CONSORTIUM 21-027 xv

1

NORMATIVE REFERENCES

OPEN GEOSPATIAL CONSORTIUM 21-027 16

1 NORMATIVE REFERENCES

The following documents are referred to in the text in such a way that some or all of their
content constitutes requirements of this document. For dated references, only the edition cited
applies. For undated references, the latest edition of the referenced document (including any
amendments) applies.

Clemens Portele, Panagiotis (Peter) A. Vretanos, Charles Heazel: OGC 17-069r3, OGC
API — Features — Part 1: Core. Open Geospatial Consortium (2019). http://
docs.opengeospatial.org/is/17-069r3/17-069r3.html

Clements Portele, Panagiotis (Peter) A. Vretanos: OGC 18-058, OGC API — Features — Part 2:
Coordinate Reference Systems by Reference. Open Geospatial Consortium (2020).
https://docs.ogc.org/is/18-058/18-058.html

Peter Baumann: OGC 17-089r1, OGC Web Coverage Service (WCS) 2.1 Interface Standard —
Core. Open Geospatial Consortium (2018). http://docs.opengeospatial.org/
is/17-089r1/17-089r1.html

Matthias Mueller: OGC 14-065r2, OGC® WPS 2.0.2 Interface Standard: Corrigendum 2.
Open Geospatial Consortium (2018). http://docs.opengeospatial.org/
is/14-065/14-065r2.html

OGC API — Environmental Data Retrieval Standard, https://www.opengis.net/doc/IS/ogcapi-
edr-1/1.0

OGC API — Processes — Part 1, https://docs.ogc.org/is/18-062r2/18-062r2.html

OGC: OGC 07-011, Topic 6 — Schema for coverage geometry and functions. Open Geospatial
Consortium (2007). https://portal.ogc.org/files/?artifact_id=19820

Peter Baumann, Eric Hirschorn, Joan Masó: OGC 09-146r6, OGC Coverage Implementation
Schema. Open Geospatial Consortium (2017). http://docs.opengeospatial.org/
is/09-146r6/09-146r6.html

Joan Masó: OGC 17-083r2, OGC Two Dimensional Tile Matrix Set. Open Geospatial Consortium
(2019). http://docs.opengeospatial.org/is/17-083r2/17-083r2.html

Matthew Purss: OGC 15-104r5, Topic 21 — Discrete Global Grid Systems Abstract Specification.
Open Geospatial Consortium (2017). http://docs.opengeospatial.org/
as/15-104r5/15-104r5.html

OPEN GEOSPATIAL CONSORTIUM 21-027 17

http://docs.opengeospatial.org/is/17-069r3/17-069r3.html
http://docs.opengeospatial.org/is/17-069r3/17-069r3.html
https://docs.ogc.org/is/18-058/18-058.html
http://docs.opengeospatial.org/is/17-089r1/17-089r1.html
http://docs.opengeospatial.org/is/17-089r1/17-089r1.html
http://docs.opengeospatial.org/is/14-065/14-065r2.html
http://docs.opengeospatial.org/is/14-065/14-065r2.html
https://www.opengis.net/doc/IS/ogcapi-edr-1/1.0
https://www.opengis.net/doc/IS/ogcapi-edr-1/1.0
https://docs.ogc.org/is/18-062r2/18-062r2.html
https://portal.ogc.org/files/?artifact_id=19820
http://docs.opengeospatial.org/is/09-146r6/09-146r6.html
http://docs.opengeospatial.org/is/09-146r6/09-146r6.html
http://docs.opengeospatial.org/is/17-083r2/17-083r2.html
http://docs.opengeospatial.org/as/15-104r5/15-104r5.html
http://docs.opengeospatial.org/as/15-104r5/15-104r5.html

2

TERMS, DEFINITIONS AND
ABBREVIATED TERMS

OPEN GEOSPATIAL CONSORTIUM 21-027 18

2 TERMS, DEFINITIONS AND ABBREVIATED
TERMS

This document uses the terms defined in OGC Policy Directive 49, which is based on the
ISO/IEC Directives, Part 2, Rules for the structure and drafting of International Standards. In
particular, the word “shall” (not “must”) is the verb form used to indicate a requirement to be
strictly followed to conform to this document and OGC documents do not use the equivalent
phrases in the ISO/IEC Directives, Part 2.

This document also uses terms defined in the OGC Standard for Modular specifications
(OGC 08-131r3), also known as the ‘ModSpec’. The definitions of terms such as standard,
specification, requirement, and conformance test are provided in the ModSpec.

For the purposes of this document, the following additional terms and definitions apply.

2.1. Terms and definitions

2.1.1. cell

unit of a coverage’s domain set (potentially spanning multiple direct positions), of a fixed
resolution in the case of gridded coverages, for which a specific set of range values (e.g. a pixel
in an image, or a set of measurements) is returned

2.1.2. collection

(in the context of OGC API specifications) resource consisting of geospatial data that may be
available as one or more sub-resource distributions that conform to one or more OGC API
standards.

(SOURCE: https://github.com/opengeospatial/ogcapi-common/issues/140#issuecomment-
642239475)

(in a general computer science context) grouping of some variable number of data items
(possibly zero) that have some shared significance to the problem being solved and need to be
operated upon together in some controlled fashion

OPEN GEOSPATIAL CONSORTIUM 21-027 19

https://portal.ogc.org/public_ogc/directives/directives.php
https://portal.opengeospatial.org/files/?artifact_id=34762
https://github.com/opengeospatial/ogcapi-common/issues/140#issuecomment-642239475
https://github.com/opengeospatial/ogcapi-common/issues/140#issuecomment-642239475

(SOURCE: https://en.wikipedia.org/wiki/Collection_(abstract_data_type))

2.1.3. coordinate reference system

coordinate system that is related to the real world by a datum

(SOURCE: ISO 19111:2019 Geographic information — Referencing by coordinates)

2.1.4. coordinate reference system

coordinate system that is related to the real world by a datum term name (source: ISO 19111)

2.1.5. coverage

feature that acts as a function to return values from its range for any direct position within its
spatio-temporal domain

2.1.6. data cube

multi-dimensional data store

Multi-dimensional (n-D) array of values

(SOURCE: OGC 18-095r7)

Note 1 to entry: The term is also sometimes used to refer to a service or platform providing
access to such data cube, or to a federation of such services or platforms.

Note 2 to entry: Even though it is called a ‘cube,’ it can be 1- dimensional, 2-dimensional, 3-
dimensional, or higher-dimensional. The dimensions may be coordinates or enumerations, e.g.,
categories.

OPEN GEOSPATIAL CONSORTIUM 21-027 20

https://en.wikipedia.org/wiki/Collection_(abstract_data_type

2.1.7. dataset

A dataset is a collection of data, published or curated by a single agent. Data comes in many
forms including numbers, words, pixels, imagery, sound and other multi-media, and potentially
other types, any of which might be collected into a dataset.

(SOURCE: W3C Data Catalog Vocabulary (DCAT) — Version 2, 2020)

Note 1 to entry: There is an important distinction between a dataset as an abstract idea and a
distribution as a manifestation of the dataset

2.1.8. data store

A data store is a repository for persistently storing and managing collections of data which
include not just repositories like databases, but also simpler store types such as simple files,
metadata, models, etc.

(SOURCE: https://www.information-management.com/glossary/d.html:2020)

2.1.9. direct position

position described by a single set of coordinates within a coordinate reference system

(SOURCE: OGC Abstract Topic 6 — Schema for coverage geometry and functions)

2.1.10. domain

well-defined set [ISO/TS 19103]

(SOURCE: OGC Abstract Topic 6 — Schema for coverage geometry and functions)

Note 1 to entry: Domains are used to define the domain and range of operators and functions.

OPEN GEOSPATIAL CONSORTIUM 21-027 21

https://www.w3.org/TR/vocab-dcat-2/
https://www.information-management.com/glossary/d.html:2020

2.1.11. elevation

synonym for “height”

(SOURCE: Clause 4.16 of ISO/TS 19159:2016, https://www.iso.org/obp/ui/#iso:std:iso:ts:
19159:-2:ed-1:v1:en)

2.1.12. geo data cube

a data cube for which some dimensions are geospatial (e.g. latitude and longitude, or projected
easting and northing; elevation above the WGS84 ellipsoid)

A (geo) data cube is a discretized model of the earth that offers estimated values of certain
variables for each partition of the Earth’s surface called a cell. A data cube instance may provide
data for the whole Earth or a subset thereof. Ideally, a data cube is dense (i.e., does not include
empty cells) with regular cell distance for its spatial and temporal dimensions. A data cube
describes its basic structure, i.e., its spatial and temporal characteristics and its supported
variables (also known as ‘properties’), as metadata. It is further defined by a set of functions.
These functions describe the available discovery, access, view, analytical, and processing
methods that are supported to interact with the data cube.

(Source: OGC 21-067)

Note 1 to entry: From a functionality perspective, it can be considered a multi-dimensional field
including spatial dimensions, and often temporal dimensions as well (much like a coverage).

Note 2 to entry: As documented in OGC 21-067, this definition was proposed as an outcome of
a Workshop and is thus still the subject of discussion.

2.1.13. height

Distance of a point from a chosen reference surface measured upward along a line perpendicular
to that surface.

(SOURCE: ISO 19111:2019 Geographic information — Referencing by Coordinates)

Note 1 to entry: A height below the reference surface will have a negative value, which would
embrace both gravity-related heights and ellipsoidal heights.

OPEN GEOSPATIAL CONSORTIUM 21-027 22

https://www.iso.org/obp/ui/#iso:std:iso:ts:19159:-2:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:ts:19159:-2:ed-1:v1:en

2.1.14. job

instance of a process execution

2.1.15. metadata

information about a resource.

(SOURCE: ISO 19115-1:2014)

Note: The US National System for Geospatial Intelligence (NSG) Metadata Foundation (NMF)
Version 3.0 defines metadata as information that captures the characteristics of a resource to
represent the ‘who’, ‘what’, ‘when’, ‘where’, ‘why’, and ‘how’ of that resource.

2.1.16. platform

computer hardware, software and/or network services providing a set of defined capabilities

2.1.17. process

series of computing operations to be executed, which may produce one or more output (and/or
result in some other side effects), and may take one or more inputs.

2.1.18. range

(coverage) set of feature attribute values associated by a function with the elements of the
domain of a coverage

(SOURCE: OGC Abstract Topic 6 — Schema for coverage geometry and functions)

OPEN GEOSPATIAL CONSORTIUM 21-027 23

https://nsgreg.nga.mil/doc/view?i=4252&month=10&day=22&year=2019
https://nsgreg.nga.mil/doc/view?i=4252&month=10&day=22&year=2019

2.1.19. resource

identifiable asset or means that fulfills a requirement

(SOURCE: ISO:19115-1:2014 Geographic information — Metadata — Part 1: Fundamentals)

Note 1 to entry: A web resource, or simply resource, is any identifiable thing, whether digital,
physical, or abstract.

2.1.20. slice

subset of a coverage for a single coordinate along a dimension axis, for which the resulting
coverage is reduced by one dimension

2.1.21. subsetting

operation whose result is a subset of the original set (e.g. trim or slice operations on a coverage)

2.1.22. tile

geometric shape with known properties that may or may not be the result of a tiling
(tessellation)process. A tile consists of a single connected “piece” without “holes” or
“lines” (topological disc).

(SOURCE: OGC 19-014r1: Core Tiling Conceptual and Logical Models for 2D Euclidean Space)

Note 1 to entry: “tile” is NOT a packaged blob of data to download in a chunky streaming
optimization scheme!

2.1.23. tiling

in mathematics, a tiling (tessellation) is a collection of subsets of the space being tiled, i.e. tiles
that cover the space without gaps or overlaps.

OPEN GEOSPATIAL CONSORTIUM 21-027 24

(SOURCE: OGC 19-014r1: Core Tiling Conceptual and Logical Models for 2D Euclidean Space)

2.1.24. trim

subset of a coverage between lower and upper bound coordinates along a dimension axis which
does not reduce the dimensionality of the resulting coverage

2.1.25. workflow

sequence of processes (whether local or remote) to be executed, possibly with pre-defined and/
or external input values, whose output(s) may serve as input(s) to subsequent processes part of
the same workflow, whereas those subsequent processes have a dependency on the completion
of the operations generating their inputs.

Note 1 to entry: The workflow as a whole may itself take inputs and generate outputs, and may
also be encapsulated as a single process.

Note 2 to entry: A workflow (or part of it) may be executed in a distributed manner (e.g. for
specific area and/or resolution of interest) if some or all processes involved can be computed in
a localized manner.

2.2. Abbreviated terms

ADES Application Deployment Execution System

API Application Programming Interface

COG Cloud Optimized GeoTIFF

CRS Coordinate Reference System

CWL Common Workflow Language

DEM Digital Elevation Model

DGGS Discrete Global Grid System

EO Earth Observation

ESA European Space Agency

OPEN GEOSPATIAL CONSORTIUM 21-027 25

EVI Enhanced Vegetation Index

FOSS Free and Open Source Software

GDAL Geospatial Data Abstraction Library

GDC Geo Data Cube

GPKG GeoPackage

GPU Graphical Processing Unit

JSON JavaScript Object Notation

LoD Level of Detail

ML Machine Learning

MOAW Modular OGC API Workflows

NDVI Normalized Difference Vegetation Index

NRCan Natural Resources Canada

OGC Open Geospatial Consortium

STAC SpatioTemporal Asset Catalog

TIE Technology Integration Experiment

TIFF Tagged Image File Format

TMS Tile Matrix Set

UML Unified Modeling Language

OPEN GEOSPATIAL CONSORTIUM 21-027 26

3

INTRODUCTION

OPEN GEOSPATIAL CONSORTIUM 21-027 27

3 INTRODUCTION

Section 4 introduces the concept of a Geo Data Cube. It describes the situation prior to the
Testbed-17 work and discusses the requirements set by the sponsoring organizations.

Section 5 discusses the approach to standardizing a GDC API. This includes exploring different
OGC API specifications selected for experimentation during the Testbed. These APIs included
OGC API — Common, OGC API — Coverages and OGC API — Processes. These current and draft
API standards form the basis for the GDC API. Additional specifications providing a basis for the
GDC API include the OGC API — Environmental Data Retrieval standard, as well as the draft Data
Access and Processing API (DAPA) specification and the draft OGC API — Records specification.
These additional specifications could also be integrated within this framework.

Section 6 describes the experimentation and results pertaining to the integration and use of a
Machine Learning model within a GDC API.

Section 7 provides an overview of the GDC API services developed and improved for the
Testbed-17 GDC task.

Section 8 provides an overview of the GDC API clients developed and improved for the
Testbed-17 GDC task, also relating experiences with the use of Augmented Reality and GeoPose
together with a GDC API.

Section 9 lays out a path forward for standardization of a GDC API.

Annex A selects GDC API capabilities consisting of current and draft OGC API standards and
conformance classes implemented by the Testbed participants.

Annex B summarizes the Technology Integration Experiments conducted between the different
server and client components.

OPEN GEOSPATIAL CONSORTIUM 21-027 28

4

GEO DATA CUBE
CONCEPTS

OPEN GEOSPATIAL CONSORTIUM 21-027 29

4 GEO DATA CUBE CONCEPTS

This chapter introduces the concept of a Geo Data Cube and the requirements provided by
sponsoring organizations guiding this initiative. Literature consulted to inform these concepts
includes

• reports from past OGC initiatives (OGC 21-013 OGC 21-008 OGC 20-016 OGC 20-025r1
OGC 20-035 OGC 20-018 OGC 20-039r2 OGC 20-041 OGC 20-091 OGC 20-073 OGC
19-070 OGC 19-027r2 OGC 19-026 OGC 18-038r2 OGC 18-049r1 OGC 18-050r1 OGC
18-046),

• an OGC community best practice (OGC 18-095r7),

• an OGC discussion paper (OGC 21-033),

• articles (datacubeManifesto viewBasedModelDataCube doiPavingIncreased
copernicusEarthSystem),

• documentation for data cubes and APIs (openEOAPI sentinelhubAPI up42Doc
climateDataStoreAPI roocsTools earthSystemDataCube), as well as

• Wikipedia entries (wikiDataCube wikiOLAPcube).

4.1. What is a Geo Data Cube?

Before considering what functionality a Geo Data Cube (GDC) API should provide, clarifying
what is meant by a Geo Data Cube is important:

• A data cube is a multi-dimensional (“n-D”) array of values (OGC 18-095r7).

• A data cube persistently stores and provides efficient access to multi-dimensional
information (although this is not meant to exclude one-dimensional information).

• A Geo Data Cube is a data cube for which some dimensions are geospatial in nature (such
as latitude and longitude, projected easting and northing, or elevation above the WGS84
ellipsoid).

• In terms of functionality, a geo data cube can be considered a multi-dimensional field
including spatial dimensions, and often temporal dimensions as well.

Conceptually, this is essentially the same as a coverage as defined in ISO 19123 / OGC Abstract
Topic 6:

• A coverage is a feature that acts as a function to return values from its range for any direct
position within its spatiotemporal domain (OGC 07-011).

OPEN GEOSPATIAL CONSORTIUM 21-027 30

Where a Geo Data Cube is established on the basis of a coverage, it may be referred to as
a Geospatial Coverage Data Cube. Section 4.2 of the Community Practice (OGC 18-095r7)
provides a definition of the term Geospatial Coverage Data Cube. For the purpose of this ER, the
term Geospatial Coverage Data Cube is considered a specialization of the term Geo Data Cube.

An API may offer access to information from a particular dataset organized as separate data
cubes. Each cube could, for example, represent a different type of information, or a different
imagery product or collection, and provide an integrated access to these multiple data cubes.
Each of these GDCs would be equivalent to an individual coverage in the draft OGC API —
Coverages specification and to a collection in the draft OGC API — Common — Part 2: Geospatial
Data specification as well as in the other OGC API standards and draft specifications for data
access (Features, Tiles, Maps, EDR…).

The data cube and Geo Data Cube terms are also sometimes used to refer to a service or
platform providing access to such data cubes, or to a federation of such services or platforms.
For the purpose of this ER, unless explicitly stated otherwise a GDC refers to a single collection
of multi-dimensional data.

This figure from openEO illustrates a multidimensional data cube:

Figure 1 — Illustration of a data cube with multiple imagery bands and time axis

NOTE: The focus of openEO is developing an open API to connect R, Python, JavaScript and
other clients to big Earth observation cloud back-ends in a simple and unified way.

4.2. Goals of a Geo Data Cube API

In addition to providing efficient access to the data, a GDC API may also enable performing
analytics close to the data. Analytics could range from simple aggregation and arithmetic to
more complex algorithms such as machine learning predictions. A GDC API may also allow
discovering data or processing capabilities available either from within the same API or
elsewhere.

There may also be interest in integrating visualization and/or data or analytics management
capabilities in some deployments.

OPEN GEOSPATIAL CONSORTIUM 21-027 31

https://openeo.org/

The purpose of an OGC GDC API is to enable the use of these capabilities in client applications
to derive useful insights from very large collections of data, in particular multi-spectral imagery
routinely collected by Earth Observation satellites such as the US Landsat, EU Sentinel-2 and
Canadian RADARSAT. Such insights are of particular importance in the context of solving global
challenges like climate change.

4.2.1. Needs of end-users and application developers

Two main categories of users must be considered in the design of an OGC GDC API. The first
category is that of end-users, such as climate researchers. These end-users are less concerned
with the technical aspects of the API as they will likely be using the API indirectly through client
applications. Their primary concern is that a standardized GDC API enables interoperability
between multiple client applications and services providing datasets and analytics for a common
baseline of functionalities meeting their needs. However, server-side OGC API implementations
are also intended to be directly accessible by end-users, such as implementing an HTML
representation of resources which may readily offer a minimum amount of functionality typical
of a client. This should be considered in the design to ensure that it is possible to present the
API in a user-friendly manner.

The second category of users is the developers. Developers, who will be using the GDC API
to build client applications, are the primary users of the API. These users expect a uniform API
that can be used with different services and datasets. They are concerned primarily with the API
providing the functionality needed for their application. The ease with which they can learn how
to access that functionality and how interoperable and efficient this functionality is in different
implementations of the API is also important.

Finally, the back-end developers, although technically not users of the API, must implement the
API functionality and are often concerned with the amount of effort required to understand and
develop a service conforming to the API specification, with how easy it is to map each operation
to their capabilities to provide access to data and analytics, and how possible it is to efficiently
map this functionality.

Clearly, all of these targeted users and developers desire a convenient, simple and uniform API.
Several of the OGC APIs being considered for use in the GDC API are still at a draft stage. If
these draft APIs do not currently satisfy requirements for convenience, simplicity and uniformity,
attempts should be made to improve them to address those needs. This approach is better
than defining yet another completely distinct API that would further fragment the OGC API
standards base and reduce interoperability.

4.2.2. Requirements from sponsors

From the Testbed 17 Call for Participation, the following sponsor requirements for the Geo Data
Cube API task were identified:

• Define an OGC API leveraging existing building blocks for Geo Data Cubes.

• Support access and processing in the cloud.

OPEN GEOSPATIAL CONSORTIUM 21-027 32

• Support data discovery and querying information of diverse collections of data, including
spatial and temporal resolution, interoperability with STAC, registries and catalogs.

• Support interoperability of data formats and access methods: Cloud Optimized GeoTIFF
which supports direct HTTP range requests, OGC WxS, OGC APIs.

• Support interoperability across different cloud providers.

• Support interoperable workflows for terrestrial & marine elevation, forestry information
that can:

• Process / extract information from forestry imagery;

• Handle formats that enable interoperability such as for images/point clouds;

• Derive insights & change prediction from spatiotemporal data.

• Support interoperability between different Geo Data Cubes / APIs, as well as between
GDC API and offline.

• Support integration of terrestrial & marine elevation data from separate Geo Data Cubes.

• Support for integration with advanced technology such as Machine Learning.

4.2.3. Data access

A GDC API should support accessing different types of data. Examples are data cubes for regular
and irregular gridded raster data and data defined by vector features geometries of different
dimensionality (including point clouds with a large number of points). The domain of the data
cube should be capable of supporting one or more spatial and/or temporal dimensions, and
possibly additional types of dimensions.

The values associated with a direct position in the data cube (range values in coverages
terminology) should support both discrete (e.g. land cover category) and continuous (e.g.
radiance) observed properties (e.g. the bands / sensor type in EO imagery).

During the GDC work in Testbed-17, some confusion was noted as to what should be presented
as a field / property / value of the range vs. what should be presented as an axis of the domain.
Topic 6 of the OGC Abstract Specification makes a clear distinction between the two. A
dimension is part of the direct position for which values are available, and must be defined
in the Coordinate Reference System (CRS) for the overall domain. Most often dimensions are
limited to the spatiotemporal domain. Another use case for an additional dimension would be
a parameter for which properties were observed at several different values or at a continuous
range of values, throughout the other aspects (e.g. spatiotemporal) of the domain.

A data cube may itself be made up of smaller data cube pieces (e.g. imagery scenes or granules).
Having the GDC API providing direct access to these scenes would be useful. This could enable
an application to more accurately reflect the original data characteristics of those scenes making
up the data cube. An example is supporting their native CRS (e.g. Universal Transverse Mercator

OPEN GEOSPATIAL CONSORTIUM 21-027 33

https://portal.ogc.org/files/?artifact_id=19820

(UTM) coordinate system zones in Landsat-8) while providing an easier-to-access unifying data
cube for the different scenes through a single CRS and a fixed resolution.

Describing these aspects of the data and providing convenient and efficient access to it in its
raw form are two key capabilities for a GDC API.

Figure 2 — Figure from openEO showing layers of
a data cube across imagery bands and time axis.

4.2.3.1. Data description

A GDC API needs a mechanism to describe the domain (e.g. the spatiotemporal extent) and
the range (the type of values, or observed properties, or fields) defined for each direct position
within the data cube. For describing the domain, one or more CRS must be clearly identified and
associated with the axes to fully cover the spatiotemporal continuum of the data. For regular
axes of a grid, a resolution must be specified, while for irregular axes of a grid, direct positions
must be enumerated along the axis.

For describing the range, a list of fields must be enumerated, each ideally annotated with a
semantic association, a unit of measure and additional metadata if appropriate. Statistics for the
values found in the data cube for each field would also be very useful information, as well as

OPEN GEOSPATIAL CONSORTIUM 21-027 34

clarifications as to how the data is encoded (e.g. for encodings where it is not possible to provide
these additional clarifications internally).

4.2.3.2. Data retrieval

A GDC API needs a simple mechanism to retrieve data in convenient encodings, without
imposing a particular logical data model on those physical encodings.

Although retrieving an entire data cube as a single operation is possible, a common use case
is to retrieve only a certain portion of interest. This is often a particular spatial area which also
corresponds to a useful resolution (native resolution for small areas, but down-sampled for larger
areas), resulting in a constant maximum response size. Support for retrieving only part of the
data is critical for large collections of data for which retrieving everything is unnecessary and
a waste of processing and bandwidth resources at both ends of the API, and often impractical
or impossible. Such subsetting and down-sampling capability can be implemented efficiently
with backing data stores supporting overviews / tile pyramids, as in Cloud Optimized GeoTIFF
(COG) and Tile Matrix Sets (OGC 17-083r4). Directly exposing the multi-resolution tiles through
the API to clients may improve performance by aligning requests with the data store’s internal
organization, and thus enable efficient caching of responses on both the server and client side.
Requesting a subset of a temporal dimension may also be a desirable capability.

In coverages terminology, a subsetting operation reducing dimensions (e.g. from 3D space +
time to 2D space only) is called slicing. A subsetting operation preserving the same number of
dimensions is called trimming (i.e. requesting a range of values for each axis in the subsetting
operation). A GDC API may also support supersampling, but this is of less value for accessing
raw data as it wastes bandwidth and processing resources, and could always be done on the
client-end if necessary. However, supersampling may be necessary to present a data cube of a
uniform resolution where the resolution of the data source in fact is variable.

Additionally, a client may only be interested in requesting values only for some of the range
(observed properties / fields, e.g. specific imagery bands of interest).

OPEN GEOSPATIAL CONSORTIUM 21-027 35

https://www.cogeo.org/

Figure 3 — Figure from openEO illustrating data trimming by time, range
subsetting (selecting a single band) and intersection with a spatial area.

OPEN GEOSPATIAL CONSORTIUM 21-027 36

Figure 4 — Figure from openEO illustrating data slicing, reducing dimensions of the data.

Figure 5 — Figure from openEO illustrating temporal resampling.

OPEN GEOSPATIAL CONSORTIUM 21-027 37

Figure 6 — Figure from openEO illustrating spatial resampling.

The participants also discussed the need for more advanced data filtering capabilities. Examples
are returning only portions of the data by comparing values from particular fields (e.g. Quality
of data band with cloud cover information) and/or properties of metadata (e.g. cloud cover)
associated with a particular scene as a whole (for coarser but faster filtering). This is particularly
useful in the context of reducing dimensionality such as when wishing to retrieve a cloud-free
2D mosaic comprised of multiple EO imagery scenes, from the same spatiotemporal data cube,
which were captured closest to or before a specific slicing time.

Another use case, of particular relevance to meteorology for example, is subsetting data based
on more complex patterns, such as trajectories or corridors, providing the API with a detailed
geometry of the area of interest and retrieving only relevant values.

In a sense, these advanced retrieval capabilities such as filtering, re-sampling and even
subsetting to some extent could be considered a form of simple analytics. They are discussed
here because they still integrate well within a data retrieval request. This is because they can
be expressed as simple query parameters and combined together, with the resulting response
sharing many of the characteristics of a plain request for the original data.

4.2.4. Analytics

The ability to perform data analytics close to the data is an important capability of a GDC API,
improving performance, saving bandwidth, time and costs. The participants noted that the
community has struggled so far in defining and adopting a simple and interoperable approach to
analytics, with several implementors coming up with their own approach.

A comprehensive GDC API should cover both simple analytics such as aggregation over time
or band arithmetic calculations (e.g. for vegetation index calculation), as well as more complex
analytics such as prediction from machine learning.

Commonly accessed and simple to express analytics capabilities should be very simple and
convenient to use.

OPEN GEOSPATIAL CONSORTIUM 21-027 38

For simple cases such as aggregation and band arithmetic calculations, it may be possible to
standardize a simple language to express those aspects which could also be integrated with
data retrieval requests. For slightly more complex analytics, the concept of a well-known
process, standardized to expect a specific set of inputs and return a specific type of output,
might be useful. Some well-known processes could be defined to expect a particular language
defining the analytics to perform expressed in popular raster expression or coverage processing
languages adopted by particular communities. Others could be defined to implement specific
algorithms, such as calculation of the Normalized Difference Vegetation Index (NDVI) or contour
generation. Other examples of well-known processes previously experimented with in the
context of OGC APIs include for example calculating a route OGC 21-000 and rendering a map.

4.2.5. Discovery

In the context of using a single API to discover and access data, a large number of data cubes
may be available which could be filtered based on specific aspects (e.g. spatial or temporal
extent, resolution, sensor types). Also if a single data cube is made up of several scenes, which
typically also have associated metadata, it would be useful to query for scenes of interests,
possibly directly integrated as part of data retrieval requests. Similarly, discovering relevant
algorithms from a large set of analytics capabilities available would be very useful. Establishing
which data cubes and which algorithms can be used together is also of great interest. The
possibility to catalog data and algorithms, as well as provide the ability to discover relevant data
and analytics capabilities, would also be very useful for end-users.

4.2.6. Visualization

Although not an essential capability because clients can implement their own visualization
capabilities with better performance and using less bandwidth, a GDC API implementation could
also decide to provide access to server-side visualization capabilities. However with the ubiquity
of Graphical Processing Units (GPUs) in modern hardware, leaving visualization to the client has
many benefits. The HTML representation for the raw data resources of a GDC API could still
incorporate visualization capabilities, without requiring the definition of those capabilities in the
API itself.

4.2.7. Managing data and algorithms

The ability to manage data and algorithms is not necessarily a capability required by end-users,
especially if the GDC API supports the creation of ad-hoc workflows referencing arbitrary data
sources and processes (as researched in the Modular OGC API Workflows project and defined in
OGC API — Processes — Part 3). However, this is a useful capability allowing larger organization
or multiple parties to manage and maintain data cubes.

OPEN GEOSPATIAL CONSORTIUM 21-027 39

https://github.com/opengeospatial/ogcapi-routes/blob/master/proposals/clause_8_ogcapi_processes.adoc
https://github.com/opengeospatial/ogcapi-maps/issues/42

4.3. Nature of a Geo Data Cube API

While providing most of the functionality for the GDC API with existing or currently ratified
OGC APIs is possible, specific cases may require complex queries or specific processes being
available on a particular server. The goal of the GDC API is the common functional baseline
across different servers, which enables common capabilities for multiple distributions and data
sources. By providing this common functionality, GDC API implementations can close functional
gaps between different internal backends.

By using the existing OGC standards and OGC APIs “behind the scenes”, it is also very likely
and desired by implementers to reuse existing processing algorithms and other infrastructure
in order to provide the GDC capabilities. The current and draft OGC API Standards are highly
flexible in terms of data access, processing, dynamic registration and clear discovery of data and
functionality. When paired with a well-defined minimum set of functionality for the GDC API,
there is room for reuse of components for filling functional gaps and room for competition for
larger-scale processing, integration of old and new data sources and implementation diversity.

OPEN GEOSPATIAL CONSORTIUM 21-027 40

5

AN API FOR GEO DATA
CUBES

OPEN GEOSPATIAL CONSORTIUM 21-027 41

5 AN API FOR GEO DATA CUBES

5.1. OGC API framework for providing GDC capabilities

The Geo Data Cube API is proposed as a profile with extensions of the OGC API standards
baseline enabling efficient discovery, access and analytics capabilities for use with multi-
dimensional geospatial data.

Since the OGC API baseline already provides most of the required capabilities for defining the
GDC API, the participants considered leveraging existing OGC API approved standards and draft
specifications as potential building blocks. Some desired capabilities currently missing or not yet
fully specified were identified. New extensions to be further defined are proposed as additional
OGC API building blocks.

A limited selection of these current and/or future building blocks should provide coherent
and convenient access to multi-dimensional data sets, as well as frequently used analytics
capabilities (e.g. resampling, filtering, pre-defined processes), from different providers. These
building blocks could also be implemented as a façade to integrate other, possibly distributed,
implementations of these same building blocks. Alternatively, a façade could also be built on top
of other pre-existing types of data sources, such as WxS compliant services (in particular the
Web Coverage Services (WCS) and the Web Processing Service (WPS)) or static HTTP servers
offering Cloud Optimized GeoTIFF (COG) with support for HTTP range requests.

The following diagram illustrates the GDC API architecture showing how multi-dimensional data
can be:

• stored in a variety of backends such as databases, local files and cloud-based object
storage,

• indexed for discovery and efficiency using e.g. spatial indexes, tile pyramids, and Discrete
Global Grid Systems,

• represented as a Geo Data Cube resource corresponding to the spatiotemporal field (as
well as the OGC API — Common — Part 2: Geospatial data collection and often to a coverage),

OPEN GEOSPATIAL CONSORTIUM 21-027 42

• transformed by performing operations such as:

• resampling to better suit the resolution of interest,

• subsetting along axes for the area or time of interest,

• aggregation in different ways across one or more dimensions,

• filtering based on range values, scene metadata, or spatiotemporal comparisons with
supplied geometry or other data sources,

• band arithmetic calculations creating new values based on existing ones,

• processing algorithms which are pre-defined, customizable via expressions or a
processing language, or by custom user-deployed processes,

• complex workflows either pre-registered or supplied by clients in an ad-hoc manner by
referencing local or remote processes and data cubes,

• queried by data access mechanisms specified in OGC API building blocks specifications
which defines and triggers those transformations, and

• returned as outputs to the end-user in a negotiated suitable format.

The draft OGC API — Processes — Part 3: Workflows & Chaining specification enables the chaining
of data cubes as an input to processes and the output of a process to be presented as a data
cube resource, including between remote processes and data cubes distributed across federated
services.

OPEN GEOSPATIAL CONSORTIUM 21-027 43

Figure 7 — Geo Data Cube API Architectural Framework

The OGC API — Common specification provides a cohesive framework to integrate these
different building blocks into an API and a minimum capability to be implemented as part of a
GDC API. Part 1 of OGC API — Common (OGC 19-072) defines the concept of a landing page,
conformance declaration and API description. Part 2 (OGC 20-024) defines the listing and basic
description of available collection of spatiotemporal data.

5.2. Data access

A number of OGC API specifications enable efficient access to the raw values from a
spatiotemporal dataset:

• OGC API — Coverages,

• OGC API — Tiles,

• OGC API — Features,

OPEN GEOSPATIAL CONSORTIUM 21-027 44

http://docs.opengeospatial.org/DRAFTS/19-072.html
https://docs.ogc.org/DRAFTS/20-024.html

• OGC API — Environmental Data Retrieval (EDR) and

• Data Access & Processing API (DAPA).

As of March 4th, 2022, OGC API — Features and OGC API — EDR were approved OGC standards.
OGC API — Tiles is a draft specification nearing completion. OGC API — Coverages is a relatively
stable draft specification which has been proven to be interoperable through several successful
Technology Integration Experiments (TIEs) in previous initiatives. DAPA is in the form of an OGC
Testbed-16 Engineering Report.

Participants noted that although OGC API — EDR and DAPA define some new capabilities
not yet covered by OGC API — Coverages, functionality specific to data cube access overlaps
between the three. This overlap is especially in terms of describing the domain and range
(fields) of those data cubes and in requesting a potentially downsampled subset of the data.
This may be problematic within the OGC API framework where different building blocks should
be complementary rather than competing for adoption. Therefore, the testbed participants
recommend that some re-alignment be considered between OGC API — EDR and OGC API
— Coverages for the overlapping aspects (data description and cube queries), and that the
new functionality covered by DAPA be integrated within OGC API — EDR and/or OGC API —
Coverages rather than defining a whole new API that would further reduce interoperability by
fragmenting OGC API specifications.

Although an argument for separate EDR and DAPA standards is convenience and simplicity,
those are also goals of Coverages. The successful implementations built and the TIEs performed
in a short time towards the end of this initiative demonstrate that these goals were achieved
reasonably well. Furthermore, there is still a possibility to improve the Coverages specification
since it is still at a draft stage. Having to re-implement the same functionality multiple ways to
achieve interoperability with different systems will always introduce more complexity, regardless
of how simple an individual API happens to be.

5.2.1. OGC API — Coverages

The draft OGC API — Coverages OGC 19-087 specification defines building blocks for
describing and retrieving multi-dimensional data from a coverage. The Coverages API work is
based on Topic 6 of the OGC Abstract Specification (ISO 19123). A common type of coverage is
gridded (raster) data, but coverages are not limited to gridded data and can include, for example,
point clouds.

A description of a coverage’s DomainSet always includes a Coordinate Reference System, as well
as the lower and upper bound for which data can be retrieved. Coverage grids can either be
spaced regularly (described by a fixed resolution for a regular axis) or irregularly (in which case
positions along the irregular axis must be explicitly listed when describing the domain).

The fields (range values, e.g. the different bands available for imagery, or observed properties)
available for retrieval make up the RangeType, and include a name, a semantic link and a unit of
measure where applicable.

The description of the coverage’s DomainSet and RangeType are linked from the OGC API —
Common collection, and can be embedded within the collection description itself by using a

OPEN GEOSPATIAL CONSORTIUM 21-027 45

https://docs.ogc.org/DRAFTS/19-087.html
https://portal.ogc.org/files/?artifact_id=19820

JSONPointer. In addition to possibly being able to retrieve the entire raw data in a single request
at /coverage, additional conformance classes are defined in Part 1 — Core allowing to retrieve
only the area and resolution interest.

5.2.1.1. Subsetting

The subsetting conformance class supports retrieval of a subset of the whole coverage by
trimming (retrieving values between a lower and upper bound coordinates along an axis, which
maintain the same dimensionality) or by slicing (retrieving values for specific coordinates along
an axis, which reduces dimensionality) the coverage.

5.2.1.2. Scaling (re-sampling)

The scaling conformance class supports down-sampling or up-sampling data by defining a scale
factor, either for all axes or for an individual axis, or a desired number of resulting cells in the
response along specific dimensions.

5.2.1.3. Tiles

A conformance class for Coverage Tiles is defined, leveraging the OGC API — Tiles and 2D Tile
Matrix Sets specifications. A coverage tile request is equivalent to a coverage request with
specific combination of subsetting and scaling parameters.

5.2.1.4. Range subsetting

A range subsetting conformance class defines how only some of the fields can be selected for
retrieval, e.g. only a particular band or observed property.

5.2.1.5. Filtering

The Coverages API does not yet define filtering capabilities, but this was identified as a very
useful extension that could leverage the draft CQL2 specification that is being developed by the
Features API SWG. An issue was already filed on this topic. In addition to filtering based on the
range values themselves, filtering could also be done based on the metadata of scenes making
up the coverage. These queryables that can be used in a filter expression could all be described
together as in the filtering extension for OGC API — Features (Part 3). A sorting capability would
also be useful when flattening a 3D coverage (2D space + time) to a 2D image mosaic, so that
e.g. the scene and/or cell with the least cloud cover is what gets returned. An example of such a
request could look similar to:

/collections/landsat8/coverage?
filter=scene.CLOUD_COVER<30&sort=L8CloudCover(BQA)
(desc),scene.SCENE_CENTER_TIME(asc)

OPEN GEOSPATIAL CONSORTIUM 21-027 46

https://github.com/opengeospatial/ogcapi-coverages/issues/103

assuming content-negotiation for a 2D coverage format (e.g. GeoTIFF) and the server supports
flattening multiple ordered overlapping scenes to a 2D coverage, with L8CloudCover() a
function to grab the cloud cover for individual cells from the BQA band bits).

5.2.1.6. Varying resolution

The Coverage API does not currently support specifying different resolutions for different
areas or for different fields of a data cube. This may be useful for example in the context of
polar regions when using a CRS such as the EPSG:4326 CRS, or for a data cube made up of
different scenes which may be in a different CRS than the unified data cube, or for bands of
varying resolution such as the panchromatic bands in Landsat-8 which is twice the resolution of
other bands. The participants suggest that extensions be developed for these capabilities. For
example, Coverages API #142 proposes supporting bands of varying resolution by allowing a
range-subset query parameter on the domainset resource. Including a subset query parameter
when requesting the domainset could potentially also result in a resolution specific to the area
being subset. This approach shares similarity with the suggestion to support a crs parameter in
issue #129 for returning a domainset specific to that CRS.

5.2.1.7. Cloud Optimized GeoTIFF (COG)

In addition to providing a suitable back-end to facilitate support for the subsetting and scaling
conformance classes with tiles and overviews, an OGC API — Coverages implementation may
potentially expose its /coverage resource as a Cloud Optimized GeoTIFF with support for HTTP
range requests, as suggested in this comment.

5.2.2. OGC API — Tiles

The draft OGC API — Tiles specification (OGC 20-057) specifies how to retrieve data on a
tile-by-tile basis. The Tiles API is based on the 2D Tile Matrix Set and TileSet metadata draft
specification (OGC 17-083r4), which is a revision of the 2D Tile Matrix Set Standard. With
the Core conformance class of OGC API — Tiles, tiles can be retrieved according to registered
TileMatrixSets using a simple URL template with three variables: a tile matrix identifier (usually
a zoom level), a tile row and a tile column. The content of the tiles can be rendered map tiles, raw
gridded coverage values, vector features, or other things like point clouds or 3D meshes. The
TileSet conformance class adds support for describing a tileset by providing such a template,
indicating limits for these variables, a link to the TileMatrixSet definition, a URI for registered
TileMatrixSets, as well as additional metadata.

Having a pre-defined pyramidal tiling scheme as opposed to clients requesting arbitrary scale
factors and subsetting bounds facilitates caching on both the client & server side. For example,
different visualization clients panning and zooming in the same area would make the exact
same fewer requests only reaching the next binary zoom level or bringing in the next 256×256
pixels tiles, as opposed to potentially making misaligned requests for their exact viewport
configuration any time it changes.

OPEN GEOSPATIAL CONSORTIUM 21-027 47

https://github.com/opengeospatial/ogcapi-coverages/issues/142
https://github.com/opengeospatial/ogcapi-coverages/issues/129
https://github.com/opengeospatial/ogcapi-coverages/issues/93#issuecomment-983834192
https://docs.ogc.org/DRAFTS/20-057.html
https://docs.opengeospatial.org/DRAFTS/17-083r4.html

5.2.3. OGC API — Features

The OGC API — Features Standard specifies an API to retrieve vector features. Features
can be retrieved individually by ID, or as a feature collection up to a certain limit beyond
which pagination into multiple requests is necessary. The Core standard supports filtering by
intersection with a bounding box and or a temporal range. Part 2 of OGC API — Features is also
an approved standard defining supports for CRSes other than CRS84. Part 3 of OGC API —
Features (OGC 19-079r1) implements filtering capabilities. Future extensions may also define
the ability to create, replace, update and delete features, as well as to retrieve generalized
(simplified) and clipped features.

5.2.4. OGC API — Environmental Data Retrieval

OGC API — Environmental Data Retrieval (EDR) is an approved OGC Standard specifying
multiple ways to query a data cube, including for typical meteorological use cases such as data
along a trajectory or within a corridor. The Testbed-17 Participants did not implement support
for the EDR API, but performed a quick comparative analysis with other OGC API specifications
for accessing data cubes. EDR leverages building blocks of OGC API — Common Part 1 & 2.
However some discrepancies (see EDR issues #331, #332, and #333) were identified in how
the spatiotemporal extents are described which would have made it impossible to offer the
same collection of data through both OGC API — EDR and other draft specification or OGC API
standard (such as OGC API — Coverages, OGC API — Tiles, or OGC API — Features), unless the
collection of data (data cube) is declared as a separate collection resource. As a result of those
findings, the EDR SWG has corrected the standard to address most of those issues.

In order to resolve issue #332, the EDR SWG opted to introduce a property separate from
interval called values to describe the DomainSet of the collection of data. OGC API — EDR also
specifies a mechanism to describe the fields (RangeType) directly in the collection description,
which differs from the way it is being specified in Coverages. The participants also noted that
the cube query defined by OGC API — EDR overlaps greatly with the OGC API — Coverages
specification and its subsetting and scaling conformance classes, and that the two could perhaps
be harmonized and re-integrated, similarly to how OGC API — EDR references OGC API —
Features for its items query. Although OGC API — EDR defines several types of queries, it does
not define separate conformance classes for each of those queries. Splitting these into multiple
conformance classes stood out as something that could facilitate testing compliance or requiring
the capability for specific types of queries. Another observation was that the parameter-name
query parameter supporting the selection of properties to be returned (range subsetting) could
be defined the same way as properties= across OGC API — Features, OGC API — Coverages
and OGC API — EDR. An issue was filed to propose changing range-subset= to properties=
in Coverages. These aspects would greatly benefit from a re-alignment to maintain consistency
within the OGC API family of standards, and avoid re-defining the same functionality in different
ways.

OPEN GEOSPATIAL CONSORTIUM 21-027 48

https://docs.opengeospatial.org/is/17-069r3/17-069r3.html
https://docs.opengeospatial.org/is/18-058/18-058.html
http://docs.opengeospatial.org/DRAFTS/19-079.html
https://docs.ogc.org/DRAFTS/19-086.html
https://github.com/opengeospatial/ogcapi-environmental-data-retrieval/issues/331
https://github.com/opengeospatial/ogcapi-environmental-data-retrieval/issues/332
https://github.com/opengeospatial/ogcapi-environmental-data-retrieval/issues/333
https://github.com/opengeospatial/ogcapi-coverages/issues/157

5.2.5. Data Access & Processing API (DAPA)

The Data Access & Processing API (DAPA) Engineering Report (ER) (OGC 20-025r1) provides a
draft specification and documents work performed in the OGC Testbed-16 task. The DAPA ER
suggests a number of different designs for accessing data cubes. This includes:

• a capability to describe the fields of a data cube, overlapping with those defined in OGC
API — EDR (parameter names) and OGC API — Coverages (RangeType),

• point and area sampling capabilities, overlapping with similar capabilities in OGC API — EDR
and OGC API — Coverages,

• some filtering capabilities, similar to the proposed filtering extensions for coverages,

• the ability to query for data within a specified geometry also found in OGC API — EDR
queries using a geom query parameter (which could also be implemented as an extension
to OGC API — Coverages as proposed in issue #52),

• the ability to select fields / observable properties to be returned also found in the other
OGC APIs (those suggested to be unified as properties=), as well as

• some analytics capabilities covered in a separate section below. Rather than defining a
completely separate new API, the proposed capabilities not already present in OGC API —
EDR and OGC API — Coverages could instead be integrated in these core specifications or
in extensions. Testbed-17 participants did not get the chance to explore DAPA in details,
however Wuhan University initiated support for the API in its service.

5.2.6. Scenes API

Large data cubes such as those resulting from Earth Observation satellites that are constantly
capturing new data are often made up of individual scenes with more being added continuously.
Each of these individual scenes may be stored in a different native CRS (such as UTM zones)
and/or spatial resolution. The ability to present these multiple scenes as a unified data cube /
coverage, while still being able to directly access the individual scenes as well would prove
useful and forms the basis for proposing a Scenes API. This API would have both a data access
as well as a discovery aspect (of individual scenes of interest but from within a single collection /
coverage / data cube). As discussed above, preserving and exposing the metadata for these
scenes as queryables would also enable integrating scene discovery directly in a data request
(e.g. at /coverage), facilitating generating a cloud-free mosaic. This is an important use case for
which the SpatioTemporal Asset Catalog (STAC) has been used but without this suggested level
of integration. The management aspect of these scenes is discussed in a section below.

Two approaches were suggested for a Scenes API:

• One using hierarchical collections (e.g. /collections/landsat8 and /collections/
landsat8:LC81400402013123LGN01), which could work with the existing /collections/

OPEN GEOSPATIAL CONSORTIUM 21-027 49

https://docs.ogc.org/per/20-025r1.html
https://github.com/opengeospatial/ogcapi-coverages/issues/103
https://github.com/opengeospatial/ogcapi-coverages/issues/52
https://stacspec.org/
https://github.com/opengeospatial/ogcapi-common/issues/11#issuecomment-929712444

{collectionId}/coverage and OGC API — Records — Part 2: Collections extension (for
queries) to filter /collections, and

• One introducing /scenes/ where the coverage endpoint could be transported to /
collections/{collectionId}/scenes/{sceneId}/coverage and records queries could
also be made available at /collections/{collectionId}/scenes (in this case you would
get back a GeoJSON list of scenes, as with STAC & OGC API — Records — Part 1: Core).

This would still make it possible to access a unified (native) CRS84 coverage at /
collections/landsat8/coverage, while the native CRS for e.g. /collections/
landsat8:LC81400402013123LGN01/coverage (or /collections/landsat8/scenes/
LC81400402013123LGN01/coverage) would be in the original UTM zone CRS.

A Scenes API would facilitate serving while supporting the management, access and filtering
of the individual scenes making up a coverage. The discovery capability could also be fully
integrated within the data access itself (e.g. as a query parameter to a /coverage request). This
integrated discovery / data access capability could unlock a lot of potential functionality, such as
easily generating a cloud-free mosaic.

The pros and cons, as well as the challenges to resolve with each approach are as follows. None
of the drawbacks are seen as showstoppers, so either approach would be suitable.

5.2.6.1. Hierarchical Collections

PROS:

• OGC API — Coverages endpoint and OGC API — Records — Collections extension work out
of the box

• Obvious where to advertise supported CRS for individual scenes

CONS:

• Hierarchical Collections proposal not yet widely adopted in OGC APIs

• Endpoints for scenes/images CRUD slightly different from Testbed 15 Images API.

5.2.6.2. /scenes

PROS:

• Greater similarity with Testbed 15 Images API

• Concept of Scenes more explicit than general concept of hierarchical collections

CONS:

OPEN GEOSPATIAL CONSORTIUM 21-027 50

https://github.com/opengeospatial/ogcapi-records/tree/master/extensions/collections

• Individual scenes coverages would not work out of the box for the OGC API — Coverages /
collections/{collectionId}/coverage endpoint.

• Would not directly match either Part1 or Part 2 of OGC API — Records (although /items
could also be provided as the scenes catalog using Records — Part 1, unless the multi-
scenes collection is also available as a Feature Collection)

• Where would the supported CRS of each Scene be listed?

5.2.7. OGC API — DGGS

The OGC API — DGGS draft specification (OGC 21-038) enables clients and servers
understanding the same Discrete Global Grid System to exchange information in terms of
that reference system, i.e. as DGGS zones. The What is here? capability of a DGGS is a data
access mechanism which can return data for one or more specific DGGS zone in a compact
representation which could be integrated within the GDC API framework. In addition to
selecting data by explicitly listing zones, it could also be possible to specify a CQL expression
and/or geometry to filter what data gets returned.

5.3. Analytics

The OGC API — Processes approved OGC standard provides a very flexible framework for
providing any type of analytics capabilities. Although the final version 1.0 of the specification
is relatively simple to use and implement, integrating convenient analytics capabilities directly
into OGC API — Coverages and EDR data requests, such as aggregation and band arithmetic
calculations, similar to how it is done in DAPA, would prove beneficial.

5.3.1. OGC API — Processes — Part 1: Core

The core OGC API — Processes standard defines how an API can list and describe available
processes (including their inputs and outputs), how to submit execution requests for available
processes, and how to retrieve results from these processes. Processes can support synchronous
and/or asynchronous execution. An execution request is a JSON document usually containing
a list of inputs, and optionally a list of specific outputs to be returned. For example, inputs may
be scalar parameters, spatial or spatiotemporal data. Inputs can be provided embedded into the
execution requests (encoded as base64 for binary inputs) or referenced as a URL.

5.3.2. OGC API — Processes — Part 3: Workflows & Chaining

The OGC API — Processes — Part 3 — Workflows & Chaining draft specification (OGC 21-009)
defines how to chain multiple processes and data sources together, whether they are local or
remote. Part 3 of OGC API — Processes also enables triggering processing on-the-fly as a result
of regular data requests (e.g. OGC API — Coverages or Tiles) for a particular area and resolution of

OPEN GEOSPATIAL CONSORTIUM 21-027 51

https://github.com/opengeospatial/ogcapi-discrete-global-grid-systems
https://docs.ogc.org/is/18-062r2/18-062r2.html
https://docs.ogc.org/DRAFTS/21-009.html

interest. This facilitates the integration of processing capabilities into visualization libraries and
clients.

In addition to synchronous and asynchronous processing, the draft specification introduces a
new mode of execution: the response to submitting an execution request is an OGC API landing
page or collection including links to supported data access endpoints for the execution results.
Clients can then submit requests to these endpoints with parameters specifying the area and
resolution of interest (e.g. tile identifiers, or coverage subsetting and scaling) to both trigger
processing and retrieve the response. By submitting multiple small requests (e.g. 256×256
pixels tiles) which can be requested and processed in parallel and leveraging caching along the
workflow chain, real-time processing workflows are achievable.

Part 3 of OGC API — Processes also adds three new types of inputs that can be used in an
execution request:

• The first new type of input is an OGC API collection (which can be local to the server or
remote), that points to a data source without hardcoding a particular area, resolution or
format, leaving it up to the two nodes at each end of a hop in the workflow to negotiate
which to use for accessing the data, and facilitating the re-usability of a defined workflow
with different data sources or area of interests.

• The second new type of input is a nested process (which can also be local or remote),
which is defined as the same object as the top-level object of the execution request
document.

• Finally, the third new possibility for an execution request input allows chaining an external
input in the context of deploying a workflow as new opaque process.

In addition to the possibility of being deployed as new processes, workflows could also be
deployed as virtual collections / data cubes, which would appear to a client as any other data
cubes, except that they may additionally expose the source workflow that generates the data
(which would include a reference to all processes and data sources part of the workflows),
which would facilitate the re-usability and reproducibility. Another advantage of workflows
is the ability to always use the latest available data without requiring batch processing but by
responding to data requests while still able to support intelligent caching.

For more details on workflows, see the Flexible real-time data processing and visualization
workflows emerging from OGC API modules (OGC 21-033).

5.3.3. DAPA capabilities as Coverages and EDR extensions

The draft DAPA specification includes some pre-defined analytics capabilities such as
aggregation and band arithmetic calculations. There are already plans to integrate aggregation
capabilities in a future version of OGC API — EDR as well as in OGC API — Coverages. The
participants suggest that instead of defining a separate API, similar aggregation capability
be integrated directly in the OGC API — EDR queries and OGC API — Coverages request, in
a harmonized manner, possibly with an aggregate parameter. This likely requires further
investigation to address the variety of ways data can be aggregated over different dimensions.
Similarly, the ability to define a new set of fields for a coverage based on a simple expression (as

OPEN GEOSPATIAL CONSORTIUM 21-027 52

http://docs.opengeospatial.org/per/20-025r1.html
https://github.com/opengeospatial/ogcapi-coverages/issues/146

in derived fields proposed in DAPA) could also be available directly in OGC API — EDR queries
and OGC API — Coverages requests, and could possibly use the same suggested properties=
syntax. This was previously suggested for coverages here.

5.3.4. Profiles for coverage processing

OGC API — Processes offers unlimited analytics possibilities, but it may sometimes be useful to
define well-known processes expecting specific types of inputs and returning specific outputs.
A particular well-known process could, for example, support a specific coverage processing
language, which may be useful for more complex use cases which cannot be expressed in very
simple query parameters to express filtering, aggregation or computed fields.

5.3.5. Compatible data cubes and processes

The concept of a GeoDataClass is proposed as a mechanism to identify the compatibility of
any given data cube as an input to a particular process, which may be available from separate
providers. A GeoDataClass would be a URI corresponding to a particular data schema to which a
data cube could ascribe. A process would be able to tag a particular input with this URI, allowing
to easily identify compatible data sources which can be used for this input. For example, a
GeoDataClass could be defined for an elevation data cube with a single field representing
elevation in meters above the WGS84 ellipsoid, and a process generating contours could specify
this URI for its single input elevation data source. Another example would be a GeoDataClass
defined for Landsat-8 Collection 2 Level 2, specifying all sensor bands and their characteristics,
and a land cover prediction process could tag its input with this URI as expecting such a data
source.

5.3.6. OGC API — DGGS

The Where is it? capability of the OGC API — DGGS draft specification could enable analytics
queries, returning a list of DGGS zones satisfying the query. For example, this query could be
expressed using CQL, which has the benefit of being reusable for performing analytics with
other OGC API specifications.

5.4. Data discovery, queries and catalogs

The OGC API — Records draft specification and the SpatioTemporal Asset Catalog specifications
(STAC), which may be considered a profile of OGC API — Records, support the discovery of
resources offered by a GDC API deployment and any associations that exist between those
resources. For example, an OGC API — Records endpoint can catalogue all the data offerings of
a GDC API deployment, all the processing capabilities offered by the GDC API deployment and
any associations that exist between those two resources (e.g. particular processes can operate
on particular data offerings of the GDC API).

OPEN GEOSPATIAL CONSORTIUM 21-027 53

https://github.com/opengeospatial/ogcapi-coverages/issues/108
https://github.com/opengeospatial/NamingAuthority/issues/97
https://github.com/opengeospatial/ogcapi-discrete-global-grid-systems
https://docs.ogc.org/DRAFTS/20-004.html
https://stacspec.org/
https://stacspec.org/

The OGC API — Records draft specification defines three building blocks:

• the schema for a core record,

• a collection resource that describes a set of related records (i.e. a catalogue),

• an API that allows catalogues (i.e. collections of records) to be searched.

Using these building blocks, various deployment patterns can be envisioned but the most
relevant deployment patterns for a GDC API deployment are:

• a crawlable catalogue,

• a searchable catalogue,

• and local resources catalogue.

A crawlable catalogue is a static and linked deployment of collection and record objects that
can be crawled by a browser or search-engine-crawler to navigate the hierarchy of resource
offered by a GDC API deployment. This allows browsing the resources offered by a GDC API
deployment in a hierarchical, tree-like manner in the same way one would browse the pages of a
web site.

A searchable catalogue is a defined endpoint in a GDC API deployment where searches can be
performed to discover resources offered by the deployment. The core search API of an OGC
API — Records deployment is OGC API — Features. That is, OGC API — Records supports searches
using spatial (i.e. bbox), temporal (i.e. datetime), full text (i.e. q) and resource type (i.e. type)
predicates.

NOTE: the q parameter is currently defined in the draft OGC API — Records specification but it
has been decided to move it over to the OGC API — Features specification.

An OGC API — Records deployment can also implement additional conformance classes to
provide more advanced search capabilities. Specifically, an OGC API — Records deployment
can implement CQL2 that offers search capabilities using a broad range of logically connected
predicates. Having discovered a resource from the catalogue, a client can then bind to that
resource using links found in the record describing the resource. Those links can be static links
or templated links that allow for run-time, parameterized resolution of the binding link.

A local resources catalogue, enhances any existing endpoint in a GDC API deployment (e.g. /
collections, /scenes) to add catalogue-like query capabilities to that endpoint. For example,
the proposed Scenes API endpoint can be enhanced with catalogue search capabilities allowing
scenes to be searched. For example, “Find all the scenes that intersect a specific bounding box,
for a specific time period where the cloud cover of each scene is less than 10%”.

The OGC API — Collection — Part 2: Geospatial data specification itself also provides some basic
discovery capabilities in its Core conformance class, as well as more advanced capabilities
with its Simple Query conformance class. Proposals for hierarchical collections (Common#11,
Common#298) would also facilitate browsing through a large number of data cubes from a
single API in a tree-like manner.

OPEN GEOSPATIAL CONSORTIUM 21-027 54

https://docs.ogc.org/DRAFTS/20-004.html#clause-record-core
https://docs.ogc.org/DRAFTS/20-004.html#clause-record-collection
https://docs.ogc.org/DRAFTS/20-004.html#clause-records-api
https://docs.ogc.org/DRAFTS/20-004.html#clause-crawlable-catalogue
https://docs.ogc.org/DRAFTS/20-004.html#clause-searchable-catalogue
https://docs.ogc.org/DRAFTS/20-004.html#clause_local-resources-catalogue
https://docs.ogc.org/DRAFTS/20-004.html#clause-crawlable-catalogue
https://docs.ogc.org/DRAFTS/20-004.html#clause-record-collection
https://docs.ogc.org/DRAFTS/20-004.html#clause-record-core
https://docs.ogc.org/DRAFTS/20-004.html#clause-records-api
https://docs.ogc.org/DRAFTS/20-004.html#core-query-parameters-q
https://docs.ogc.org/DRAFTS/20-004.html#clause-cql-filter
https://docs.ogc.org/DRAFTS/20-004.html#sc_templated_links_with_variables
https://docs.ogc.org/DRAFTS/20-004.html#clause_local-resources-catalogue
https://github.com/opengeospatial/ogcapi-common/issues/11
https://github.com/opengeospatial/ogcapi-common/issues/298

5.5. Visualization

To integrate visualization capabilities directly within a GDC API, the OGC API — Maps OGC
20-058 draft specification can be implemented to render maps of data cubes or the results of
process. Map tiles can also be provided in combination with the OGC API — Tiles specification.

5.6. Managing data and algorithms

The functionality defined in the Testbed 15 — Images API prototype could be integrated
within a Scenes API to Create/Update/Replace/Delete scenes making up a data cube, e.g.
POST to /collections/landsat8/scenes (or /collections/landsat8) to upload a new
scene, DELETE /collections/landsat8/scenes/{sceneId} (or /collections/landsat8:
{sceneId}) to remove an existing scene. The OGC API — Styles draft specification (OGC
20-009) allows to manage styles, retrieve styles for client-side rendering, as well as providing a
mechanism to select styles for use in server-side rendering in conjunction with OGC API — Maps
and OGC API — Tiles.

For managing algorithms, OGC API — Processes — Part 2 — Deploy, Replace, Update (OGC 20-044)
defines how to deploy new processes. These processes could be defined in different ways,
including as a workflow as defined in Part 3, as a Jupyter notebook, or using the OGC Earth
Observation Application Packages. This deployment functionality corresponds to the Application
Deployment and Execution System (ADES) experiments from previous OGC Testbeds.

OPEN GEOSPATIAL CONSORTIUM 21-027 55

https://docs.ogc.org/DRAFTS/20-058.html
http://docs.opengeospatial.org/per/19-070.html
https://docs.opengeospatial.org/DRAFTS/20-009.html
https://docs.ogc.org/DRAFTS/20-044.html
https://docs.ogc.org/bp/20-089r1.html
https://docs.ogc.org/bp/20-089r1.html

6

MACHINE LEARNING
WITHIN A GEO DATA CUBE
API

OPEN GEOSPATIAL CONSORTIUM 21-027 56

6 MACHINE LEARNING WITHIN A GEO DATA
CUBE API

This chapter describes the experiments and findings from 52°North’s D126 deliverable,
integrating Machine Learning model within a Geo Data Cube.

6.1. Use case

In Machine Learning (ML) and Data Science most of the work is dedicated to preparing
a meaningful dataset for the model, so that the model comprehends and extracts useful
information for the prediction, which could be directly or indirectly leading to the objective of
the ML task. As the known quote in computer science says “Garbage in — Garbage out”, 70 % of
ML engineers work is to prepare a clean dataset for the model. Therefore, having less clean data
affects the accuracy and robustness of the model.

52°North had a free choice for the objective of the ML model. The main focus was on the API
and the interaction between the ML model and Geo Data Cube. 52°North had the possibility
to receive label data from the National Forest Information System (NFIS). 52°North chose the
forest land cover for Canada 2015 Dataset as label data, and classifying Landsat data as the
objective for the ML model. Hence, Landsat-8 Level 2 Collection 2 image data was retrieved
through the EarthExplorer web interface. The Landsat-8 data set consists of multiple bands over
a wide spectrum of wavelengths, which contains comprehensive spectral and spatial information
over different vegetation species and land cover.

6.2. Data preparation

Generally, data preparation in Data Science is the process of collecting data from several data
sources and then profiling, cleaning, enriching and combining those into a derived dataset to use
in the analytics process. The input data of the Landsat multispectral images consists of spectral
bands with a spatial resolution of 30 meters for Bands 1 to 7, where:

• Band 1 (ultra-blue) is useful for coastal and aerosol studies and ranges between 0.43-0.45
μm,

• Band 2 is the visual blue band and ranges 0.45-0.51 μm,

• Band 3 is the visual green band and ranges between 0.53-0.59 μm,

• Band 4 is the visual red band and ranges between 0.64-0.67 μm,

• Band 5 is the Near Infrared (NIR) band and ranges between 0.85-0.88 μm,

OPEN GEOSPATIAL CONSORTIUM 21-027 57

• Band 6 and Band 7 are the short wave Infrared (SWIR) 1 and 2 and range between
1.57-1.65 μm and 2.11-2.29 μm, respectively.

52°North used 6 bands of Landsat, namely, Band 2 through Band 7. Therefore, the multispectral
image consists of Blue, Green, Red, NIR, SWIR 1 and SWIR 2 corresponding to Band 2, 3, 4,
5, 6 and 7, respectively. The projection of the Landsat bands uses the UTM with zones, and
the projection unit is in meters. 52°North only obtained satellite scenes with 1% maximum
cloud cover, since clouds affect spectral information and lead to distortions in the multispectral
images. Furthermore, the pixel values were normalized by the maximum reflectance for
each band. This normalization ensures that different scenes of Landsat images have similar
reflectance values between 0 and 1.

Figure 8 — Data Preparation steps to obtain registered label and input datasets.

Label Data of the dataset from NFIS consists of a large GeoTiff of 13 different classes of land
cover data in Canada for the year 2015. The raster data CRS is the Lambert conformal conic
projection (LCC), and the projection unit is in meters. The 13 classes are assigned to different
integers with the following data codes:

 0 = no change
 20 = water
 31 = snow_ice
 32 = rock_rubble
 33 = exposed_barren_land
 40 = bryoids
 50 = shrubland
 80 = wetland
 81 = wetland-treed
100 = herbs
210 = coniferous
220 = broadleaf
230 = mixedwood

OPEN GEOSPATIAL CONSORTIUM 21-027 58

52°North implemented a configurable class selection to choose different classes for different
tasks. For the next step, it is required that both datasets (remote sensing image and labeled
data) have the same spatial reference system. Therefore, the Landsat images were reprojected
to match the spatial reference system of the land cover dataset. It was possible to obtain
georeferenced data from different sources, because the reprojection of the images guarantees
overlapping of both datasets and hence facilitates image registration. As shown in Figure 8, after
reprojecting the datasets, we rotated both datasets and cropped out the nodata edges to extract
the most of the input images. The preparation of the training data consists of extracting pairs of
input and output patches of the training and label data. 52°North extracted patches with a fixed
size of 256×256 as input for the ML model.

6.3. Model training

Since the number of classes plays a major role in the time needed for obtaining the data and
training the model, the number of classes for the task should be reasonably selected. Within the
scope of Testbed-17, the participants decided to choose only four classes as a prototype for a
trained model. The selected classes were no_change, water, coniferous and herbs.

For the model architecture the participants implemented a semantic segmentation model using
convolutional neural network layers. The model has a u-net architecture consisting of five
convolution and deconvolution layers. The binary cross entropy loss function was applied and
the dice coefficient to evaluate accuracy was used.

The Landsat-Water Classifier is a semantic segmentation model that was trained on 12 different
Landsat scenes of Canada in 2015. The model has reached a total accuracy of 87.4% after
learning for 40 epochs.

6.4. Model prediction

After the model was trained, Landsat scenes or subsets were processed to estimate land cover
classes. The classes can be obtained by predicting a sliding window with a size of 256×256
over the input image. However, the lack of information about the other nearby image windows
results in seams and artifacts between the estimated window images. Therefore, the parameter
trim function was used to overcome this issue. For instance, when trim equals 80, 80 pixels are
trimmed from each side of each window image to create a small rectangle in the center of each
window of size 96×96. By attaching only the center windows, smooth and seamless predictions
of the entire scene are obtained.

The model prediction was provided as an OGC API — Processes process using pygeoapi
and integrated in the service implementation of Clause 7.1. One type of plugin that is
currently supported by pygeoapi is a processor. Extending pygeoapi this way can be done by
implementing a subclass of pygeoapi.process.base.BaseProcessor with the execute()
method. The process description (see landsat predictor process description listing) is provided
as a python dictionary and handled by pygeoapi. All process metadata and job management

OPEN GEOSPATIAL CONSORTIUM 21-027 59

http://www.opengis.net/doc/IS/ogcapi-processes-1/1.0
https://docs.pygeoapi.io/en/stable/plugins.html

is handled by pygeoapi including synchronous or asynchronous execution. The process
implementation itself needs only to handle its specific inputs:

• bbox
A spatial bounding box defining the area of interest, the model prediction should be
performed on. It must be encoded using WGS84 coordinates in the following form: [min
lon, min lat, max lon, max lat] with unitless decimal numbers

• collection
The URL of the OGC API — Coverages collection providing the Landsat-8 Collection 2
Level 2 data. Must start with http or https if referring to a coverage hosted in an OGC API
— Coverages service instance. Support for file links to local GeoTIFFs is implemented for
testing, too. In addition, the following bands in the given order must be contained if no
value is specified for the bands input: blue, green, red, nir, swir1, swir2.

• bands
A comma-separated list of band names containing the same bands in the same order as
described in the collection input.

The workflow of the implemented process after being processed by pygeoapi looks as follows:

{
 "version": "0.1.0",
 "id": "landcover-prediction",
 "title": "Land cover prediction",
 "description": "Land cover prediction with Landsat 8",
 "keywords": ["land cover prediction", "landsat 8", "tb-17"],
 "jobControlOptions": "async-execute",
 "outputTransmission": ["value"],
 "links": [
 {
 "type": "text/html",
 "rel": "canonical",
 "title": "Processor Repository",
 "href": "https://github.com/52North/Landsat-classification/blob/mai
n/README.md",
 "hreflang": "en-US"
 },
 {
 "type": "text/html",
 "rel": "canonical",
 "title": "Landsat 8 Collection 2 Level 2",
 "href": "https://www.usgs.gov/core-science-systems/nli/landsat/
landsat-collection-2-level-2-science-products",
 "hreflang": "en-US"
 }
],
 "inputs": {
 "collection": {
 "title": "Coverage collection",
 "description": "url of the OGC API Coverages collection providing
the Landsat 8 Collection 2 "
 "Level 2 data (must start with http or https and
include the following bands:"
 " blue, green, red, nir, swir1, swir2)",
 "schema": {

OPEN GEOSPATIAL CONSORTIUM 21-027 60

 "oneOf": [
 {
 "type": "string",
 },
 {
 "type": "string",
 "contentEncoding": "binary",
 "contentMediaType": "image/tiff; application=geotiff"
 }
]
 },
 "minOccurs": 1,
 "maxOccurs": 1,
 "metadata": null,
 "keywords": ["landsat"]
 },
 "bbox": {
 "title": "Spatial bounding box",
 "description": "Spatial bounding box in WGS84",
 "schema": {
 "allOf": [
 {"format": "ogc-bbox"},
 {"$ref": "https://raw.githubusercontent.com/opengeospatial/
ogcapi-processes/master/core/openapi/schemas/bbox.yaml"}
],
 "default": {"bbox": [-104.6, 51.8, -103.7, 52.6], "crs": "http:
//www.opengis.net/def/crs/OGC/1.3/CRS84"}
 },
 "minOccurs": 0,
 "maxOccurs": 1,
 "metadata": null,
 "keywords": ["bbox"]
 },
 "bands": {
 "title": "Bands",
 "description": "Landsat 8 bands (comma-separated list, e.g.
\"blue, green, red, nir, swir1, swir2\")",
 "schema": {
 "type": "string"
 },
 "minOccurs": 0,
 "maxOccurs": 1,
 "metadata": null,
 "keywords": ["bands"]
 },
 },
 "outputs": {
 "prediction": {
 "title": "Land cover prediction",
 "description":
 "Land cover prediction with Landsat 8 Collection 2 Level 2 for
no change (=1), "
 "water (=2), coniferous (=3) and herbs (=4) (no data=0)",
 "schema": {
 "type": "string",
 "format": "byte",
 "contentMediaType": "image/tiff; application=geotiff"
 }
 }
 },
 "example": {
 "inputs": {
 "collection": {

OPEN GEOSPATIAL CONSORTIUM 21-027 61

 "collection": "https://17.testbed.dev.52north.org/geodatacube/c
ollections/landsat8_c2_l2"
 },
 "bbox": {
 "bbox": [-104.6, 51.8, -103.7, 52.6],
 "crs": "http://www.opengis.net/def/crs/OGC/1.3/CRS84"
 }
 },
 "jobControlOptions": ["async-execute"],
 "outputTransmission": ["value"],
 "response": "raw"
 }
}

Landsat predictor process description

This additional resource of the service instance needs to be configured in the service
configuration in the resources section. In addition, activating a manager plugin for handling
the jobs/executions of the process (see pygeoapi configuration listing) is recommended. The
default implementation provided by pygeoapi based on TinyDB (https://github.com/geopython/
pygeoapi/blob/master/pygeoapi/process/manager/tinydb_.py) is used in the service instance.
Using the /tmp folder in the service does not prevent losing job results and state during pod
restarts. In production and under high load, another database driven job manager should be
used. For the requirements within Testbed-17, the performance of the TinyDB job manager was
sufficient.

Landcover-prediction:
 type: process
 processor:
 Name: landsatpredictor.pygeoapi_processor.LandcoverPredictionProcessor

Process resource to be added to pygeoapi configuration in resources section

manager:
 name: TinyDB
 connection: /tmp/pygeoapi-process-manager.db
 output_dir: /tmp/pygeoapi-process-outputs/

Activate TinyDB job manager in pygeoapi’s configuration server section

The workflow as outlined in Figure 9:

1. Receive input from pygeoapi

2. Validate inputs:

a) bbox is formatted correct and valid

b) Collection is url

c) All band names are included in the coverage rangetype

OPEN GEOSPATIAL CONSORTIUM 21-027 62

https://github.com/geopython/pygeoapi/blob/master/pygeoapi/process/manager/tinydb_.py
https://github.com/geopython/pygeoapi/blob/master/pygeoapi/process/manager/tinydb_.py

3. Process collection:

a) Download coverage

b) Generate required model input

i) Normalize all bands

ii) Visual light reflectance mask

iii) Output GeoTIFF metadata

4. Submit data “to model”

5. Process response from model and return data

Figure 9 — Process workflow

OPEN GEOSPATIAL CONSORTIUM 21-027 63

The ability to return the model output directly encoded as GeoTIFF required some adjustments
to pygeoapi. These suggested changes were provided as a pull request in the corresponding
repository and discussed with the developers of pygeoapi. These adjustments are:

• Changing the result encoding in pygeoapi depending on the MIME type returned by the
processor execute method

• Changing the result storing in TinyDB process manager depending on the MIME type of
process result

The result of the process is a single band GeoTIFF with 5 categories:

• 0: no data

• 1: no change

• 2: water

• 3: coniferous

• 4: herbs

For executing the process, one can use the curl call from curl call listing.

curl -X POST "https://17.testbed.dev.52north.org/geodatacube/processes/landcove
r-prediction/execution" \
 -H "Content-Type: application/json" \
 -d "{\"mode\": \"async\", \"response\": \"raw\", \"outputTransmission\":
[\"value\"], \
 \"inputs\":{\"collection\": {\"collection\": \"https://17.testbed.dev.
52north.org/geodatacube/collections/landsat8_c2_l2\"}, \
 \"bbox\": {\"bbox\": [-104.6, 51.8, -103.7, 52.6], \"crs\": \"http://www.
opengis.net/def/crs/OGC/1.3/CRS84\"}}}"

curl call to execute Landsat prediction process

The call sends a JSON document using the HTTP POST method to the execution endpoint
of the “landcover-prediction” process in the OGC API Processes instance listening behind the
endpoint https://17.testbed.dev.52north.org/geodatacube/. A more readable version of the
document is provided in Listing Figure 10. This document provides the required process inputs
bbox and collection, accompanied by some job management options:

• Mode (https://docs.ogc.org/is/18-062r2/18-062r2.html#sc_execution_mode): async →
the job should be executed asynchronously. The results of the jobs can be downloaded
later, when available, using the jobs endpoint of the process.

• Response (https://docs.ogc.org/is/18-062r2/18-062r2.html#_response_type): raw → the
job result should be provided in the encoding of the output and not as json document

• outputTransmission (https://docs.ogc.org/is/18-062r2/18-062r2.html#sc_process_
outputs): value → the job result should be provided as value and not as reference

OPEN GEOSPATIAL CONSORTIUM 21-027 64

https://curl.se
https://17.testbed.dev.52north.org/geodatacube/
https://docs.ogc.org/is/18-062r2/18-062r2.html#sc_execution_mode
https://docs.ogc.org/is/18-062r2/18-062r2.html#_response_type
https://docs.ogc.org/is/18-062r2/18-062r2.html#sc_process_outputs
https://docs.ogc.org/is/18-062r2/18-062r2.html#sc_process_outputs

The status of the job (https://docs.ogc.org/is/18-062r2/18-062r2.html#sc_retrieve_status_info)
and its final results (https://docs.ogc.org/DRAFTS/18-062.html#sc_retrieve_job_results) can be
requested using the according endpoints as outlined in the specification.

{
 "mode": "async",
 "response": "raw",
 "outputTransmission": ["value"],
 "inputs": {
 "collection": {
 "collection": "https://17.testbed.dev.52north.org/geodatacube/colle
ctions/landsat8_c2_l2"
 },
 "bbox": {
 "bbox": [-104.6, 51.8, -103.7, 52.6],
 "crs": "http://www.opengis.net/def/crs/OGC/1.3/CRS84"
 }
 }
}

Figure 10 — Execute request example json body

Figure 11 — Land cover prediction for the bounding box "[-104.6, 51.8, -103.7, 52.6]" (dark
blue=water, turquoise=herbs, dark green=coniferous, transparent grey=no change)

OPEN GEOSPATIAL CONSORTIUM 21-027 65

https://docs.ogc.org/is/18-062r2/18-062r2.html#sc_retrieve_status_info
https://docs.ogc.org/DRAFTS/18-062.html#sc_retrieve_job_results

6.5. Technology Integration Experiments with D123 —
 GDC API Service (Wuhan University)

In addition to using Landsat-8 coverage data from their service to run a ML prediction, 52°North
tested the process with Landsat-8 coverage data provided by Wuhan University’s service.

The process is invoked in the same way as before:

curl -i -H "Content-Type: application/json" -X POST -d @landcover_async_api_
wuhan.json \
 "https://17.testbed.dev.52north.org/geodatacube/processes/landcover-
prediction/execution"

However, this time the collection URL and the bands input were changed, as the coverage
collection includes more than the six expected bands:

{
 "mode": "async",
 "response": "raw",
 "outputTransmission": ["value"],
 "inputs": {
 "collection": {
 "collection": "http://geos.whu.edu.cn:8097/geocube/gdc_api_v2/
collections/LC08_L1TP_ARD_EO_20180915025555"
 },
 "bbox": {
 "bbox": [113.05,30.85,113.2,30.95],
 "crs": "http://www.opengis.net/def/crs/OGC/1.3/CRS84"
 },
 "bands": "Blue,Green,Red,Near-Infrared,SWIR1,SWIR2"
 }
}

landcover_async_api_wuhan.json

Figure 12 shows the land cover prediction from this process execution which can be
downloaded as GeoTIFF after the asynchronous execution has finished.

OPEN GEOSPATIAL CONSORTIUM 21-027 66

Figure 12 — Land cover prediction for the bounding box "[113.05, 30.85, 113.2, 30.95]" (dark
blue=water, turquoise=herbs, dark green=coniferous, transparent grey=no change)

6.6. Future work

In order to use ML models in practice, multiple preparatory steps need to be taken of as
described above:

• Identifying and understanding the use case,

• Collecting and preparing the data (label + feature data),

• Implementing the model,

• Training the model,

• Evaluating and optimizing the model, and finally

• Applying the trained model.

The work completed in this testbed, demonstrated how a ML model prediction can be part of
a GDC API by making use of OGC API — Processes. By defining the model input as a coverage
collection URL, interoperability between different OGC service instances offering Landsat-8

OPEN GEOSPATIAL CONSORTIUM 21-027 67

data is achieved. In contrast to the model prediction, the model training including data
preparation was not performed on the server, but locally. The resulting model weights were then
uploaded as part of the prediction process.

In the future, it should be further investigated how the training itself can be simplified by
accessing data from a GDC API or by performing it directly as part of a GDC API. The most
obvious benefit of a GDC/GDC API concerns the image registration (the provision of analysis-
ready data). The capability of a GDC API to subset different variables (/bands/layers/…) that
serve as label and feature data for the same area, time and in the same resolution and CRS has
the potential to significantly simplify the data preparation. Moreover, with the GDC API, data
could be normalized to make sure it has a common scale which is important for ML models. Use
of the OGC API — Tiles draft specification might make it even easier by providing tiles that can be
directly loaded as training patches for the model training.

As ML model training is generally heavy on resources, performing the training close to the data
is advantageous. Using DAPA could be a promising approach as it directly connects data and
processing. Triggering a new model training automatically when new data is available would
be an interesting feature. One important aspect of ML model training is that it is typically
performed by a group of skilled users/experts, as the quality of the trained model needs to be
sensitively assessed. Thus, it would be necessary to add authorization to respective servers that
also support model training through dedicated processes.

In addition to including label and feature data as dimensions in the GDC, the prediction results
could also be persisted. For this capability, support for transactional coverage collections could
be used. However, this opens up new challenges such as overlapping model runs and possible
updates of an underlying model or its weights.

Initial efforts towards transaction capabilities for coverages took place as part of drafting an
Images API specification in OGC Testbed-15, and that work is being considered as one aspect
of the potential Scenes API investigated in this Testbed-17 task. The OGC API — Create, Replace,
Update and Delete draft specification extending OGC API — Features also lays out a foundation
for transactions intended to be common across different OGC API specifications.

OPEN GEOSPATIAL CONSORTIUM 21-027 68

7

IMPLEMENTED SERVER
COMPONENTS

OPEN GEOSPATIAL CONSORTIUM 21-027 69

7 IMPLEMENTED SERVER COMPONENTS

This chapter describes the different Geo Data Cube service components developed and
enhanced during this project by Wuhan University, MEEO, 52°North and Ecere.

The following table summarizes the capabilities implemented by each server:

Table 1 — Server components

PROVIDER CAPABILITIES

Wuhan University
Coverages (1,2,3,4,5), Processes (8, e.g. ndvi,
aspect), Records (11), DAPA (12)

MEEO
Common/Core (1) & Collections (2), started:
 Coverages (3) & Processes (8)

52°North (pygeoapi)
Coverages (1,2,3,4,5), Processes (7, 8,
Workflows: 9, Land Cover ML prediction),
Records (11)

Ecere (GNOSIS Map Server)
Coverages (1,2,3,4,6), Processes (7, Workflows:
 9, 10)

Table 2 — GDC API Capabilities

1. Common-1: Core

2. Common-2: Collections

3. Coverages-1

4. Coverages-1 (Subsetting)

5. Coverages-1 (Range subsetting)

6. Coverages-1 (Scaling)

7. Processes-1 (Sync execution)

8. Processes-1 (Async execution)

9. Processes-3: Workflows (Collection Input)

10. Processes-3: Workflows (Collection Output)

OPEN GEOSPATIAL CONSORTIUM 21-027 70

11. Records

12. DAPA

7.1. 52°North Geo Data Cube API Server Implementation
(D122)

This section focuses on 52°North’s server implementation. The implementation follows the
approach discussed during the Testbed that a Geo Data Cube API should implement existing
(draft) OGC APIs (see Clause 5). The following OGC APIs are partially or fully implemented by
52°North’s service:

• OGC API — Common

• OGC API — Records

• OGC API — Coverages

• OGC API — Processes

For functionality that is not yet supported by the existing (draft) specifications, new API
specifications or extensions could be developed. Specific challenges faced in this task will be
discussed in Section Clause 7.1.5.

The service is based on two existing open source projects, Open Data Cube (ODC) (https://
www.opendatacube.org/) and pygeoapi (https://pygeoapi.io/). Before explaining the developed
service in more detail, the next two sections will briefly introduce ODC and pygeoapi.

7.1.1. Open Data Cube (ODC)

ODC is an open source geospatial data management and analysis software project that supports
the efficient use of earth observation data. At its core it offers uniform access to heterogeneous
data sets and sources as data cubes in an analysis-ready way. Figure 13 illustrates the basic
concept. Data is stored on a native file system or a cloud platform. First, the data is indexed
in a PostgreSQL database with some metadata. This index is the central metadata store that
allows querying and accessing data. For the indexing, metadata documents need to be prepared
and registered using the datacube-core Python library (https://github.com/opendatacube/
datacube-core) which is the heart of ODC. These documents are yaml files in the ODC-specific
metadata format “eo3” (https://datacube-core.readthedocs.io/en/latest/about-core-concepts/
dataset-documents.html#dataset-metadata-doc-eo3) or its predecessor “eo”. ODC distinguishes
between products and datasets. A dataset is for example a single Landsat scene while a product
is a collection of datasets. All datasets of a single product share the same measurements and
some basic metadata, e.g. sensor type. In contrast, coordinate reference systems can vary among
different datasets. The datacube-core library also offers a simple uniform Python API to retrieve

OPEN GEOSPATIAL CONSORTIUM 21-027 71

https://www.opendatacube.org/
https://www.opendatacube.org/
https://pygeoapi.io/
https://github.com/opendatacube/datacube-core
https://github.com/opendatacube/datacube-core
https://datacube-core.readthedocs.io/en/latest/about-core-concepts/dataset-documents.html#dataset-metadata-doc-eo3
https://datacube-core.readthedocs.io/en/latest/about-core-concepts/dataset-documents.html#dataset-metadata-doc-eo3

data. Spatial, temporal and thematic (band) filtering is possible and also reprojection and down-
and upsampling of the data.

Figure 13 — ODC architecture (source: https://medium.com/
opendatacube/what-is-open-data-cube-805af60820d7)

ODC is continuously improved and extended by a large community. Recently, new features like
3D datasets and STAC (Spatio Temporal Asset Catalog, https://stacindex.org/) support have
been added which were not available at the beginning of Testbed-17. By interfacing with a
STAC API it will be possible to retrieve data without indexing it in a database beforehand (https:
//github.com/opendatacube/odc-stac). Some features regarding STAC can already be used,
however, there isn’t a comprehensive public documentation yet.

Once data is indexed, it can be retrieved and used in applications like Jupyter Notebooks or
web services. While there is already a web service implementation offering classical OGC web
services (OWS) on top of ODC’s index and core library, there is — to the best of the participants’
knowledge — no service implementation offering OGC APIs.

7.1.2. pygeoapi

pygeoapi is a Python server implementation of the OGC API family of standards. It offers a
core Python API and an HTTP API on top of it. Publishing of data is organized with a provider
framework. Providers implement the logic of handling specific data resources, e.g. geotiff files

OPEN GEOSPATIAL CONSORTIUM 21-027 72

https://medium.com/opendatacube/what-is-open-data-cube-805af60820d7
https://medium.com/opendatacube/what-is-open-data-cube-805af60820d7
https://stacindex.org/
https://github.com/opendatacube/odc-stac
https://github.com/opendatacube/odc-stac

or databases, and return data to the pygeoapi API framework. Every resource (collections,
processes, catalogs) which is served needs to be configured with a suitable provider.

7.1.3. Service architecture

52°North’s service implementation builds on ODC and pygeoapi. ODC serves as a Geo Data
Cube resource and is responsible for storing and managing data and metadata. pygeoapi uses
this resource and publishes the included data via OGC APIs. The connection between ODC and
pygeoapi is achieved by a provider plugin for pygeoapi called pygeoapi-odc-provider (https://
github.com/52North/pygeoapi-odc-provider), which has been developed by 52°North in this
Testbed. The basic service architecture is shown in Figure 14 and explained in more detail in the
following.

Figure 14 — Architecture of 52°North’s service implementation

Data is first downloaded from various platforms, stored in a file system and added to the
metadata index using ODC. The process of downloading and indexing data was automatized
for NRCan’s DEM datasets and for Landsat 8 Collection 2 Level 2 data (https://github.
com/52North/ogc-tb-17_datacube-service_odc/tree/main/downloader, make repo public). It is
also possible to add custom metadata under the “metadata” key in the product definition (see
example yaml) and parse these later to complete pygeoapi’s resource configuration. 52°North
added product, provider, project, category, links and keywords. An example for a product
definition for NRCan’s DEM data is presented in the following. It provides Digital Surface Model
(DSM) data collected during the project “The Pas” in 2014:

metadata_type: eo3
name: dsm__MB__The_Pas_2014
description: '"dsm" data created by "MB" within the project "The_Pas_2014"'
metadata:
 product:
 name: dsm__MB__The_Pas_2014
 provider:
 name: MB
 project:
 name: The_Pas_2014
 category:
 name: dsm
 keywords:
 - MB
 - The_Pas_2014
 - dsm
 - NRCAN
 - Canada

OPEN GEOSPATIAL CONSORTIUM 21-027 73

https://github.com/52North/pygeoapi-odc-provider
https://github.com/52North/pygeoapi-odc-provider
https://github.com/52North/ogc-tb-17_datacube-service_odc/tree/main/downloader
https://github.com/52North/ogc-tb-17_datacube-service_odc/tree/main/downloader

 links:
 - type: text/html
 rel: canonical
 title: High Resolution Digital Elevation Model (HRDEM) - CanElevation
Series
 href: https://open.canada.ca/data/en/dataset/957782bf-847c-4644-a757-
e383c0057995
 hreflang: en-CA
measurements:
- name: dsm
 units: m
 dtype: float32
 nodata: -32767.0

A dataset for this product looks like this:

$schema: https://schemas.opendatacube.org/dataset
id: e8dc8680-08d8-5aa5-a05c-70c2f9b85ee9
product:
 name: dsm__MB__The_Pas_2014
provider:
 name: MB
project:
 name: The_Pas_2014
category:
 name: dsm
keywords:
- MB
- The_Pas_2014
- dsm
- NRCAN
- Canada
links:
- type: text/html
 rel: canonical
 title: High Resolution Digital Elevation Model (HRDEM) - CanElevation Series
 href: https://open.canada.ca/data/en/dataset/957782bf-847c-4644-a757-
e383c0057995
 hreflang: en-CA
crs: EPSG:2957
geometry:
 type: Polygon
 coordinates:
 - - - 710000.0
 - 5940000.0
 - - 710000.0
 - 5950000.0
 - - 720000.0
 - 5950000.0
 - - 720000.0
 - 5940000.0
 - - 710000.0
 - 5940000.0
grids:
 default:
 shape:
 - 10000
 - 10000
 transform:
 - 1.0
 - 0.0
 - 710000.0
 - 0.0

OPEN GEOSPATIAL CONSORTIUM 21-027 74

 - -1.0
 - 5950000.0
 - 0
 - 0
 - 1
measurements:
 dsm:
 path: /ogc-tb-17/DATA/dsm/MB/The_Pas_2014/dsm_1m_utm13_e_21_194.tif
 layer: dsm
properties:
 datetime: '1970-01-01T00:00:00+00:00'
 platform: na
 instrument: na
 odc:processing_datetime: '2021-09-22T14:28:57+00:00'
 odc:file_format: GeoTIFF
 odc:product_family: dsm__MB__The_Pas_2014
 dea:dataset_maturity: final
 providers:
 - MB
 mission: The_Pas_2014
lineage: {}

Once ODC is set up, the connection between ODC and pygeoapi has to be established. The new
pygeoapi provider plugin pygeoapi-odc-provider facilitates this. It implements all the logic of
retrieving metadata and data using ODC’s Python API and maps it to the specific OGC API. For
OGC API — Coverages, it maps ODC products to OGC coverage collections. These two concepts
are similar and the mapping is relatively straightforward. To finally use ODC in pygeoapi, it is
necessary to configure the resources with the correct provider class. A resource entry for a
coverage collection in pygeoapi`s configuration file looks like this:

dsm__MB__The_Pas_2014:
 type: collection
 title: dsm__MB__The_Pas_2014
 description: '"dsm" data created by "MB" within the project "The_Pas_2014"'
 keywords:
 - MB
 - The_Pas_2014
 - dsm
 - NRCAN
 - Canada
 links:
 - type: text/html
 rel: canonical
 title: High Resolution Digital Elevation Model (HRDEM) - CanElevation
Series
 href: https://open.canada.ca/data/en/dataset/957782bf-847c-4644-a757-
e383c0057995
 hreflang: en-CA
 extents:
 spatial:
 bbox:
 - -101.88198091547551
 - 53.491466538566925
 - -101.04177012496181
 - 53.94941224261376
 crs: http://www.opengis.net/def/crs/OGC/1.3/CRS84
 providers:
 - type: coverage
 name: odcprovider.OpenDataCubeCoveragesProvider
 data: dsm__MB__The_Pas_2014
 format:
 name: GeoTIFF

OPEN GEOSPATIAL CONSORTIUM 21-027 75

 mimetype: application/geotiff

The data field in the provider section corresponds to the product name in ODC. The name field
declares the provider class implementation. The pygeoapi-odc-provider library also provides a
script to automatically generate a configuration file for pygeoapi including resource entries for
all ODC products.

The service is deployed in the cloud using kubernetes. It consists of two pods: a database
(image: postgres:13-buster with 10Gi storage) and a service pod created from a 52°North image
(https://github.com/52North/ogc-tb-17_datacube-service_odc/blob/main/pygeoapi/Dockerfile).
The data is currently stored on persistent volume claims. Using the s3 capabilities of ODC is
a useful next step in the development of the provider, but could not be fulfilled during this
testbed. The datasets (see Section Clause 7.1.4.1) are downloaded using two init-containers
sharing the same storage volume. During this download process, each dataset is enriched with
the required metadata documents and added to the ODC index.

OPEN GEOSPATIAL CONSORTIUM 21-027 76

https://github.com/52North/ogc-tb-17_datacube-service_odc/blob/main/pygeoapi/Dockerfile

7.1.4. API Structure

• Service root

• Collections

• Catalog collection providing records, which provides links to

• Items

• List of items with properties in html, json, ld-json

• Item with properties, e.g. associations (aka links) to the coverage itself in
the three formats html, json, ld-json

• Queryables (not implemented)

• Different formats as html, json, ld-json

• For each product in the ODC one collection with

• Bounding box on map

• Keywords

• Links from links metadata

• Links to

• Collection as html, json, ld-json

• Domain set as html, json, ld-json

• Coverage Domain as html, json, ld-json

• Coverage data, e.g. as GeoTIFF

• Processes

• Described in Machine Learning within a Geo Data Cube API

7.1.4.1. Datasets

For the testbed and TIEs, several datasets are loaded into the data cube; on the one hand, four
scenes from the Landsat 8 Collection 2 Processing Level 2 as outlined in the following list. On
the other hand, 198 datasets from the High Resolution Digital Elevation Model (HRDEM) —
CanElevation Series (https://open.canada.ca/data/en/dataset/957782bf-847c-4644-a757-

OPEN GEOSPATIAL CONSORTIUM 21-027 77

https://open.canada.ca/data/en/dataset/957782bf-847c-4644-a757-e383c0057995

e383c0057995) of the testbed sponsor NRCan providing terrain and surface model data of
Canada, are loaded into the service instance.

• Landsat 8 Collection 2 Processing Level 2

• Selected bands: blue, green, red, nir, swir1, swir2

• Scenes:

• LC08_L2SP_016021_20150824_20200908_02_T1

• LC08_L2SP_035024_20150813_20200909_02_T1

• LC08_L2SP_039015_20150809_20200908_02_T1

• LC08_L2SP_040023_20150731_20200909_02_T1

• NRCan

• Two projects providing

• Digital Surface Model (DSM),

• Digital Terrain Model (DTM), and

• DSM Colour Hill Shade (CHS)

• data are selected:

• Port_Hawkesbury_2016,

• The_Pas_2014

→ 198 datasets The NRCan data is downloaded from their servers using a shape file (https://ftp.
maps.canada.ca/pub/elevation/dem_mne/highresolution_hauteresolution/Datasets_Footprints.
zip) providing the metadata and the download locations. This process is implemented as a
script for each datasource: NRCan (https://github.com/52North/ogc-tb-17_datacube-service_
odc/blob/main/downloader/nrcan.py) and Landsat (https://github.com/52North/ogc-tb-17_
datacube-service_odc/blob/main/downloader/landsat8.py).

7.1.5. Specific challenges

7.1.5.1. Multiple CRS within one coverage collection

The chosen datasets revealed a challenge regarding the handling of coordinate reference
systems. For example, Landsat 8 uses UTM zones and a single Landsat collection might contain
data for several UTM zones. The question is how different CRS within one collection can be
handled by API Coverages. The draft specification “OGC API — Coverages — Part 1: Core”

OPEN GEOSPATIAL CONSORTIUM 21-027 78

https://open.canada.ca/data/en/dataset/957782bf-847c-4644-a757-e383c0057995
https://ftp.maps.canada.ca/pub/elevation/dem_mne/highresolution_hauteresolution/Datasets_Footprints.zip
https://ftp.maps.canada.ca/pub/elevation/dem_mne/highresolution_hauteresolution/Datasets_Footprints.zip
https://ftp.maps.canada.ca/pub/elevation/dem_mne/highresolution_hauteresolution/Datasets_Footprints.zip
https://github.com/52North/ogc-tb-17_datacube-service_odc/blob/main/downloader/nrcan.py
https://github.com/52North/ogc-tb-17_datacube-service_odc/blob/main/downloader/nrcan.py
https://github.com/52North/ogc-tb-17_datacube-service_odc/blob/main/downloader/landsat8.py
https://github.com/52North/ogc-tb-17_datacube-service_odc/blob/main/downloader/landsat8.py

currently allows only a single CRS. An “OGC API — Coverages — Part X — CRS” extension that
addresses the usage of different CRS for storing, subsetting and outputting coverage data will
likely be developed in the future but is not specified yet (see https://github.com/opengeospatial/
ogcapi-coverages/issues/144, https://github.com/opengeospatial/ogcapi-maps/issues/82,
https://github.com/opengeospatial/ogcapi-common/labels/CRS). A solution could be the usage
of coverage partitioning (http://docs.opengeospatial.org/is/09-146r6/09-146r6.html#53),
however, this would add an undesired level of complexity. Instead, the data is simply reprojected
to WGS84 on-the-fly (in ODC it is still in the native projection) and allow only WGS84 for
subsetting and as output CRS. One disadvantage of this approach is that the original data cannot
be retrieved and there might be a loss of information due to the reprojection.

7.1.5.2. Scenes API

One possible solution to the CRS challenge could be the introduction of a Scenes API. This
would allow access to multiple scenes as a single coverage but also as individual scenes in the
original projection. An additional advantage would be the option to filter and sort scenes by
scenes metadata. This would be specifically useful in the ML use case (Clause 6). For Landsat
8 large percentages of cloud cover would reduce the quality of the trained model significantly,
thus filtering scenes that should be included in the training is very important.

7.1.5.3. Improving pygeoapi

In order to successfully perform TIEs, a few improvements of pygeoapi were necessary, such
as binary output for processes and the usage of the “Prefer:” header for asynchronous process
execution. These can be found in 52°North’s pygeoapi fork: https://github.com/52North/
pygeoapi/tree/deployment/testbed-17.

Additionally github issues were filed in the original pygeoapi repository:

• https://github.com/geopython/pygeoapi/issues/705

• https://github.com/geopython/pygeoapi/issues/772

• https://github.com/geopython/pygeoapi/issues/809

• https://github.com/geopython/pygeoapi/issues/838

• https://github.com/geopython/pygeoapi/issues/845

7.2. Wuhan University Geo Data Cube API Server
Implementation (D123)

This section describes the services provided “on top” of the Wuhan University GeoCube
infrastructure including OGC API — Common, OGC API — Coverages and OGC API — Processes.

OPEN GEOSPATIAL CONSORTIUM 21-027 79

https://github.com/opengeospatial/ogcapi-coverages/issues/144
https://github.com/opengeospatial/ogcapi-coverages/issues/144
https://github.com/opengeospatial/ogcapi-maps/issues/82
https://github.com/opengeospatial/ogcapi-common/labels/CRS
http://docs.opengeospatial.org/is/09-146r6/09-146r6.html#53
https://github.com/52North/pygeoapi/tree/deployment/testbed-17
https://github.com/52North/pygeoapi/tree/deployment/testbed-17
https://github.com/geopython/pygeoapi/issues/705
https://github.com/geopython/pygeoapi/issues/772
https://github.com/geopython/pygeoapi/issues/809
https://github.com/geopython/pygeoapi/issues/838
https://github.com/geopython/pygeoapi/issues/845

This section also gives some thoughts about a definition for Geo Data Cube (GDC) and the API
design from Wuhan University’s perspective.

7.2.1. GDC definition from Wuhan University perspective

A geospatial data cube is defined as a time-series multidimensional data model, where multi-
source geospatial data can be organized as spatially aligned analysis ready data in a high-
performance form. The multi-source geospatial data is not limited to EO data such as remote
sensing images, but also can be the vector, trajectory, or tabular data.

7.2.2. Deployment infrastructure

The Wuhan deployment relies on the GeoCube infrastructure. The infrastructure is established
on a private cloud environment comprising three physical servers. These servers are connected
to a high-performance storage array of PB level.

The GeoCube infrastructure supports the accommodation of multi-source geospatial data
including raster and vector data in the cube, these data are segmented into tiles and persisted in
an HBase database, which allows a user to perform efficient multi-source data analysis using a
high-performance tile form. In the infrastructure, cloud computing technology such as Apache
Spark is used to enable large-scale analysis for cube tiles.

7.2.3. Datasets

• Landsat-8 L1TP

• NRCAN DEM

• Gaofen-1

• OpenStreetMap

Please note: The API might not work with every dataset. The API has been tested successfully
with Landsat-8 L1TP.

7.2.4. Coverages API Implementation

This implementation establishes how to access data cube through the official WHU GDC
endpoint http://geos.whu.edu.cn:8097/geocube/gdc_api_v2/

This section lists some examples of how to access the data cube using the implemented Geo
Data Cube API.

Example: /collections

OPEN GEOSPATIAL CONSORTIUM 21-027 80

http://geos.whu.edu.cn:8097/geocube/gdc_api_v2/

http://geos.whu.edu.cn:8097/geocube/gdc_api_v2/collections?limit=10&bbox=112.65942,29.
23223,115.06959,31.36234&time=2016-08-30T02:55:50Z/2018-08-30T02:55:50Z

The API endpoint for retrieving dataset collections. Query parameters including limit, bbox, and
time can be used.

This returns a list of collections in the data cube. The response is shown below.

{
 "collections": [
 {
 "id": "NRCAN_DEM_ARD_EO_19780101080000",
 "title": "DEM_ARD",
 "description": "Satellite images of DEM",
 "extent": {
 "spatial": [
 -95.0,
 76.4450135938,
 -55.6861621295,
 85.1591224444
],
 "temporal": [
 "1978-01-01T08:00:00Z"
]
 },
 "crs": [
 "http://www.opengis.net/def/crs/OGC/1.3/CRS84",
 "http://www.opengis.net/def/crs/EPSG/0/4326"
],
 "links": [
 {
 "href": "/geocube/gdc_api_v2/collections/NRCAN_DEM_ARD_EO_
19780101080000",
 "rel": "self",
 "type": "application/json",
 "title": "NRCAN_DEM_ARD_EO_19780101080000(as PNG; Note:
requesting large extent may result in generalized data)"
 },
 {
 "href": "/geocube/gdc_api_v2/collections/NRCAN_DEM_ARD_EO_
19780101080000/coverage?f=png",
 "rel": "http://www.opengis.net/def/rel/ogc/1.0/coverage",
 "type": "image/png",
 "title": "NRCAN_DEM_ARD_EO_19780101080000(as PNG; Note:
requesting large extent may result in generalized data)"
 },
 {
 "href": "/geocube/gdc_api_v2/collections/NRCAN_DEM_ARD_EO_
19780101080000/coverage?f=tif",
 "rel": "http://www.opengis.net/def/rel/ogc/1.0/coverage",
 "type": "image/tiff; application=geotiff",
 "title": "NRCAN_DEM_ARD_EO_19780101080000(as geoTiff; Note:
 requesting large extent may result in generalized data)"
 },
 {
 "href": "/geocube/gdc_api_v2/collections/NRCAN_DEM_ARD_EO_1
9780101080000/coverage/domainset",
 "rel": "http://www.opengis.net/def/rel/ogc/1.0/coverage-
domainset",
 "type": "application/json",
 "title": "NRCAN_DEM_ARD_EO_19780101080000(domain set of
the coverage for this collection)"

OPEN GEOSPATIAL CONSORTIUM 21-027 81

http://geos.whu.edu.cn:8097/geocube/gdc_api_v2/collections?limit=10&bbox=112.65942,29.23223,115.06959,31.36234&time=2016-08-30T02:55:50Z/2018-08-30T02:55:50Z
http://geos.whu.edu.cn:8097/geocube/gdc_api_v2/collections?limit=10&bbox=112.65942,29.23223,115.06959,31.36234&time=2016-08-30T02:55:50Z/2018-08-30T02:55:50Z

 },
 {
 "href": "/geocube/gdc_api_v2/collections/NRCAN_DEM_ARD_EO_1
9780101080000/coverage/rangetype",
 "rel": "http://www.opengis.net/def/rel/ogc/1.0/coverage-
rangetype",
 "type": "application/json",
 "title": "NRCAN_DEM_ARD_EO_19780101080000(range type of
the coverage for this collection)"
 }
]
 },
 {
 "id": "LC08_L1TP_ARD_EO_20171217025629",
 "title": "Landsat8_ARD",
 "description": "Satellite images of Landsat8",
 "extent": {
 "spatial": [
 112.62546,
 29.23323,
 115.03488,
 31.36008
],
 "temporal": [
 "2017-12-17T02:56:29Z"
]
 },
 "crs": [
 "http://www.opengis.net/def/crs/OGC/1.3/CRS84",
 "http://www.opengis.net/def/crs/EPSG/0/4326"
],
 "links": [
 {
 "href": "/geocube/gdc_api_v2/collections/LC08_L1TP_ARD_EO_
20171217025629",
 "rel": "self",
 "type": "application/json",
 "title": "LC08_L1TP_ARD_EO_20171217025629(as PNG; Note:
requesting large extent may result in generalized data)"
 },
 {
 "href": "/geocube/gdc_api_v2/collections/LC08_L1TP_ARD_EO_
20171217025629/coverage?f=png",
 "rel": "http://www.opengis.net/def/rel/ogc/1.0/coverage",
 "type": "image/png",
 "title": "LC08_L1TP_ARD_EO_20171217025629(as PNG; Note:
requesting large extent may result in generalized data)"
 },
 {
 "href": "/geocube/gdc_api_v2/collections/LC08_L1TP_ARD_EO_
20171217025629/coverage?f=tif",
 "rel": "http://www.opengis.net/def/rel/ogc/1.0/coverage",
 "type": "image/tiff; application=geotiff",
 "title": "LC08_L1TP_ARD_EO_20171217025629(as geoTiff; Note:
 requesting large extent may result in generalized data)"
 },
 {
 "href": "/geocube/gdc_api_v2/collections/LC08_L1TP_ARD_EO_2
0171217025629/coverage/domainset",
 "rel": "http://www.opengis.net/def/rel/ogc/1.0/coverage-
domainset",
 "type": "application/json",

OPEN GEOSPATIAL CONSORTIUM 21-027 82

 "title": "LC08_L1TP_ARD_EO_20171217025629(domain set of
the coverage for this collection)"
 },
 {
 "href": "/geocube/gdc_api_v2/collections/LC08_L1TP_ARD_EO_2
0171217025629/coverage/rangetype",
 "rel": "http://www.opengis.net/def/rel/ogc/1.0/coverage-
rangetype",
 "type": "application/json",
 "title": "LC08_L1TP_ARD_EO_20171217025629(range type of
the coverage for this collection)"
 }
]
 },
 ...
]
}

Example: /collections/{collectionId}

http://geos.whu.edu.cn:8097/geocube/gdc_api_v2/collections/LC08_L1TP_ARD_EO_
20171217025629

The API endpoint for describing the data cube collection
“LC08_L1TP_ARD_EO_20171217025629”.

The response is shown below.

{
 "id": "LC08_L1TP_ARD_EO_20171217025629",
 "title": "Landsat8_ARD",
 "description": "Satellite images of Landsat8",
 "extent": {
 "spatial": [
 112.62546,
 29.23323,
 115.03488,
 31.36008
],
 "temporal": [
 "2017-12-17T02:56:29Z"
]
 },
 "crs": [
 "http://www.opengis.net/def/crs/OGC/1.3/CRS84",
 "http://www.opengis.net/def/crs/EPSG/0/4326"
],
 "links": [
 {
 "href": "/geocube/gdc_api_v2/collections/LC08_L1TP_ARD_EO_
20171217025629",
 "rel": "self",
 "type": "application/json",
 "title": "LC08_L1TP_ARD_EO_20171217025629(as PNG; Note: requesting
large extent may result in generalized data)"
 },
 {
 "href": "/geocube/gdc_api_v2/collections/LC08_L1TP_ARD_EO_
20171217025629/coverage?f=png",
 "rel": "http://www.opengis.net/def/rel/ogc/1.0/coverage",
 "type": "image/png",

OPEN GEOSPATIAL CONSORTIUM 21-027 83

http://geos.whu.edu.cn:8097/geocube/gdc_api_v2/collections/LC08_L1TP_ARD_EO_20171217025629
http://geos.whu.edu.cn:8097/geocube/gdc_api_v2/collections/LC08_L1TP_ARD_EO_20171217025629

 "title": "LC08_L1TP_ARD_EO_20171217025629(as PNG; Note: requesting
large extent may result in generalized data)"
 },
 {
 "href": "/geocube/gdc_api_v2/collections/LC08_L1TP_ARD_EO_
20171217025629/coverage?f=tif",
 "rel": "http://www.opengis.net/def/rel/ogc/1.0/coverage",
 "type": "image/tiff; application=geotiff",
 "title": "LC08_L1TP_ARD_EO_20171217025629(as geoTiff; Note:
requesting large extent may result in generalized data)"
 },
 {
 "href": "/geocube/gdc_api_v2/collections/LC08_L1TP_ARD_EO_201712170
25629/coverage/domainset",
 "rel": "http://www.opengis.net/def/rel/ogc/1.0/coverage-domainset",
 "type": "application/json",
 "title": "LC08_L1TP_ARD_EO_20171217025629(domain set of the
coverage for this collection)"
 },
 {
 "href": "/geocube/gdc_api_v2/collections/LC08_L1TP_ARD_EO_201712170
25629/coverage/rangetype",
 "rel": "http://www.opengis.net/def/rel/ogc/1.0/coverage-rangetype",
 "type": "application/json",
 "title": "LC08_L1TP_ARD_EO_20171217025629(range type of the
coverage for this collection)"
 }
]
}

Example: /collections/{collectionId}/coverage

http://geos.whu.edu.cn:8097/geocube/gdc_api_v2/collections/LC08_L1TP_ARD_EO_
20171217025629/coverage

http://geos.whu.edu.cn:8097/geocube/gdc_api_v2/collections/LC08_L1TP_ARD_EO_
20171217025629/coverage?f=tif&bbox=114.21,30.37,114.41,30.57&rangeSubset=Red,SWIR1,
Coastal,Pan,Near-Infrared

http://geos.whu.edu.cn:8097/geocube/gdc_api_v2/collections/LC08_L1TP_ARD_EO_
20171217025629/coverage?f=png&subset=Lon(114.23:114.45)&scale-factor=3

The API endpoint for accessing a data cube. Query parameters including format(png,geotiff),
bbox, subset,rangeSubset,scale-size,scale-axes,scale-factor.

This returns true color png or mutli-band geotiff of the coverage according to the in specified
area, bands, size and scale.

Example: /collections/{collectionId}/coverage/rangetype

http://geos.whu.edu.cn:8097/geocube/gdc_api_v2/collections/LC08_L1TP_ARD_EO_
20171217025629/coverage/rangetype

The API endpoint for accessing cube range type.

This returns the range type of the multi-band coverage as the dimensions of the cube.

{
 "type": "DataRecord",
 "field": [

OPEN GEOSPATIAL CONSORTIUM 21-027 84

http://geos.whu.edu.cn:8097/geocube/gdc_api_v2/collections/LC08_L1TP_ARD_EO_20171217025629/coverage
http://geos.whu.edu.cn:8097/geocube/gdc_api_v2/collections/LC08_L1TP_ARD_EO_20171217025629/coverage
http://geos.whu.edu.cn:8097/geocube/gdc_api_v2/collections/LC08_L1TP_ARD_EO_20171217025629/coverage?f=tif&bbox=114.21,30.37,114.41,30.57&rangeSubset=Red,SWIR1,Coastal,Pan,Near-Infrared
http://geos.whu.edu.cn:8097/geocube/gdc_api_v2/collections/LC08_L1TP_ARD_EO_20171217025629/coverage?f=tif&bbox=114.21,30.37,114.41,30.57&rangeSubset=Red,SWIR1,Coastal,Pan,Near-Infrared
http://geos.whu.edu.cn:8097/geocube/gdc_api_v2/collections/LC08_L1TP_ARD_EO_20171217025629/coverage?f=tif&bbox=114.21,30.37,114.41,30.57&rangeSubset=Red,SWIR1,Coastal,Pan,Near-Infrared
http://geos.whu.edu.cn:8097/geocube/gdc_api_v2/collections/LC08_L1TP_ARD_EO_20171217025629/coverage?f=png&subset=Lon(114.23:114.45)&scale-factor=3
http://geos.whu.edu.cn:8097/geocube/gdc_api_v2/collections/LC08_L1TP_ARD_EO_20171217025629/coverage?f=png&subset=Lon(114.23:114.45)&scale-factor=3
http://geos.whu.edu.cn:8097/geocube/gdc_api_v2/collections/LC08_L1TP_ARD_EO_20171217025629/coverage/rangetype
http://geos.whu.edu.cn:8097/geocube/gdc_api_v2/collections/LC08_L1TP_ARD_EO_20171217025629/coverage/rangetype

 {
 "type": "Quantity",
 "name": "SWIR1",
 "description": "SWIR1 channel",
 "uom": {
 "type": "UnitReference",
 "code": "1"
 },
 "encodingInfo": {
 "dataType": "http://www.opengis.net/def/dataType/OGC/0/float32"
 }
 },
 {
 "type": "Quantity",
 "name": "Coastal",
 "description": "Coastal channel",
 "uom": {
 "type": "UnitReference",
 "code": "1"
 },
 "encodingInfo": {
 "dataType": "http://www.opengis.net/def/dataType/OGC/0/float32"
 }
 },
 {
 "type": "Quantity",
 "name": "Blue",
 "description": "Blue channel",
 "uom": {
 "type": "UnitReference",
 "code": "1"
 },
 "encodingInfo": {
 "dataType": "http://www.opengis.net/def/dataType/OGC/0/float32"
 }
 },
 {
 "type": "Quantity",
 "name": "Cirrus",
 "description": "Cirrus channel",
 "uom": {
 "type": "UnitReference",
 "code": "1"
 },
 "encodingInfo": {
 "dataType": "http://www.opengis.net/def/dataType/OGC/0/float32"
 }
 },
 {
 "type": "Quantity",
 "name": "Red",
 "description": "Red channel",
 "uom": {
 "type": "UnitReference",
 "code": "1"
 },
 "encodingInfo": {
 "dataType": "http://www.opengis.net/def/dataType/OGC/0/float32"
 }
 },
 {
 "type": "Quantity",
 "name": "Green",

OPEN GEOSPATIAL CONSORTIUM 21-027 85

 "description": "Green channel",
 "uom": {
 "type": "UnitReference",
 "code": "1"
 },
 "encodingInfo": {
 "dataType": "http://www.opengis.net/def/dataType/OGC/0/float32"
 }
 },
 {
 "type": "Quantity",
 "name": "Near-Infrared",
 "description": "Near-Infrared channel",
 "uom": {
 "type": "UnitReference",
 "code": "1"
 },
 "encodingInfo": {
 "dataType": "http://www.opengis.net/def/dataType/OGC/0/float32"
 }
 },
 {
 "type": "Quantity",
 "name": "Pan",
 "description": "Pan channel",
 "uom": {
 "type": "UnitReference",
 "code": "1"
 },
 "encodingInfo": {
 "dataType": "http://www.opengis.net/def/dataType/OGC/0/float32"
 }
 },
 {
 "type": "Quantity",
 "name": "SWIR2",
 "description": "SWIR2 channel",
 "uom": {
 "type": "UnitReference",
 "code": "1"
 },
 "encodingInfo": {
 "dataType": "http://www.opengis.net/def/dataType/OGC/0/float32"
 }
 }
]
}

Example: /collections/{collectionId}/coverage/domainset

http://geos.whu.edu.cn:8097/geocube/gdc_api_v2/collections/LC08_L1TP_ARD_EO_
20171217025629/coverage/domainset

The API endpoint for accessing cube domain set.

This returns the domain set of a coverage.

{
 "type": "DomainSet",
 "generalGrid": {
 "type": "GeneralGridCoverageType",
 "srsName": "http://www.opengis.net/def/crs/OGC/1.3/CRS84",

OPEN GEOSPATIAL CONSORTIUM 21-027 86

http://geos.whu.edu.cn:8097/geocube/gdc_api_v2/collections/LC08_L1TP_ARD_EO_20171217025629/coverage/domainset
http://geos.whu.edu.cn:8097/geocube/gdc_api_v2/collections/LC08_L1TP_ARD_EO_20171217025629/coverage/domainset

 "axisLabels": [
 "Lon",
 "Lat"
],
 "axis": [
 {
 "type": "RegularAxis",
 "axisLabel": "Lon",
 "lowerBound": 112.62546,
 "upperBound": 115.03488,
 "resolution": 27.5
 },
 {
 "type": "RegularAxis",
 "axisLabel": "Lat",
 "lowerBound": 29.23323,
 "upperBound": 31.36008,
 "resolution": 27.5
 }
],
 "gridLimits": {
 "type": "GridLimits",
 "srsName": "http://www.opengis.net/def/crs/OGC/0/Index2D",
 "axisLabels": [
 "i",
 "j"
],
 "axis": [
 {
 "type": "IndexAxisType",
 "axisLabel": "i",
 "lowerBound": 0.0,
 "upperBound": 15999.0,
 "resolution": null
 },
 {
 "type": "IndexAxisType",
 "axisLabel": "j",
 "lowerBound": 0.0,
 "upperBound": 11999.0,
 "resolution": null
 }
]
 }
 }
}

7.2.5. Processes API Implementation

This implementation establishes how to perform analysis on a data cube through the
implemented GDC API.

This section lists some examples.

Example: /processes

http://geos.whu.edu.cn:8097/geocube/gdc_api_v2/processes

The API endpoint for retrieving the processes list.

OPEN GEOSPATIAL CONSORTIUM 21-027 87

http://geos.whu.edu.cn:8097/geocube/gdc_api_v2/processes

This returns a list of processes implemented in the GeoCube. The response is shown below.

[
 {
 "id": "aspect",
 "title": "aspect",
 "version": "1.0.0",
 "jobControlOptions": [
 "async-execute"
],
 "outputTransmission": [
 "value",
 "reference"
],
 "links": [
 {
 "href": "/geocube/gdc_api_v2/processes/aspect",
 "rel": "self",
 "type": "application/json",
 "title": "process description"
 }
]
 },
 {
 "id": "slope",
 "title": "slope",
 "version": "1.0.0",
 "jobControlOptions": [
 "async-execute"
],
 "outputTransmission": [
 "value",
 "reference"
],
 "links": [
 {
 "href": "/geocube/gdc_api_v2/processes/slope",
 "rel": "self",
 "type": "application/json",
 "title": "process description"
 }
]
 },
 {
 "id": "ndvi",
 "title": "ndvi",
 "version": "1.0.0",
 "jobControlOptions": [
 "async-execute"
],
 "outputTransmission": [
 "value",
 "reference"
],
 "links": [
 {
 "href": "/geocube/gdc_api_v2/processes/ndvi",
 "rel": "self",
 "type": "application/json",
 "title": "process description"
 }
]
 },

OPEN GEOSPATIAL CONSORTIUM 21-027 88

 {
 "id": "ndwi",
 "title": "ndwi",
 "version": "1.0.0",
 "jobControlOptions": [
 "async-execute"
],
 "outputTransmission": [
 "value",
 "reference"
],
 "links": [
 {
 "href": "/geocube/gdc_api_v2/processes/ndwi",
 "rel": "self",
 "type": "application/json",
 "title": "process description"
 }
]
 }
]

Example: /processes/{processId}

http://geos.whu.edu.cn:8097/geocube/gdc_api_v2/processes/ndwi

The API endpoint for retrieving a process description (e.g. ndwi).

This returns the description of “ndwi” process. The response is shown below.

{
 "id": "ndwi",
 "title": "ndwi",
 "version": "1.0.0",
 "jobControlOptions": [
 "async-execute"
],
 "outputTransmission": [
 "value",
 "reference"
],
 "inputs": {
 "rasterProductName": {
 "title": "raster input",
 "schema": {
 "type": "string",
 "default": "LC08_L1TP_ARD_EO"
 },
 "minOccurs": 1,
 "maxOccurs": 1
 },
 "extent": {
 "title": "extent",
 "description": "Bounding box of the extent to process",
 "schema": {
 "allOf": [
 {
 "format": "ogc-bbox"
 },
 {
 "$ref": "https://raw.githubusercontent.com/
opengeospatial/ogcapi-processes/master/core/openapi/schemas/bbox.yaml"
 }

OPEN GEOSPATIAL CONSORTIUM 21-027 89

http://geos.whu.edu.cn:8097/geocube/gdc_api_v2/processes/ndwi

],
 "default": {
 "bbox": [
 113.3,
 30.5,
 113.5,
 30.7
],
 "crs": "http://www.opengis.net/def/crs/OGC/1.3/CRS84"
 }
 },
 "minOccurs": 0,
 "maxOccurs": 1
 },
 "startTime": {
 "title": "startTime",
 "schema": {
 "type": "string",
 "default": "2017-01-01"
 },
 "minOccurs": 1,
 "maxOccurs": 1
 },
 "endTime": {
 "title": "endTime",
 "schema": {
 "type": "string",
 "default": "2018-01-01"
 },
 "minOccurs": 1,
 "maxOccurs": 1
 }
 },
 "outputs": {
 "ndwiResult": {
 "title": "NDWI Result",
 "description": "Normalize Difference Water Index",
 "schema": {
 "oneOf": [
 {
 "type": "string",
 "contentEncoding": "binary",
 "contentMediaType": "image/tiff; application=geotiff"
 },
 {
 "type": "string",
 "contentEncoding": "binary",
 "contentMediaType": "image/png"
 }
]
 }
 }
 },
 "links": [
 {
 "href": "geocube/gdc_api_v2/processes/ndwi/execution",
 "rel": "http://www.opengis.net/def/rel/ogc/1.0/execute",
 "title": "NDWI Execute endpoint"
 }
]
}

OPEN GEOSPATIAL CONSORTIUM 21-027 90

Example: /processes/{processId}/execute

http://geos.whu.edu.cn:8097/geocube/processes_api/processes/ndwi/execution

The API endpoint for creating a new job.

Request body example:

{
 "process" : "http://geos.whu.edu.cn:8097/geocube/gdc_api_v2/processes/ndwi",
 "inputs" : {
 "rasterProductName" : "LC08_L1TP_ARD_EO",
 "startTime" : "2017-01-01",
 "endTime" : "2018-01-01",
 "extent" : {
 "bbox" : [114.3, 30.5, 114.5, 30.7],
 "crs" : "http://www.opengis.net/def/crs/OGC/1.3/CRS84"
 }
 }
}

The response is as follows:

{
 "jobID": "60fe95e1-a077-40fe-b05e-346bd6373880",
 "progress": 40,
 "links": {
 "href": "/geocube/gdc_api_v2/processes/ndwi/jobs/60fe95e1-a077-40fe-
b05e-346bd6373880",
 "rel": "self",
 "type": "application/json",
 "title": "ndwi"
 },
 "type": "processes",
 "message": "Process is running",
 "status": "running"
}

Example: /processes/{processId}/jobs/{jobId}

http://geos.whu.edu.cn:8097/geocube/gdc_api_v2/processes/ndwi/jobs/{jobId}

The API endpoint for retrieving status of a job, which retrieves same returns as the above.

Example: /processes/{processId}/jobs/{jobId}/results

http://geos.whu.edu.cn:8097/geocube/gdc_api_v2/processes/ndwi/jobs/{jobId}/results

The API endpoint for retrieving results of a job, which are encoded as follows:

[
 {
 "id": "2017_01_24",
 "value": {
 "inlineValue": "/geocube/gdc_api_v2/results/view/F59E2F8CE40897CFB0
3CA50512096317/60fe95e1-a077-40fe-b05e-346bd6373880/NDWI_2017_01_24.png"
 }
 },
 {
 "id": "2017_12_17",
 "value": {

OPEN GEOSPATIAL CONSORTIUM 21-027 91

http://geos.whu.edu.cn:8097/geocube/processes_api/processes/ndwi/execution
http://geos.whu.edu.cn:8097/geocube/gdc_api_v2/processes/ndwi/jobs/%7BjobId%7D
http://geos.whu.edu.cn:8097/geocube/gdc_api_v2/processes/ndwi/jobs/%7BjobId%7D/results

 "inlineValue": "/geocube/gdc_api_v2/results/view/F59E2F8CE40897CFB0
3CA50512096317/60fe95e1-a077-40fe-b05e-346bd6373880/NDWI_2017_12_17.png"
 }
 },
 {
 "id": "2017_08_27",
 "value": {
 "inlineValue": "/geocube/gdc_api_v2/results/view/F59E2F8CE40897CFB0
3CA50512096317/60fe95e1-a077-40fe-b05e-346bd6373880/NDWI_2017_08_27.png"
 }
 }
]

7.2.6. Geo Data Cube (GDC) API design

NOTE: Here {cubeID} is equivalent to the OGC API — Common — Part 2: Geospatial data
{collectionID} and highlights the fact that this resource is a representation of a multi-
dimensional data cube.

• /collections: to get the list of GDC instances. Each cube instance is described by multi-
dimensions including extent, time range, list of available products, and resolution if it is a
raster product. The products can contain various datasets like raster data, vector data, and
point cloud data. These cube instances can be filtered by the dimensions.

• /collections/{cubeID}: to describe the cube. Returns the dimension information of the
cube. Continuous dimension (e.g. space and time) is comprised by a range, while discrete
dimension (e.g. product and resolution) consists of a list of discrete members.

• /collections/{cubeID}/coverage: to access data from the collection using OGC API —
Coverages.

• /collections/{cubeID}/processes: to perform analytics functions using OGC API —
Processes.

• /collections/{cubeID}/dapa: to get the list of available data retrieval patterns including
(based on DAPA): for example

• /collections/{cubeID}/dapa/area:aggregate + dimension:
space,time,product,resolution (aggregate along these dimensions)

• /collections/{cubeID}/dapa/position:aggregate + dimension:
time,product,resolution (aggregate along these dimensions)

The following endpoints are specific to the Wuhan University implementation:

• /collections/{cubeID}/dimensions: to describe the shared dimensions formalizing that
cube, which can be space, time, product, theme and so on.

• /collections/{cubeID}/sources: to describe the data sources composing that cube,
which can be a variety of products.

OPEN GEOSPATIAL CONSORTIUM 21-027 92

• /collections/{cubeID}/cells: to get the list of cells/facts in the cube, each cell
contains a measure (single pixel/point or collection of pixels/points) which is characterized
by the dimensions. These cells can be filtered by the dimensions (product, space, time, and
theme), allowing multi-dimensional subsetting.

• /collections/{cubeID}/cells/{cellId}: to get the detailed information of one
particular cell/fact in the cube.

7.3. MEEO Geo Data Cube API Server Implementation
(D177)

The MEEO server has been developed to follow or encapsulate the set of OGC API
specifications for the Geo Data Cube API.

This server supports the following specifications: OGC API — Common, Records, Tiles and
Processes (to be finalized).

The datasets are collected and organized on an NFS volume at MEEO Cloud Infrastructure; the
indexing of data stored on public s3 buckets is also supported.

Figure 15 — Architecture of MEEO service implementation

7.3.1. MEEO Server Endpoint

https://testbed17.adamplatform.eu/datacube/api/v0

7.3.2. Idea for a Geo Data Cube

The idea behind the MEEO Geo Data Cube service is to index the datasets (data) suggested
in the CFP, and to expose a series of services per datasets, namely: discovery (e.g. OGC API —
Records or equivalent), access (e.g. OGC API — Tiles or equivalent) and processing (e.g. OGC API
— Processes or equivalent).

OPEN GEOSPATIAL CONSORTIUM 21-027 93

https://testbed17.adamplatform.eu/datacube/api/v0

The idea is not to define a closed list of services and standards, but rather to provide human/
machine readable services to support the exploitation of the data.

7.3.3. Geo Data Cube discovery

https://testbed17.adamplatform.eu/datacube/api/v0/datasets

This API provides the list of datasets indexed in the Geo Data Cube instance.

7.3.4. Geo Data Cube dataset fetch

https://testbed17.adamplatform.eu/datacube/api/v0/datasets/CA_harvest_year

This API provides details about the dataset = datasetID (e.g. CA_harvest_year), including
description and services.

In the description subdocument, all the information about geolocation, time range, data type,
etc. can be found.

In the services subdocument all the enabled services can be found.

7.3.5. Geo Data Cube dataset Records API

https://testbed17.adamplatform.eu/datacube/api/v0/datasets/CA_harvest_year/search

This API exposes the discovery service to list the actual resources (i.e. raster) available for the
dataset {datasetID} (e.g. CA_harvest_year).

This API relies on the OpenSearch conformance class, with Geo and Time extensions.

7.3.6. Geo Data Cube dataset Tiles API

https://testbed17.adamplatform.eu/datacube/api/v0/datasets/CA_harvest_year/tiles/gist_
rainbow_mpl;nodata=0.000000;colorrange=(0.000000,115.000000)/1984-12-31T00:00:
00Z/1985-01-01T00:00:00Z/EPSG:3857/9/157/171.png

This API exposes the access and visualization services for exploiting the actual resources (i.e.
raster data) available for the dataset `{datasetID} (e.g. CA_harvest_year).

This API relies on the Dataset Tile Sets conformance class, for what concerns the Style, and on
the Geo Data Resource Selection conformance class, for what regards Tiles.

OPEN GEOSPATIAL CONSORTIUM 21-027 94

https://testbed17.adamplatform.eu/datacube/api/v0/datasets
https://testbed17.adamplatform.eu/datacube/api/v0/datasets/CA_harvest_year
https://testbed17.adamplatform.eu/datacube/api/v0/datasets/CA_harvest_year/search
https://testbed17.adamplatform.eu/datacube/api/v0/datasets/CA_harvest_year/tiles/gist_rainbow_mpl;nodata=0.000000;colorrange=(0.000000,115.000000)/1984-12-31T00:00:00Z/1985-01-01T00:00:00Z/EPSG:3857/9/157/171.png
https://testbed17.adamplatform.eu/datacube/api/v0/datasets/CA_harvest_year/tiles/gist_rainbow_mpl;nodata=0.000000;colorrange=(0.000000,115.000000)/1984-12-31T00:00:00Z/1985-01-01T00:00:00Z/EPSG:3857/9/157/171.png
https://testbed17.adamplatform.eu/datacube/api/v0/datasets/CA_harvest_year/tiles/gist_rainbow_mpl;nodata=0.000000;colorrange=(0.000000,115.000000)/1984-12-31T00:00:00Z/1985-01-01T00:00:00Z/EPSG:3857/9/157/171.png

7.4. Ecere Geo Data Cube API Server Implementation (in-
kind)

Ecere’s GNOSIS Map Server is an OGC certified compliant implementation of OGC API —
Features, and supports a number of additional OGC API standards and draft specifications,
including Common, Coverages, Features — Part 2: CRS and Part 3: Filtering, Processes (including
Workflows & Chaining), Tiles, Maps, Styles, GeoVolumes and Routes.

7.4.1. Elevation datasets

Elevation datasets from NRCan’s HRDEM of the Red River area in Manitoba, and of the Ottawa
river were loaded onto Ecere’s OGC API demonstration server.

OPEN GEOSPATIAL CONSORTIUM 21-027 95

https://open.canada.ca/data/en/dataset/957782bf-847c-4644-a757-e383c0057995
https://maps.ecere.com/ogcapi/collections/HRDEM-RedRiver
https://maps.ecere.com/ogcapi/collections/HRDEM-Ottawa
https://maps.ecere.com/ogcapi/collections/HRDEM-Ottawa

Figure 16 — NRCan HRDEM for Red River area in Manitoba at
1 and 2 m resolution rendered by Ecere’s GNOSIS Map Server

OPEN GEOSPATIAL CONSORTIUM 21-027 96

Figure 17 — NRCan HRDEM for Ottawa river area rendered by Ecere’s GNOSIS Map Server

Bathymetry datasets from CHS NONNA, were also loaded for resolutions of 10 m (partial
dataset) and 100 m (whole dataset).

Figure 18 — CHS NONNA at 10m resolution rendered by Ecere’s GNOSIS Map Server

OPEN GEOSPATIAL CONSORTIUM 21-027 97

https://data.chs-shc.ca/map
https://maps.ecere.com/ogcapi/collections/CHSBathymetryNONNA10
https://maps.ecere.com/ogcapi/collections/CHSBathymetryNONNA100

Figure 19 — CHS NONNA at 100m resolution rendered by Ecere’s GNOSIS Map Server

In the following screenshot, both terrestrial elevation from the HRDEM and bathymetry from
the 10 m NONNA are accessed and visualized together in Ecere’s GNOSIS Cartographer client.

Figure 20 — HRDEM from RedRiver and CHS NONNA at 10m resolution visualized
accessed from Ecere’s GNOSIS Map Server and visualized in GNOSIS Cartographer

OPEN GEOSPATIAL CONSORTIUM 21-027 98

7.4.2. Coverages API Implementation

The server implements support for OGC API — Coverages, including the subsetting and scaling
conformance classes. Efforts were spent during the initiative to enable the ability to serve
multi-band data cubes made up of multiple scenes such as Landsat-8 imagery. However, these
capabilities, which will also support range subsetting and the proposed Scenes API capability,
remain to be completed.

The following query URL demonstrates accessing raw values from an elevation data cube served
by Ecere’s OGC API demonstration server sourced from a high resolution Digital Elevation
Model provided by NRCan, downsampled (by a factor of 2) and subset along both the latitude
and longitude axes, using the Coverages API as a GeoTIFF.

Downsampled and subset coverage request

https://maps.ecere.com/ogcapi/collections/HRDEM-Ottawa/coverage?scale-factor=2&subset=
Lat(45.44:45.47),Lon(-75.7:-75.6)&f=geotiff

The following URLs point to the collection description resource for this data cube, which itself
provides a link to the description of the domain and range, which in this case are also available
separately.

https://maps.ecere.com/ogcapi/collections/HRDEM-Ottawa

https://maps.ecere.com/ogcapi/collections/HRDEM-Ottawa/coverage/domainset?f=json

https://maps.ecere.com/ogcapi/collections/HRDEM-Ottawa/coverage/rangetype?f=json

The server also supports a prototype of what a CRS extension could look like, based on an
approach similar to OGC API — Features — Part 2. For example, the following returns the same
coverage projected as World Mercator (EPSG:3395) rather than the default in Plate carrée
(EPSG:4326):

https://maps.ecere.com/ogcapi/collections/HRDEM-Ottawa/coverage?crs=epsg:3395&scale-
factor=8&f=tiff

7.4.3. Processes API Implementation

Ecere’s GNOSIS Map Server supports OGC API — Processes — Part 1: Core using synchronous
execution. The Map Server also supports the draft Part 3: Workflows & Chaining specification
allowing first setting up an execution of an individual process or a workflow, and then triggering
execution for an area and resolution of interest, and retrieval of the result in a negotiated
format. The retrieval can be done using OGC API — Tiles regardless of whether the result of the
execution is a coverage, a collection of vector features or a map, or using OGC API — Features,
Coverages or Maps depending on the type of output. If the result of the execution is vector data,
requests can still be made using OGC API — Maps or Tiles which will additionally trigger server
side rendering of the output.

OPEN GEOSPATIAL CONSORTIUM 21-027 99

https://maps.ecere.com/ogcapi
https://maps.ecere.com/ogcapi/collections/HRDEM-Ottawa/coverage?scale-factor=2&subset=Lat(45.44:45.47),Lon(-75.7:-75.6)&f=geotiff
https://maps.ecere.com/ogcapi/collections/HRDEM-Ottawa/coverage?scale-factor=2&subset=Lat(45.44:45.47),Lon(-75.7:-75.6)&f=geotiff
https://maps.ecere.com/ogcapi/collections/HRDEM-Ottawa
https://maps.ecere.com/ogcapi/collections/HRDEM-Ottawa/coverage/domainset?f=json
https://maps.ecere.com/ogcapi/collections/HRDEM-Ottawa/coverage/rangetype?f=json
https://maps.ecere.com/ogcapi/collections/HRDEM-Ottawa/coverage?crs=epsg:3395&scale-factor=8&f=tiff
https://maps.ecere.com/ogcapi/collections/HRDEM-Ottawa/coverage?crs=epsg:3395&scale-factor=8&f=tiff

A list of processes is available at the https://maps.ecere.com/ogcapi/processes end-point.

Process description example

https://maps.ecere.com/ogcapi/processes/RFClassify?f=json

Requesting the RFClassify process description will return the following JSON response.

{
 "id" : "RFClassify",
 "title" : "Random Forest Classification",
 "version" : "1.0.0",
 "jobControlOptions": [
 "sync-execute", "workflow-collection"
],
 "outputTransmission" : ["value"],
 "description" : "This process outputs a random-forest classified image using
imagery and training feature dataset",
 "links" : [{
 "href" : "https://maps.ecere.com/ogcapi/processes/RFClassify/execution",
 "rel" : "http://www.opengis.net/def/rel/ogc/1.0/execute",
 "title" : "Execution endpoint"
 }],
 "inputs" : {
 "data" :
 {
 "title" : "The data set",
 "description" : "The collection containing the imagery for the
randomforest process.",
 "minOccurs" : 1,
 "maxOccurs" : 1,
 "schema" : {
 "oneOf": [
 {
 "type": "string",
 "contentEncoding": "binary",
 "contentMediaType": "image/tiff; application=geotiff"
 },
 {
 "type": "string",
 "contentEncoding": "binary",
 "contentMediaType": "image/png"
 }
]
 }
 }
 },
 "outputs" : {
 "classification" :
 {
 "title" : "Classified image",
 "description" : "Classified image",
 "schema" : {
 "oneOf": [
 {
 "type": "string",
 "contentEncoding": "binary",
 "contentMediaType": "image/tiff; application=geotiff"
 },
 {
 "type": "string",
 "contentEncoding": "binary",

OPEN GEOSPATIAL CONSORTIUM 21-027 100

https://maps.ecere.com/ogcapi/processes
https://maps.ecere.com/ogcapi/processes/RFClassify?f=json

 "contentMediaType": "image/png"
 }
]
 }
 }
 }
}

Process execution

A process execution is submitted at /processes/{processId}/execution for synchronous
execution. At the publication date of this ER, a separate endpoint (/processes/{processId})
was used to set up a workflow and retrieve a description of the resulting virtual collection. In the
future, this capability will likely move to the same /execution endpoint, differentiated from a
regular synchronous or asynchronous execution request by using a query parameter to request a
collection description or landing page to be returned.

Inputs to the process are specified as part of the execution request. All defined outputs are
returned by default, if not explicitly including an “outputs” section in the request. The HTML
representation of the process endpoint provides a form to easily submit an execution request.
For example, the following request can be submitted to the RenderMap process located at
https://maps.ecere.com/ogcapi/processes/RenderMap:

{
 "process" : "https://maps.ecere.com/ogcapi/processes/RenderMap",
 "inputs" : {
 "background" : "navy",
 "transparent" : false,
 "layers" : [
 { "collection" : "https://maps.ecere.com/ogcapi/collections/CHSBathyme
tryNONNA100" },
 { "collection" : "https://maps.ecere.com/ogcapi/collections/CHSBathyme
tryNONNA10" }
]
 }
}

Upon execution the output is generated and exists as a temporary virtual collection, e.g. …/
ogcapi/scratch/31FDA020. These can be accessed and used like any other collection.

7.4.4. Tiles API Implementation

The server supports vector and coverage data as well as map tiles.

The tile URL template for coverages is:

/collections/{collectionID}/coverage/tiles/{tileMatrixSetId}/{tileMatrix}/{tile
Row}/{tileCol}.{format}

Multiple tiling schemes are supported. This example requests the HRDEM-Ottawa coverage tiles
as GeoTIFF with the WebMercatorQuad tiling scheme.

HRDEM-Ottawa coverage tiles

https://maps.ecere.com/ogcapi/collections/HRDEM-Ottawa/coverage/tiles/
WebMercatorQuad/13/2931/2374.tif

OPEN GEOSPATIAL CONSORTIUM 21-027 101

https://maps.ecere.com/ogcapi/processes/RenderMap
https://maps.ecere.com/ogcapi/collections/HRDEM-Ottawa/coverage/tiles/WebMercatorQuad/13/2931/2374.tif
https://maps.ecere.com/ogcapi/collections/HRDEM-Ottawa/coverage/tiles/WebMercatorQuad/13/2931/2374.tif

The request for the same dataset as map tiles would be as follows:

HRDEM-Ottawa map tiles

https://maps.ecere.com/ogcapi/collections/HRDEM-Ottawa/map/tiles/
WebMercatorQuad/13/2931/2374.png

OPEN GEOSPATIAL CONSORTIUM 21-027 102

https://maps.ecere.com/ogcapi/collections/HRDEM-Ottawa/map/tiles/WebMercatorQuad/13/2931/2374.png
https://maps.ecere.com/ogcapi/collections/HRDEM-Ottawa/map/tiles/WebMercatorQuad/13/2931/2374.png

8

IMPLEMENTED CLIENT
COMPONENTS

OPEN GEOSPATIAL CONSORTIUM 21-027 103

8 IMPLEMENTED CLIENT COMPONENTS

This chapter describes the different Geo Data Cube client components developed and enhanced
during this project by Solenix, Ethar, and Ecere.

The following table summarizes the capabilities implemented by each client:

Table 3 — Clients components

PROVIDER CAPABILITIES

Solenix (Web WorldWind)
Coverages (1,2,3,4), Processes (Workflows:
 10)

Ethar Coverages (1,2,3,4), Augmented Reality

Ecere (GNOSIS Cartographer)
Coverages (1,2,3,4,5,6), Processes (7,8,
Workflows: 9,10)

Table 4 — GDC API Capabilities

1. Common-1: Core

2. Common-2: Collections

3. Coverages-1

4. Coverages-1 (Subsetting)

5. Coverages-1 (Range subsetting)

6. Coverages-1 (Scaling)

7. Processes-1 (Sync execution)

8. Processes-1 (Async execution)

9. Processes-3: Workflows (Collection Input)

10. Processes-3: Workflows (Collection Output)

OPEN GEOSPATIAL CONSORTIUM 21-027 104

8.1. Solenix Geo Data Cube API Client Implementation
(D124)

The Solenix Geo Data Cube API client consists of three main components:

1. The API client that is generated based on the preliminary Geo Data Cube API
definition and used to communicate with corresponding servers

2. A connector for Web WorldWind that bridges between the experimental GDC
API and ties in the API responses into visual layers on WorldWind using existing
means, such as placemarks, image layers, 3D models (e.g. for DEMs)

3. A demonstrator that uses Web WorldWind to showcase the end-to-end
capabilities.

The demonstrator is deployed at https://ogctb17-gdc-breithorn.solenix.ch/#/globe

The most interesting aspects about this experiment are:

• Execution in a browser exhibits particular challenges for the execution and communication
with remote services as it is executed in the restricted JavaScript sandbox in a browser.
Considerations such as HTTP vs. HTTPS access, CORS and limitations in processing of
data are to be considered.

• Exploration of the API Client in a real-world scenario, using Web WorldWind

• Focus on a constrained environment (web browser, JavaScript runtime) that puts specific
emphasis for features on the server, e.g. sub-setting, resampling.

Clients are an integral part of the execution, analysis and improvement of TIE experiments as
they identify the intended use cases and possible limitations in the backend, middleware or
frontend applications.

OPEN GEOSPATIAL CONSORTIUM 21-027 105

https://ogctb17-gdc-breithorn.solenix.ch/#/globe

Figure 21 — WebWorldWind client visualizing Blue
Marble spatio-temporal data cube from Ecere GDC API

8.1.1. Scope and functional Focus

The client can connect to different data back-ends and uses the same API client implementation
for all of them. In the course of the thread described in this ER, various flavors of a Data Cube
API were discussed. Consequently, the servers may implement specific subsets or deviate in
certain aspects from the REST resource structure that this GDC client expects.

The TIE experiments were thus focused on covering the basics such as initial connection,
collection discovery, and metadata retrieval for all servers. Ideally, access to the data provided
by resources is then available in a systematic fashion, where the URL pattern / template is part
of the metadata and allows the client to retrieve the tiles of the resource independent of the
server’s implementation.

8.1.2. Goal and Challenges

The following goals and challenges were tackled with the development of this client:

• The client API should be as uniform as possible, allowing connection to different servers
that provide the standard API endpoints (landing page, collection enumeration, links to
those collections).
A connection should be possible to any server that provides these basic endpoints.

• The GDC API is not strictly defined yet and could potentially contain data in any OGC
format (e.g. coverages, features, records, etc).

• Response formats should be supported for the demonstrator to a reasonable degree,
i.e. not necessarily with all depth that the standard has to offer but with enough

OPEN GEOSPATIAL CONSORTIUM 21-027 106

functionality that the concept can be shown. Accordingly, the client’s development was
started with using other OGC APIs and consuming their respective responses in order
to visualize them and adapted to use the correct resource URLs and requests specific
to the GDC API.

• Servers that deviate too far from the majority consensus of presenting data may not be
supported. There is not enough time to implement multiple extensive client libraries.

• The servers should support HTTPS, as the demonstrator is hosted on an HTTPS server and
HTTP resources are considered insecure and will be blocked.

• The GDC API should support tiling / sub-setting / mip-mapping of data in order to fetch
reasonable sized partial resources to overlay on the globe.

• Reasonable size means 1-3x the final rendered size at a particular zoom level. A
little bit of oversampling is ok and manageable, but gigabyte-sized images or vector
collections are not.

• Reasonable size for images / raster data means common OpenGL texture buffer sized
images, e.g. 1024×1024 — 4096×4096 (depending on hardware and driver support.
The lower bound limit might be preferred for resource constrained environments.)

Larger images need to be tiled either way in order to render them on screen. Preferably,
this tiling is already done at the data source. Even though it is possible to do more complex
processing of downloaded files, to retrieve specific slices of a file and to do more complex
processing in a browser, it is not an efficient use of resources. A more efficient approach in
terms of processing power is to pre-compute results on the server and provide them via a Tiling
capability on the server instead of downloading gigabytes of data into a resource constrained
browser environment, possibly via slow internet connection, to then possibly discard most of it
to render the visible pixels on screen.

OPEN GEOSPATIAL CONSORTIUM 21-027 107

Figure 22 — WebWorldWind client visualizing elevation data from the 52°North GDC API

8.1.3. Implementation

A Typescript API was generated using the OpenAPI specification from Ecere’s server
implementation. This generated API provides Typescript bindings for maps, coverages and
processes. The client application written in Angular uses the API to retrieve data and displays it
on the WebWorldWind globe.

OPEN GEOSPATIAL CONSORTIUM 21-027 108

Figure 23 — WebWorldWind client visualizing processing results
from Ecere GDC API using Workflows & Chaining (collection output)

The following functionality is implemented on the client:

• Retrieving list of collections

• Defining bounding box

• Defining time using a time slider

• “Play” button to automatically move the time forward

• Rendering output PNG or GeoTIFF on the globe

• Retrieving list of processes

• Defining process input as JSON

• Executing process synchronously

• Rendering process output PNG on the globe

• Retrieving heightmap data (SRTM_ViewFinderPanorama from Ecere API)

OPEN GEOSPATIAL CONSORTIUM 21-027 109

Figure 24 — WebWorldWind demonstrator application showing
successful Coverages TIE with Wuhan University GDC API

Figure 25 — WebWorldWind demonstrator application showing successful
Coverages TIE with Wuhan University GDC API at a smaller scale

OPEN GEOSPATIAL CONSORTIUM 21-027 110

8.1.4. Future improvements

The following improvements are recommended for implementation in future testbeds:

• Visualizing CoverageJSON data

• Asynchronous process execution

• Band subsetting

• Scaling

• UI for defining heightmap inputs

8.2. Ethar Geo Data Cube API Client Implementation
(D125)

The Ethar Geo Data Cube API client is a web-based geospatial client with WebXR-based
immersive visualization, based on the preliminary Geo Data Cube API definition.

We believe that our WebXR-based approach to geo data visualization enjoys the benefits of
an open web platform. By leveraging emerging web-standards for XR we reduce the risk of
obsolescence, reduce the risk of platform lock-in and reduce maintenance costs. Building for
the web also offers superior control over app publishing: app functionality can be updated
instantly, the architecture of an app enjoys the interoperable flexibility of a modern web-stack,
and deployment can be centralized for many platforms. Using web technologies also offers the
benefit that it is a trusted platform for user-data, and avoids some of the pitfalls and subversion
that can be encountered with on-device apps or user data.

Our client uses Web Assembly which allows us to bring optimized hardware native code to the
web:

• Allows use of C/C++/Rust and other languages

• Supports many system APIs

• Compiles to bytecode, which at runtime compiles to machine code via JIT for near-native
performance

• Integrates with JavaScript and web APIs including WebGL, Fetch

• Typically 70-95% native performance on benchmarks

The example client implementation can be found here:

OPEN GEOSPATIAL CONSORTIUM 21-027 111

https://au.gmented.com/app/OGCT17/?usePolyfill=0

The client requires either an Oculus Quest, Hololens 2, Windows PC VR with Google Chrome,
or Android mobile phone running Google Chrome (this app depends on experimental browser
features and needs a flag set).

Additional detail and examples may be found here:

https://www.ethar.com/ogc17/

The novel technical challenges addressed by Ethar’s client implementation include:

• Client is web-based, leveraging recent and experimental browser features including
WebAssembly and WebXR.

• This implementation operates within the relatively restrictive code-execution environment
of the web browser and must contend with the constraints of web-stack, in particular the
orchestration of JavaScript, WebAssembly and cross-origin isolation.

• Cross-browser, and cross-platform support for web-based augmented reality is nascent,
and in practice much compatibility coding is required to support as many web-browsers as
possible.

OPEN GEOSPATIAL CONSORTIUM 21-027 112

https://au.gmented.com/app/OGCT17/?usePolyfill=0
https://www.ethar.com/ogc17/

Figure 26 — Ethar GDC WebXR Client Screenshot

OPEN GEOSPATIAL CONSORTIUM 21-027 113

8.2.1. Scope and functional Focus

The client can connect to any service that uses the draft Geo Data Cube API definition. As
this initial definition is still rather provisional, and there has been some debate on how exactly
a GDC service differs from the Coverages API, the client implements only a subset of the
potential endpoints considered over the course of the testbed. With this in mind, the goal was
to implement example data-visualizations that make use of each of the draft implementations of
the GDC API. Subsequently the TIE testing for this client focused on a key subset of the possible
endpoints described in the initial GDC API. The client can render visualizations using various
data-types which may be served via GDC, including OpenSceneGraph (OSG) native, but also
GeoTIFF (.tif) and glTF binary format (.glb).

8.2.2. Implementation goals

The Ethar client was built with the following goals in mind:

• To create a geospatial data visualization tool specifically for an Augmented Reality context.

• To create a visualization environment that can make use of and integrate traditional
geospatial data formats alongside new and emerging formats that are purpose-built for
AR and VR applications (such as supporting both established formats like GeoTIFF and
emerging formats such as glTF).

• To promote open and interoperable tooling by demonstrating the potential for a device-
agnostic geospatial data visualization client for AR-enabled devices.

• Initially the participants proposed that the Ethar client would implement support for the
Spatial Discovery Service (SDS) and the draft OGC GeoPose specification. These are
emerging draft standards for Augmented Reality which might nicely compliment that
functionality of a Geo Data Cube service. However, as testbed work progressed, it became
apparent that these feature additions were premature (especially in the case of SDS).

• The GeoPose approach was initially proposed by Ethar as a means of querying for data
present in a Geo Data Cube. However, after some discussion, it was determined that
GeoPose limits the scope of a query based on orientation (and potentially field-of-
view).

• GeoPose may still be useful as part of records submitted to a Geo Data Cube Service,
such as a dataset describing the current position of field-workers actively connected to
a GDC service.

OPEN GEOSPATIAL CONSORTIUM 21-027 114

• To demonstrate augmented reality contexts that could be useful both on-site and off-site.
Thus two discrete ‘modes’ were implemented;

• An ‘in-situ’ mode where data visualizations are scaled to align against the real-world as
a field-worker might see it while on-site.

• A ‘tabletop’ mode where data-visualizations are scaled for off-site planning purposes.

8.2.3. Implementation

The Ethar client is implemented using a suite of web-friendly technologies. The client is written
primarily with JavaScript and C/C++. These very different languages can work in concert
thanks to WebAssembly, and some of the experimental WebXR features now present in
select web-browsers. To maximize the varieties of geospatial data the client can support the
OpenSceneGraph library is used.

The following functionality is implemented on the client:

• Retrieving a list of n-dimensional data associated with a given location.

• Exploring change over time via a slider input control.

• Visualizing GeoTIFF or glTF datasets.

8.2.4. Future improvements

The following improvements are recommended for implementation in future testbeds:

• Visualizing additional common geospatial data formats in an Augmented Reality context.

• Interfacing with additional data APIs besides the preliminary Geo Data Cube API
definition.

• Support additional web-browsers/hardware-platforms:

• Safari and Firefox for macOS/iOS

• Helio for Magic Leap

• Firefox Reality for XR1/XR2 platforms (e.g. Oculus, HTC, Pico VR, etc)

• Additional User Interface components:

• Scaling

• Heightmap variables

• Expanded Pan, Tilt, Zoom, Rotate (PTZR) controls

OPEN GEOSPATIAL CONSORTIUM 21-027 115

8.3. Ecere Geo Data Cube API Client Implementation (in-
kind)

Ecere’s GNOSIS Cartographer client is capable of requesting, processing and rendering
multidimensional geospatial data in accordance with the OGC API specifications being
considered as building blocks for the Geo Data Cube API. The GNOSIS Cartographer client
supports the following specifications: OGC API — Common, Coverages (including subsetting,
scaling and range subsetting), Features (including Part 2: CRS), Processes (including Part 3:
Workflows & Chaining), Tiles, Maps and Styles. During the Testbed initiative, efforts were spent
to improve support for multi-band coverages as well of coverages made up of multiple scenes.

For any OGC API data source, an end-user only needs to point to the URL of a collection or
landing page after clicking an Add data source button to start visualizing a data cube.

8.3.1. Coverages API Implementation

The client is capable of requesting and rendering coverages from OGC API endpoints, with
support for subsetting, range subsetting and scaling conformance classes. The coverage data can
be styled by either assigning band (fields) values to red, green, blue or alpha channels with the
option to perform band arithmetic calculations, or as a single channel for which a colormap and/
or hillshading can be applied.

In the Testbed 17 Geo Data Cube API task, successful Coverages TIEs were achieved with
services provided by 52°North and Wuhan University. In previous projects and code sprints, the
client could also successfully visualize data cubes served by the EuroDataCube and by rasdaman
using the Coverages API.

Accessing and visualizing data cubes using the Coverages API

The following screenshot is visualizing the 10-meter resolution bathymetry from CHS NONNA
hosted by Ecere’s GNOSIS Map Server at https://maps.ecere.com/ogcapi/collections/
CHSBathymetryNONNA10.

OPEN GEOSPATIAL CONSORTIUM 21-027 116

https://maps.ecere.com/ogcapi/collections/CHSBathymetryNONNA10
https://maps.ecere.com/ogcapi/collections/CHSBathymetryNONNA10

Figure 27 — Ecere’s GNOSIS Cartographer client visualizing
10-meter resolution bathymetry from CHS NONNA

The following screenshots demonstrate visualizing data cubes provided by 52°North’s GDC API
implementation at https://17.testbed.dev.52north.org/geodatacube/.

Figure 28 — Ecere’s Cartographer client visualizing Landsat-8
imagery from 52°North Coverages implementation

OPEN GEOSPATIAL CONSORTIUM 21-027 117

https://17.testbed.dev.52north.org/geodatacube/

Figure 29 — Ecere’s Cartographer client visualizing Landsat-8
imagery as NDVI from 52°North Coverages implementation

OPEN GEOSPATIAL CONSORTIUM 21-027 118

Figure 30 — Ecere’s Cartographer client visualizing Digital
Terrain Model from 52°North Coverages implementation

The following screenshot demonstrates visualizing a data cube provided by Wuhan University’s
GDC API implementation at http://geos.whu.edu.cn:8097/geocube/gdc_api_v2/.

OPEN GEOSPATIAL CONSORTIUM 21-027 119

http://geos.whu.edu.cn:8097/geocube/gdc_api_v2/

Figure 31 — Ecere’s Cartographer client visualizing Landsat-8
from Wuhan University’s Coverages implementation

The following screenshot demonstrates initial progress listing the data cubes available from
MEEO’s OGC API — Common implementation at https://testbed17.adamplatform.eu/datacube/
api/v0 .

Figure 32 — Ecere’s Cartographer client accessing MEEO’s OGC API implementation

OPEN GEOSPATIAL CONSORTIUM 21-027 120

https://testbed17.adamplatform.eu/datacube/api/v0
https://testbed17.adamplatform.eu/datacube/api/v0

8.3.2. Processes API Implementation

GNOSIS Cartographer’s workflow editor allows a user to access an OGC API — Processes instance
and discover the list of available processes that can be executed either stand-alone or as part
of a workflow. Inputs and parameters can be configured with the user interface, or directly
crafting the execution request in a JSON editor. Executing the workflow adds the output as a
data source which can be visualized by the client in the viewport. Virtual collections resulting
from a workflow, as implemented in Ecere’s GNOSIS Map Server, can also be directly added as
data sources without the client having to submit an execution request.

Executing processes and workflows

Pictured below is workflow configuration of a contour generation process executed on Ecere’s
GNOSIS Map Server and its output visualized as vector tiles in GNOSIS Cartographer. The
processing is performed on demand and on a tile-by-tile basis, considering the area and
resolution of interest.

Figure 33 — Configuration of workflow using GUI tool in Cartographer
client to process HRDREM-Ottawa dataset elevation contours

OPEN GEOSPATIAL CONSORTIUM 21-027 121

Figure 34 — Visualizing vector lines output of contour generation process

The following screenshot shows the workflow dialog accessing the Wuhan University’s
Processes implementation.

OPEN GEOSPATIAL CONSORTIUM 21-027 122

Figure 35 — Accessing Wuhan University Processes Implementation in Workflow Editor

The following screenshot shows the workflow dialog accessing the 52°North’s Processes
implementation.

OPEN GEOSPATIAL CONSORTIUM 21-027 123

Figure 36 — Accessing 52°North Processes Implementation in Workflow Editor

8.3.3. Tiles API Implementation

The client may request tiles of vector features or coverage values and render them client-side, or
request and display map tiles pre-rendered or rendered server-side.

Visualization of map tiles and vector tiles

OPEN GEOSPATIAL CONSORTIUM 21-027 124

Figure 37 — Visualizing of HRDEM-Ottawa as map tiles

Figure 38 — Visualizing HRDEM-Ottawa-LinesContours as vector tiles

OPEN GEOSPATIAL CONSORTIUM 21-027 125

Figure 39 — Visualizing map tiles from MEEO service’s CA_harvest_year data
cube, together with NASA’s Blue Marble Next Generation, SRTM elevation

from Jonathan de Ferranti’s View Finder Panoramas and ESA’s Gaia Sky in Color

OPEN GEOSPATIAL CONSORTIUM 21-027 126

9

STANDARDIZING A GEO
DATA CUBE API

OPEN GEOSPATIAL CONSORTIUM 21-027 127

9 STANDARDIZING A GEO DATA CUBE API

This chapter describes the next steps and recommendations towards standardizing a Geo Data
Cube API.

9.1. Next steps for a Geo Data Cube API

• The draft OGC API — Common specification was recognized as a valuable framework
for integrating API capabilities, with Part 2: Geospatial data providing multiple access
mechanisms for a particular data cube resource (collection of multi-dimensional
spatiotemporal data). Completing the standardization of both Part 1 & Part 2 of Common
should be an important priority.

• The value of defining a set of standardized OGC API building blocks (e.g. specifications
and conformance classes) as a Geo Data Cube standard or profile of an OGC API Standard
should be considered.

• The need for Executable Test Suites for the different OGC API standards and draft
specifications was highlighted. The presence of such test suites would have greatly
facilitated the achievement of successful TIEs in this initiative. In particular, the completion
of test suites for OGC API — Processes and OGC API — Coverages should be prioritized.

9.2. Recommendations relating to data discovery

• The completion of the draft OGC API — Records specification and integration with STAC is
an important standardization task to facilitate data discovery.

• The idea of a Scenes API offering both a unified data cube while providing direct access
to the data and metadata of individual scenes (which may be in different CRSes) should
be investigated. The use of scene metadata properties may also be useful in filtered data
access queries, providing integrated discovery. The API could also provide the capability to
manage scenes, based on previous work from the Testbed 15 — Images API.

OPEN GEOSPATIAL CONSORTIUM 21-027 128

9.3. Recommendations relating to data access

9.3.1. Recommendations relating to OGC API — Coverages and extensions

• The draft OGC API — Coverages specification was demonstrated as a relatively simple
access mechanism for data cubes. This API can also be implemented with a minimum
amount of effort on top of various data cube technologies. Support for both the
subsetting and scaling conformance classes leveraging a multi-resolution data store was
identified as key capabilities to adequately support large data cubes. Because overlapping
functionality for describing and accessing data cubes was defined in OGC API — EDR
and the Testbed 16 — DAPA specification with an argument for additional convenience,
the perceived inconvenience of the Coverages API should be re-evaluated, corrections
made if necessary, and the possibility of defining extensions providing the convenience or
required capabilities directly in the Coverages API should be considered. Completing the
standardization of Part 1 of OGC API — Coverages should be an important priority.

• A greatly simplified and better modularized future version of the Coverage Implementation
Schema (CIS) should be considered as suggested here.

• Defining extensions to the SWE Common DataRecord fields, used in the Coverage
Implementation Schema and OGC API — Coverages for describing the RangeType, for
providing information for statistics (e.g. min and max values) and encoding information
(e.g. offsets and scale factors).

9.3.2. Recommendations relating to OGC API — Tiles and Cloud Optimized
GeoTIFF

• The value of the OGC API — Tiles specification in providing pre-defined multi-resolution tile
pyramids of raw data values (e.g. coverage tiles) was identified as important. Completing
the standardization of Part 1 of OGC API — Tiles should be a priority.

• A conformance class of Coverages for integrating HTTP range access to a Cloud Optimized
GeoTIFF representation of a coverage resource should be investigated.

• The use of Cloud Optimized GeoTIFF and/or TileMatrixSets pyramids as a backing data
store to support the subsetting and scaling conformance classes of Coverages should be
considered in implementations.

9.3.3. Harmonization of OGC API data cube access

• Implementing support for the OGC API — EDR standard should be considered when the
particular types of queries it defines are desired as access mechanisms.

OPEN GEOSPATIAL CONSORTIUM 21-027 129

https://github.com/opengeospatial/coverage-implementation-schema/issues/21

• The compatibility issues between OGC API — EDR and OGC API — Common (as well as
other OGC API specifications leveraging Common) in terms of the description of the
spatiotemporal extent should be corrected so as to allow providing a particular collection
using OGC API — EDR as well as other OGC API specifications.

• The overlapping functionality between the OGC API — Coverages draft specification
and the OGC API — EDR standard, particularly in how they both provide mechanisms to
describe the domain and range of a data cube and requesting a subset of a data cube,
should be considered for a potential re-alignment and harmonization.

• The OGC process for ensuring a harmonized set of complementary OGC API standards
should be re-evaluated to avoid occurrences of re-defining the same capability with
only superficial variation in different standards of the OGC API family, which reduces
interoperability by introducing a significant burden on implementers of clients & services
in terms of additional standards to implement.

• The draft OGC API — DGGS specification should be completed and considered for
integration within a Geo Data Cube API.

9.4. Recommendations relating to analytics

9.4.1. Recommendations relating to OGC API — Processes and extensions

• The draft OGC API — Processes — Part 2: Deploy, Replace, Update specification should be
completed to enable deploying analytics capabilities close to the data.

• The concept of a GeoDataClass URI to indicate the compatibility of a particular data cube
as an input to a process should be investigated.

• The value of OGC API — Processes — Part 3: Workflows and Chaining supporting
presentation of the results of analytics capabilities as a virtual data cube was
demonstrated as facilitating the integration of analytics capabilities in visualization clients,
as well as facilitating the integration of remote data cubes with processing algorithms.
Completing its standardization should be an important priority.

• Defining well-known processes expecting specific inputs including a particular convenient
processing language to facilitate flexible coverage processing should be considered.

9.4.2. Recommendations relating to OGC API — Coverages, OGC API — EDR
and DAPA

• Extensions to OGC API — Coverages for filtering based on CQL expressions, for specifying
simple band arithmetic expressions for fields to return, for different types of aggregation

OPEN GEOSPATIAL CONSORTIUM 21-027 130

https://github.com/opengeospatial/NamingAuthority/issues/97

based on some of the dimensions, and for support for varying resolution across a data
cube should be considered.

• The functionality defined in the Testbed 16 — DAPA draft specification, such as for
aggregation and derived field expressions, should be considered for integration directly
within the OGC API — EDR and/or OGC API — Coverages specifications or as extensions,
rather than defining yet another completely separate specification.

OPEN GEOSPATIAL CONSORTIUM 21-027 131

A

ANNEX A (INFORMATIVE)
SELECTED GEO DATA CUBE
API CAPABILITIES

OPEN GEOSPATIAL CONSORTIUM 21-027 132

A ANNEX A
(INFORMATIVE)
SELECTED GEO DATA CUBE API
CAPABILITIES

This appendix details the selection of building blocks in the form of specifications and
conformance classes that were chosen for implementation in clients and servers by participants
during the initiative to enable Technology Integration Experiments (TIEs), and provides a short
overview of the operations that must be implemented for each capability, which could be
considered a GDC API quickstart guide for implementers of a client or service.

The following set of 12 OGC API specifications and conformance classes were selected by
participants based on what could reasonably be implemented during the Testbed initiative, and
deployed in at least one API. However, no clients implemented capabilities for Records or DAPA,
therefore those capabilities were not included in the TIEs.

A.1. Common-1: Core

1. Able to retrieve a landing page at /

2. Able to retrieve conformance declaration by following a rel: conformance to /
conformance

3. Able to retrieve an API description by following a rel: service-desc link (e.g. to /
api).

A.2. Common-2: Collections

1. Able to follow the landing page rel: data to /collections

2. Able to retrieve a list of collections at /collections, which contains a subset of
individual collection description

OPEN GEOSPATIAL CONSORTIUM 21-027 133

3. Able to follow links with rel: self from the elements of the "collections"
array at /collections to retrieve individual collections at /collections/
{collectionId}. See schema for collection description.

A.3. Coverages-1

1. Able to follow a rel: http://www.opengis.net/def/rel/ogc/1.0/coverage-
domainset to a coverage’s domainset which could either be embedded in the
collection description itself (in which case the link will be a JSON pointer or an
external resource e.g. at /collections/{collectionId}/coverage/domainset.
The schema for the JSON representation should conform to the CIS DomainSet.

2. Able to follow a rel: http://www.opengis.net/def/rel/ogc/1.0/coverage-
rangetype to a coverage’s range type which could either be embedded in the
collection description itself (in which case the link will be a JSON pointer or an
external resource e.g. at /collections/{collectionId}/coverage/rangetype.
The schema for the JSON representation should conform to the CIS RangeType.

3. Able to retrieve data from the coverage by following a link with rel: http://
www.opengis.net/def/rel/ogc/1.0/coverage from the collection description
to /collections/{collectionId}/coverage. Content negotiation is used to
select a coverage format (e.g. NetCDF: application/netcdf, GeoTIFF: image/
tiff; application=geotiff, CoverageJSON application/prs.coverage
+json, CIS JSON: application/json). If the negotiated format can encode it,
the response should include in addition to the rangeset (the actual data), the
domainset, rangetype and if applicable, the coverage metadata.

A.4. Coverages-1 (Subsetting)

1. Able to use the subset= query parameter to trim (lower & upper
bound, not reducing dimensionality) or slice (single axis value, reducing
dimensionality) as part of a coverage data request at /collections/
{collectionId}/coverage. One or multiple axes (as described in the
DomainSet) are supported in the same subset query parameter, e.g.
subset=Lat(10:30),Lon(100:120),time("2020-01-01":"2020-12-31")

2. Able to use the bbox= query parameter to spatially trim along 2 or 3 geospatial
dimensions, if applicable to the coverage

3. Able to use the datetime= query parameter to temporally slice (instant value) or
trim (interval value) along the primary temporal dimension, if applicable to the
coverage

OPEN GEOSPATIAL CONSORTIUM 21-027 134

https://beta.schemas.opengis.net/ogcapi/common/part2/0.1/collections/openapi/schemas/collectionDesc.yaml
http://www.opengis.net/def/rel/ogc/1.0/coverage-domainset
http://www.opengis.net/def/rel/ogc/1.0/coverage-domainset
https://datatracker.ietf.org/doc/html/rfc6901
https://github.com/opengeospatial/ogcapi-coverages/blob/master/standard/openapi/schemas/cis/domainSet.yaml
http://www.opengis.net/def/rel/ogc/1.0/coverage-rangetype
http://www.opengis.net/def/rel/ogc/1.0/coverage-rangetype
https://datatracker.ietf.org/doc/html/rfc6901
https://github.com/opengeospatial/ogcapi-coverages/blob/master/standard/openapi/schemas/cis/rangeType.yaml
http://www.opengis.net/def/rel/ogc/1.0/coverage
http://www.opengis.net/def/rel/ogc/1.0/coverage

NOTE: Coverage Tiles requests conformance class (leveraging OGC API — Tiles) can be mapped
to a scaling + subsetting request. e.g./coverage/tiles/WorldCRS84Quad/1/0/0 is equivalent to
either /coverage?subset=Lat(0:90),Lon(-180:-90)&scale-size=257,257 (for a ValueIsPoint
coverage) or /coverage?subset=Lat(0:90),Lon(-180:-90)&scale-size=256,256 (for a ValueIsArea
coverage)_

A.5. Coverages-1 (Range subsetting)

1. Able to use the range-subset= query parameter to select fewer values (e.g.
imagery bands) from all those listed in the range type and returned by default.

A.6. Coverages-1 (Scaling)

1. Able to use the scale-factor= query parameter to up-sample or down-
sample from the maximum resolution of the coverage. scale-factor=2 means
downsamples 2x from the maximum resolution.

2. Able to use the scale-axes= query parameter to specify different scaling factor
for each axis, e.g. scale-axes=Lat(4),Lon(2)

3. Able to use the scale-size= query parameter to specify the desired number of
cells returned for each axis, e.g. scale-size=Lat(512),Lon(1024)

NOTE:Coverage Tiles requests (leveraging OGC API — Tiles) can be mapped to a scaling +
subsetting request. e.g./coverage/tiles/WorldCRS84Quad/1/0/0 is equivalent to either /
coverage?subset=Lat(0:90),Lon(-180:-90)&scale-size=257,257 (for a ValueIsPoint
coverage) or /coverage?subset=Lat(0:90),Lon(-180:-90)&scale-size=256,256 (for a
ValueIsArea coverage)_

Note that without e.g. scale-factor=1, the default response may not necessarily be the
maximum resolution (e.g. to avoid returning too much data for default responses).

A.7. Processes-1 (Sync execution)

1. Able to follow a rel: http://www.opengis.net/def/rel/ogc/1.0/processes
link from the landing page to a list of processes at /processes

OPEN GEOSPATIAL CONSORTIUM 21-027 135

https://docs.ogc.org/DRAFTS/20-057.html
https://docs.opengeospatial.org/DRAFTS/19-087.html#rc-coverage-tiles-section
https://gitlab.ogc.org/ogc/T17-D012-Geo-Data-Cube-API-ER/-/wikis/TIEs/6.-Coverages-1-(Scaling)
https://docs.ogc.org/DRAFTS/20-057.html
https://docs.opengeospatial.org/DRAFTS/19-087.html#rc-coverage-tiles-section
https://gitlab.ogc.org/ogc/T17-D012-Geo-Data-Cube-API-ER/-/wikis/TIEs/4.-Coverages-1-(Subsetting)
http://www.opengis.net/def/rel/ogc/1.0/processes

2. Able to retrieve the process description for individual processes by following the
rel: self links from /processes "processes" array elements to /processes/
{processId}, following the process description schema.

3. Able to POST a process execution request (following the process execution
schema) to the execution endpoint (linked from process description using
rel: http://www.opengis.net/def/rel/ogc/1.0/execute) at /processes/
{processId}/execution. No response preference should be specified to execute
synchronously (omitting Prefer: respond-async).

4. Execution response should be successful

5. Able to the retrieve results successfully. The response currently depends on a
number of things in the execution request (response mode, transmissionMode,
number of outputs). Table 7 in the specification illustrates the different
possibilities. There is a proposal to greatly simplify this in an upcoming minor
revision of OGC API — Processes — Part 1, which would also enable HTTP content
negotiation, and directly accessing individual outputs.

6. Able to access the individual outputs successfully, if they are available separately
(response: document), or from within the execution response.

A.8. Processes-1 (Async execution)

1. Able to follow a rel: http://www.opengis.net/def/rel/ogc/1.0/processes
link from the landing page to a list of processes at /processes

2. Able to retrieve the process description for individual processes by following the
rel: self links from /processes "processes" array elements to /processes/
{processId}, following the process description schema.

3. Able to POST a process execution request (following the process execution
schema) to the execution endpoint (linked from process description using
rel: http://www.opengis.net/def/rel/ogc/1.0/execute) at /processes/
{processId}/execution. If the server supports both Sync and ASync mode for
the process, a Prefer: respond-async header should be included for async
execution.

4. Able to parse an execution response conforming to the statusInfo.yaml schema,
which at minimum requires a "type": "process", a jobID and a status
(accepted, running, successful, failed or dismissed).

5. Execution response should be successful (returning a 201 HTTP status as per
Requirement 34 A) and include a Location header containing a link to the new job
(i.e. at /jobs/{jobId})

6. Able to list running jobs at /jobs

OPEN GEOSPATIAL CONSORTIUM 21-027 136

https://github.com/opengeospatial/ogcapi-processes/blob/master/core/openapi/schemas/process.yaml
https://github.com/opengeospatial/ogcapi-processes/blob/master/core/openapi/schemas/execute.yaml
https://github.com/opengeospatial/ogcapi-processes/blob/master/core/openapi/schemas/execute.yaml
http://www.opengis.net/def/rel/ogc/1.0/execute
https://docs.ogc.org/DRAFTS/18-062.html#sc_execute_response
https://github.com/opengeospatial/ogcapi-processes/issues/217
http://www.opengis.net/def/rel/ogc/1.0/processes
https://github.com/opengeospatial/ogcapi-processes/blob/master/core/openapi/schemas/process.yaml
https://github.com/opengeospatial/ogcapi-processes/blob/master/core/openapi/schemas/execute.yaml
https://github.com/opengeospatial/ogcapi-processes/blob/master/core/openapi/schemas/execute.yaml
http://www.opengis.net/def/rel/ogc/1.0/execute
https://raw.githubusercontent.com/opengeospatial/ogcapi-processes/master/core/openapi/schemas/statusInfo.yaml
http://docs.ogc.org/DRAFTS/18-062.html#sc_execute_response

7. Able to retrieve the status of an executed job at /jobs/{jobId}

8. Able to DELETE a running job at /jobs/{jobID} to cancel execution

9. Able to retrieve the results of a job at /jobs/{jobId}/results. The response
of that endpoint currently depends on a number of things in the execution
request (response mode, transmissionMode, number of outputs). Table 8 in
the specification illustrates the different possibilities. There is a proposal to
greatly simplify this in an upcoming minor revision of OGC API — Processes — Part
1, which would also enable HTTP content negotiation, and directly accessing
individual outputs.

10. Able to access the individual outputs successfully, if they are available separately
(response: document), or from within the results response.

A.9. Processes-3: Workflows (Collection Input)

1. Able to execute a process either synchronously or asynchronously, which accepts
as one or more of its execution requests inputs an OGC API collection, e.g.
{ "collection" : "http://example.com/ogcapi/collections/example" }.
The server may either accept only local collections, or remote collections as well.
The Area / Resolution of Interest as well as the format are left out of the workflow/
process execution (facilitating re-use), as they can be inferred from the OGC API
data access (e.g. Coverages) requests to both the output collection and the input
collection, thus allowing to chain a Workflows Collection Output (or a nested
process) as a Workflows Collection Input.

A.10. Processes-3: Workflows (Collection Output)

1. Able to POST a process execution request (following the process execution
schema) to the execution endpoint (linked from process description using
rel: http://www.opengis.net/def/rel/ogc/1.0/execute) at /processes/
{processId}/execution. (NOTE: Currently in Ecere’s implementation the
Collection Output execution mode is using a different endpoint directly at /
processes/{processId}. This may change to become a query parameter (e.g.
response=collection, response=landingPage) instead to keep to the usual /
execution endpoint.)

2. Able to parse the response as an OGC API collection description, and follow
links to access the resulting data using Coverages requests (e.g. rel: http://www.
opengis.net/def/rel/ogc/1.0/coverage). Note that the actual execution of

OPEN GEOSPATIAL CONSORTIUM 21-027 137

https://raw.githubusercontent.com/opengeospatial/ogcapi-processes/master/core/openapi/schemas/statusInfo.yaml
https://docs.ogc.org/DRAFTS/18-062.html#_response_7
https://github.com/opengeospatial/ogcapi-processes/issues/217
https://github.com/opengeospatial/ogcapi-processes/blob/master/core/openapi/schemas/execute.yaml
https://github.com/opengeospatial/ogcapi-processes/blob/master/core/openapi/schemas/execute.yaml
https://github.com/opengeospatial/ogcapi-processes/blob/master/core/openapi/schemas/execute.yaml
http://www.opengis.net/def/rel/ogc/1.0/execute
https://beta.schemas.opengis.net/ogcapi/common/part2/0.1/collections/openapi/schemas/collectionDesc.yaml
http://www.opengis.net/def/rel/ogc/1.0/coverage
http://www.opengis.net/def/rel/ogc/1.0/coverage

the process may happen on-demand as requests for different Area or Resolution of
Interest are made by the client.

A.11. Records-1: Core

OGC API — Records was not tested in TIEs but was implemented by 52°North and Wuhan
University.

A.12. DAPA

DAPA was not tested in TIEs but was partially implemented by Wuhan University.

OPEN GEOSPATIAL CONSORTIUM 21-027 138

http://docs.ogc.org/DRAFTS/20-004.html
https://docs.ogc.org/per/20-025r1.html

B

ANNEX B (INFORMATIVE)
TECHNOLOGY
INTEGRATION
EXPERIMENTS

OPEN GEOSPATIAL CONSORTIUM 21-027 139

B ANNEX B
(INFORMATIVE)
TECHNOLOGY INTEGRATION EXPERIMENTS

B.1. TIEs Table

Table B.1 — Successful Geo Data Cube API Technology Integration Experiments

CLIENTS → ▼ SERVERS SOLENIX ETHAR
52°NORTH
(CASCADING
SERVER)

ECERE

52°North 1,2,3,4 1,2,3,4,5,9 1,2,3,4,5,9

Wuhan
University 1,2,3,4 1,2,3,4,5,9 1,2,3,4,5

MEEO 1,2,Map tiles

Ecere 1,2,3,4,10 1,2,3,4,6,7,9,10

Table B.2 — GDC API Capabilities

1. Common-1: Core

2. Common-2: Collections

3. Coverages-1

4. Coverages-1 (Subsetting)

5. Coverages-1 (Range subsetting)

6. Coverages-1 (Scaling)

7. Processes-1 (Sync execution)

OPEN GEOSPATIAL CONSORTIUM 21-027 140

8. Processes-1 (Async execution)

9. Processes-3: Workflows (Collection Input)

10. Processes-3: Workflows (Collection Output)

B.2. Summary

• Successful TIEs were performed with all server implementations for OGC API — Common
Core (1) and Collections (2) capabilities.

• Successful TIEs were performed with most servers for OGC API — Coverages (3)
functionality, including support for subsetting (4) and range subsetting (fields selection)
(5). Support for multi-bands coverages and range subsetting was initiated in the Ecere
service but not completed in time for the TIEs.

• The Coverages scaling capability (6) was found to be something lacking from a client
perspective in order to explore datasets covering a large spatial extent at different
resolutions, but requires a backend with support for tile pyramids / overviews to
implement efficiently and will require more work to implement in some servers.

• Both 52°North and Wuhan University deployed an OGC API — Processes implementation
supporting asynchronous processing (8), with 52°North additionally supporting
synchronous processing (7). However there were still some issues left to resolve
preventing successful TIEs.

• Workflows were demonstrated to provide a mechanism by which an external data cube
could be used with a cascading server using the collection input capability (9), and by
which a visualization client could easily trigger processing through the collection output
capability (10).

• Ethar implemented support for OGC API — Coverages in its Augmented Reality client, but
did complete TIEs with the three different services.

• The Ecere client was able to list available collections as well as separately visualize map
tiles from a URL template from the MEEO service.

OPEN GEOSPATIAL CONSORTIUM 21-027 141

C

ANNEX C (INFORMATIVE)
REVISION HISTORY

OPEN GEOSPATIAL CONSORTIUM 21-027 142

C ANNEX C
(INFORMATIVE)
REVISION HISTORY

DATE RELEASE AUTHOR
PRIMARY
CLAUSES
MODIFIED

DESCRIPTION

May 31,
2021 .1 J. St-Louis all initial version

Dec 20,
2021 .2 J. St-Louis all first complete draft

Feb 9,
2022 .3 J. St-Louis all first version posted to pending

documents

Mar 7,
2022 .4 J. St-Louis all

contributions from P. Vretanos,
applied changes from review by
OGC staff, restore bibliography
(final editor draft)

OPEN GEOSPATIAL CONSORTIUM 21-027 143

BIBLIOGRAPHY

OPEN GEOSPATIAL CONSORTIUM 21-027 144

BIBLIOGRAPHY

1. Baumann, P., The datacube manifesto, (2017). (https://earthserver.eu/tech/datacube-
manifesto/The-Datacube-Manifesto.pdf)

2. Nativi S., Mazzetti P., Craglia M., A view-based model of data-cube to support big
earth data systems interoperability, Big Earth Data, no. 1, vol. 1-2, pp. 75-99, DOI
10.1080/20964471.2017.1404232, (2017). (https://doi.org/10.1080/20964471.2017.
1404232)

3. Giuliani, G., Masó, J., Mazzetti, P., Nativi, S., Zabala, A., Paving the Way to Increased
Interoperability of Earth Observations Data Cubes, DOI 10.3390/data4030113, ISSN
2306-5729, (2019). (https://www.mdpi.com/2306-5729/4/3/113)

4. George Percivall : OGC 18-095r7, Geospatial Coverages Data Cube Community Practice.
Open Geospatial Consortium (2020). https://portal.ogc.org/files/18-095r7

5. Mahecha, M.D. et al., Earth system data cubes unravel global multivariate dynamics,
Earth System Dynamics, vol. 11, pp. 201-234, DOI 10.5194/esd-11-201-2020, (2020).
(https://esd.copernicus.org/articles/11/201/2020/)

6. openEO API specification (https://api.openeo.org/)

7. sentinel hub APIs (https://www.sentinel-hub.com/develop/api/)

8. up42 documentation (https://docs.up42.com/index.html)

9. Climate Data Store API (https://cds.climate.copernicus.eu/api-how-to)

10. Roocs Tools — Remote Operations on Climate Simulations (https://github.com/roocs)

11. Earth System Data Cube (https://cablab.readthedocs.io/en/latest/)

12. Data cube on Wikipedia (https://en.wikipedia.org/wiki/Data_cube)

13. Online analitycal processing cube on Wikipedia (https://en.wikipedia.org/wiki/OLAP_
cube)

14. Jacovella-St-Louis, J., Flexible real-time data processing and visualization workflows
emerging from OGC API modules, Open Geospatial Consortium, (2021). (http://docs.
opengeospatial.org/dp/21-033.html)

15. Heazel, C., OGC API — Common — Part 1: Core (draft specification), Open Geospatial
Consortium, (2021). (https://docs.opengeospatial.org/DRAFTS/19-072.html)

16. Heazel, C., OGC API — Common — Part 2: Geospatial Data (draft specification), Open
Geospatial Consortium, (2021). (https://docs.opengeospatial.org/DRAFTS/20-024.html)

OPEN GEOSPATIAL CONSORTIUM 21-027 145

https://earthserver.eu/tech/datacube-manifesto/The-Datacube-Manifesto.pdf
https://earthserver.eu/tech/datacube-manifesto/The-Datacube-Manifesto.pdf
https://doi.org/10.1080/20964471.2017.1404232
https://doi.org/10.1080/20964471.2017.1404232
https://www.mdpi.com/2306-5729/4/3/113
https://portal.ogc.org/files/18-095r7
https://esd.copernicus.org/articles/11/201/2020/
https://api.openeo.org/
https://www.sentinel-hub.com/develop/api/
https://docs.up42.com/index.html
https://cds.climate.copernicus.eu/api-how-to
https://github.com/roocs
https://cablab.readthedocs.io/en/latest/
https://en.wikipedia.org/wiki/Data_cube
https://en.wikipedia.org/wiki/OLAP_cube
https://en.wikipedia.org/wiki/OLAP_cube
http://docs.opengeospatial.org/dp/21-033.html
http://docs.opengeospatial.org/dp/21-033.html
https://docs.opengeospatial.org/DRAFTS/19-072.html
https://docs.opengeospatial.org/DRAFTS/20-024.html

17. Vretanos, P. A., Portele, C., OGC API — Features — Part 3: Filtering (draft specification),
Open Geospatial Consortium, (2021). (https://docs.opengeospatial.org/DRAFTS/19-
079r1.html)

18. Heazel, C., OGC API — Coverages — Part 1: Core (draft specification), Open Geospatial
Consortium, (2021). (https://docs.opengeospatial.org/DRAFTS/19-087.html)

19. Masó, J., Jacovella-St-Louis, J., API — Tiles — Part 1: Core (draft specification), Open
Geospatial Consortium, (2021). (https://docs.opengeospatial.org/DRAFTS/20-057.html)

20. Masó, J., OGC API — Maps — Part 1: Core (draft specification), Open Geospatial
Consortium, (2021). (https://docs.opengeospatial.org/DRAFTS/20-058.html)

21. Masó, J., Jacovella-St-Louis, J., OGC Two Dimensional Tile Matrix Set and Tile Set
Metadata (draft specification), Open Geospatial Consortium, (2021). (https://docs.
opengeospatial.org/DRAFTS/17-083r4.html)

22. Vretanos, P. A., OGC API — Processes — Part 2: Transactions for deployment (draft
specification), Open Geospatial Consortium, (2021). (https://docs.opengeospatial.org/
DRAFTS/20-044.html)

23. Jacovella-St-Louis, J., Vretanos, P. A., OGC API — Processes — Part 3: Workflows and
chaining (draft specification), Open Geospatial Consortium, (2021). (https://docs.
opengeospatial.org/DRAFTS/21-009.html)

24. Portele, C., OGC API — Routes — Part 1: Core (draft specification), Open Geospatial
Consortium, (2021). (https://docs.opengeospatial.org/DRAFTS/21-000.html)

25. Portele, C., OGC API — Styles — Part 1: Core (draft specification), Open Geospatial
Consortium, (2021). (https://docs.opengeospatial.org/DRAFTS/20-009.html)

26. Purss, M., OGC API — DGGS — Part 1: Core (draft specification), Open Geospatial
Consortium, (2021). (https://github.com/opengeospatial/ogcapi-discrete-global-grid-
systems)

27. Robert Thomas, Josh Lieberman: OGC 21-013, Modernizing SDI: Enabling Data
Interoperability for Regional Assessments and Cumulative Effects CDS. Open Geospatial
Consortium (2021). https://docs.ogc.org/per/21-013.html

28. Gobe Hobona, Angelos Tzotsos, Tom Kralidis, Martin Desruisseaux: OGC 21-008,
Joint OGC OSGeo ASF Code Sprint 2021 Summary Engineering Report. Open Geospatial
Consortium (2021). https://docs.ogc.org/per/21-008.html

29. Panagiotis (Peter) A. Vretanos: OGC 20-016, OGC Testbed-16: Data Access and Processing
Engineering Report. Open Geospatial Consortium (2021). https://docs.ogc.org/
per/20-016.html

30. Luis Bermudez: OGC 20-025r1, OGC Testbed-16: Data Access and Processing API
Engineering Report. Open Geospatial Consortium (2021). https://docs.ogc.org/
per/20-025r1.html

OPEN GEOSPATIAL CONSORTIUM 21-027 146

https://docs.opengeospatial.org/DRAFTS/19-079r1.html
https://docs.opengeospatial.org/DRAFTS/19-079r1.html
https://docs.opengeospatial.org/DRAFTS/19-087.html
https://docs.opengeospatial.org/DRAFTS/20-057.html
https://docs.opengeospatial.org/DRAFTS/20-058.html
https://docs.opengeospatial.org/DRAFTS/17-083r4.html
https://docs.opengeospatial.org/DRAFTS/17-083r4.html
https://docs.opengeospatial.org/DRAFTS/20-044.html
https://docs.opengeospatial.org/DRAFTS/20-044.html
https://docs.opengeospatial.org/DRAFTS/21-009.html
https://docs.opengeospatial.org/DRAFTS/21-009.html
https://docs.opengeospatial.org/DRAFTS/21-000.html
https://docs.opengeospatial.org/DRAFTS/20-009.html
https://github.com/opengeospatial/ogcapi-discrete-global-grid-systems
https://github.com/opengeospatial/ogcapi-discrete-global-grid-systems
https://docs.ogc.org/per/21-013.html
https://docs.ogc.org/per/21-008.html
https://docs.ogc.org/per/20-016.html
https://docs.ogc.org/per/20-016.html
https://docs.ogc.org/per/20-025r1.html
https://docs.ogc.org/per/20-025r1.html

31. Christophe Noël: OGC 20-035, OGC Testbed-16: Earth Observation Application Packages
with Jupyter Notebooks. Open Geospatial Consortium (2021). https://docs.ogc.org/
per/20-035.html

32. Guy Schumann: OGC 20-018, OGC Testbed-16: Machine Learning Training Data ER. Open
Geospatial Consortium (2021). https://docs.ogc.org/per/20-018.html

33. Robert Gibb, Byron Cochrane, Matthew Purss: OGC 20-039r2, OGC Testbed-16:
DGGS and DGGS API Engineering Report. Open Geospatial Consortium (2021). https://
docs.ogc.org/per/20-039r2.html

34. Joan Maso: OGC 20-041, OGC Testbed-16: Analysis Ready Data Engineering Report. Open
Geospatial Consortium (2021). https://docs.ogc.org/per/20-041.html

35. Gobe Hobona: OGC 20-091, OGC API – Common and OGC API – Features Sprint 2020:
Summary Engineering Report. Open Geospatial Consortium (2021). https://docs.ogc.org/
per/20-091.html

36. Ingo Simonis: OGC 20-073, OGC Earth Observation Applications Pilot: Summary
Engineering Report. Open Geospatial Consortium (2020). https://docs.ogc.org/
per/20-073.html

37. Joan Maso Pau: OGC 19-070, OGC Testbed-15:Images and ChangesSet API Engineering
Report. Open Geospatial Consortium (2020). http://docs.opengeospatial.org/
per/19-070.html

38. Sam Meek: OGC 19-027r2, OGC Testbed-15: Machine Learning Engineering Report. Open
Geospatial Consortium (2019). http://docs.opengeospatial.org/per/19-027r2.html

39. Pedro Gonçalves: OGC 19-026, OGC Testbed-15: Federated Clouds Analytics Engineering
Report. Open Geospatial Consortium (2019). http://docs.opengeospatial.org/
per/19-026.html

40. Tom Landry: OGC 18-038r2, OGC Testbed-14: Machine Learning Engineering Report. Open
Geospatial Consortium (2019). http://docs.opengeospatial.org/per/18-038r2.html

41. Paulo Sacramento: OGC 18-049r1, OGC Testbed-14: Application Package Engineering
Report. Open Geospatial Consortium (2019). http://docs.opengeospatial.org/
per/18-049r1.html

42. Paulo Sacramento: OGC 18-050r1, OGC Testbed-14: ADES & EMS Results and
Best Practices Engineering Report. Open Geospatial Consortium (2019). https://
docs.opengeospatial.org/per/18-050r1.html

43. Ingo Simonis: OGC 18-046, OGC Earth Observation Exploitation Platform Hackathon 2018
Engineering Report. Open Geospatial Consortium (2018). http://docs.opengeospatial.org/
per/18-046.html

OPEN GEOSPATIAL CONSORTIUM 21-027 147

https://docs.ogc.org/per/20-035.html
https://docs.ogc.org/per/20-035.html
https://docs.ogc.org/per/20-018.html
https://docs.ogc.org/per/20-039r2.html
https://docs.ogc.org/per/20-039r2.html
https://docs.ogc.org/per/20-041.html
https://docs.ogc.org/per/20-091.html
https://docs.ogc.org/per/20-091.html
https://docs.ogc.org/per/20-073.html
https://docs.ogc.org/per/20-073.html
http://docs.opengeospatial.org/per/19-070.html
http://docs.opengeospatial.org/per/19-070.html
http://docs.opengeospatial.org/per/19-027r2.html
http://docs.opengeospatial.org/per/19-026.html
http://docs.opengeospatial.org/per/19-026.html
http://docs.opengeospatial.org/per/18-038r2.html
http://docs.opengeospatial.org/per/18-049r1.html
http://docs.opengeospatial.org/per/18-049r1.html
https://docs.opengeospatial.org/per/18-050r1.html
https://docs.opengeospatial.org/per/18-050r1.html
http://docs.opengeospatial.org/per/18-046.html
http://docs.opengeospatial.org/per/18-046.html

	I. Abstract
	II. Executive Summary
	II.A. Key findings
	II.B. Results
	II.C. Business value
	II.D. Requirements addressed
	II.E. Motivation for defining a Geo Data Cube API
	II.F. Recommendations for future work

	III. Keywords
	IV. Preface
	V. Security considerations
	VI. Submitting Organizations
	VII. Submitters
	1. Normative references
	2. Terms, definitions and abbreviated terms
	2.1. Terms and definitions
	2.2. Abbreviated terms

	3. Introduction
	4. Geo Data Cube concepts
	4.1. What is a Geo Data Cube?
	4.2. Goals of a Geo Data Cube API
	4.2.1. Needs of end-users and application developers
	4.2.2. Requirements from sponsors
	4.2.3. Data access
	4.2.3.1. Data description
	4.2.3.2. Data retrieval

	4.2.4. Analytics
	4.2.5. Discovery
	4.2.6. Visualization
	4.2.7. Managing data and algorithms

	4.3. Nature of a Geo Data Cube API

	5. An API for Geo Data Cubes
	5.1. OGC API framework for providing GDC capabilities
	5.2. Data access
	5.2.1. OGC API — Coverages
	5.2.1.1. Subsetting
	5.2.1.2. Scaling (re-sampling)
	5.2.1.3. Tiles
	5.2.1.4. Range subsetting
	5.2.1.5. Filtering
	5.2.1.6. Varying resolution
	5.2.1.7. Cloud Optimized GeoTIFF (COG)

	5.2.2. OGC API — Tiles
	5.2.3. OGC API — Features
	5.2.4. OGC API — Environmental Data Retrieval
	5.2.5. Data Access & Processing API (DAPA)
	5.2.6. Scenes API
	5.2.6.1. Hierarchical Collections
	5.2.6.2. /scenes

	5.2.7. OGC API — DGGS

	5.3. Analytics
	5.3.1. OGC API — Processes — Part 1: Core
	5.3.2. OGC API — Processes — Part 3: Workflows & Chaining
	5.3.3. DAPA capabilities as Coverages and EDR extensions
	5.3.4. Profiles for coverage processing
	5.3.5. Compatible data cubes and processes
	5.3.6. OGC API — DGGS

	5.4. Data discovery, queries and catalogs
	5.5. Visualization
	5.6. Managing data and algorithms

	6. Machine Learning within a Geo Data Cube API
	6.1. Use case
	6.2. Data preparation
	6.3. Model training
	6.4. Model prediction
	6.5. Technology Integration Experiments with D123 — GDC API Service (Wuhan University)
	6.6. Future work

	7. Implemented Server Components
	7.1. 52°North Geo Data Cube API Server Implementation (D122)
	7.1.1. Open Data Cube (ODC)
	7.1.2. pygeoapi
	7.1.3. Service architecture
	7.1.4. API Structure
	7.1.4.1. Datasets

	7.1.5. Specific challenges
	7.1.5.1. Multiple CRS within one coverage collection
	7.1.5.2. Scenes API
	7.1.5.3. Improving pygeoapi

	7.2. Wuhan University Geo Data Cube API Server Implementation (D123)
	7.2.1. GDC definition from Wuhan University perspective
	7.2.2. Deployment infrastructure
	7.2.3. Datasets
	7.2.4. Coverages API Implementation
	7.2.5. Processes API Implementation
	7.2.6. Geo Data Cube (GDC) API design

	7.3. MEEO Geo Data Cube API Server Implementation (D177)
	7.3.1. MEEO Server Endpoint
	7.3.2. Idea for a Geo Data Cube
	7.3.3. Geo Data Cube discovery
	7.3.4. Geo Data Cube dataset fetch
	7.3.5. Geo Data Cube dataset Records API
	7.3.6. Geo Data Cube dataset Tiles API

	7.4. Ecere Geo Data Cube API Server Implementation (in-kind)
	7.4.1. Elevation datasets
	7.4.2. Coverages API Implementation
	7.4.3. Processes API Implementation
	7.4.4. Tiles API Implementation

	8. Implemented Client Components
	8.1. Solenix Geo Data Cube API Client Implementation (D124)
	8.1.1. Scope and functional Focus
	8.1.2. Goal and Challenges
	8.1.3. Implementation
	8.1.4. Future improvements

	8.2. Ethar Geo Data Cube API Client Implementation (D125)
	8.2.1. Scope and functional Focus
	8.2.2. Implementation goals
	8.2.3. Implementation
	8.2.4. Future improvements

	8.3. Ecere Geo Data Cube API Client Implementation (in-kind)
	8.3.1. Coverages API Implementation
	8.3.2. Processes API Implementation
	8.3.3. Tiles API Implementation

	9. Standardizing a Geo Data Cube API
	9.1. Next steps for a Geo Data Cube API
	9.2. Recommendations relating to data discovery
	9.3. Recommendations relating to data access
	9.3.1. Recommendations relating to OGC API — Coverages and extensions
	9.3.2. Recommendations relating to OGC API — Tiles and Cloud Optimized GeoTIFF
	9.3.3. Harmonization of OGC API data cube access

	9.4. Recommendations relating to analytics
	9.4.1. Recommendations relating to OGC API — Processes and extensions
	9.4.2. Recommendations relating to OGC API — Coverages, OGC API — EDR and DAPA

	Annex A (informative) Selected Geo Data Cube API capabilities
	A.1. Common-1: Core
	A.2. Common-2: Collections
	A.3. Coverages-1
	A.4. Coverages-1 (Subsetting)
	A.5. Coverages-1 (Range subsetting)
	A.6. Coverages-1 (Scaling)
	A.7. Processes-1 (Sync execution)
	A.8. Processes-1 (Async execution)
	A.9. Processes-3: Workflows (Collection Input)
	A.10. Processes-3: Workflows (Collection Output)
	A.11. Records-1: Core
	A.12. DAPA

	Annex B (informative) Technology Integration Experiments
	B.1. TIEs Table
	B.2. Summary

	Annex C (informative) Revision History
	Bibliography

