
OGC Vector Tiles Pilot 2
Summary Engineering Report

Publication Date: 2020-07-07

Approval Date: 2020-06-26

Submission Date: 2020-04-27

Reference number of this document: OGC 19-088r2

Reference URL for this document: http://www.opengis.net/doc/PER/VTP2-summary

Category: OGC Public Engineering Report

Editors: Gobe Hobona, Terry Idol

Title: OGC Vector Tiles Pilot 2: Summary Engineering Report

OGC Public Engineering Report
COPYRIGHT

Copyright © 2020 Open Geospatial Consortium. To obtain additional rights of use, visit
http://www.opengeospatial.org/

WARNING

This document is not an OGC Standard. This document is an OGC Public Engineering Report created
as a deliverable in an OGC Interoperability Initiative and is not an official position of the OGC
membership. It is distributed for review and comment. It is subject to change without notice and
may not be referred to as an OGC Standard. Further, any OGC Public Engineering Report should not
be referenced as required or mandatory technology in procurements. However, the discussions in
this document could very well lead to the definition of an OGC Standard.

1

http://www.opengis.net/doc/PER/VTP2-summary
http://www.opengeospatial.org/

LICENSE AGREEMENT

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of charge and subject to the
terms set forth below, to any person obtaining a copy of this Intellectual Property and any associated
documentation, to deal in the Intellectual Property without restriction (except as set forth below), including without
limitation the rights to implement, use, copy, modify, merge, publish, distribute, and/or sublicense copies of the
Intellectual Property, and to permit persons to whom the Intellectual Property is furnished to do so, provided that
all copyright notices on the intellectual property are retained intact and that each person to whom the Intellectual
Property is furnished agrees to the terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include, in addition to
the above copyright notice, a notice that the Intellectual Property includes modifications that have not been
approved or adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY PATENTS THAT
MAY BE IN FORCE ANYWHERE IN THE WORLD. THE INTELLECTUAL PROPERTY IS PROVIDED "AS IS", WITHOUT
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE DO NOT WARRANT THAT THE FUNCTIONS
CONTAINED IN THE INTELLECTUAL PROPERTY WILL MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF
THE INTELLECTUAL PROPERTY WILL BE UNINTERRUPTED OR ERROR FREE. ANY USE OF THE INTELLECTUAL
PROPERTY SHALL BE MADE ENTIRELY AT THE USER’S OWN RISK. IN NO EVENT SHALL THE COPYRIGHT HOLDER
OR ANY CONTRIBUTOR OF INTELLECTUAL PROPERTY RIGHTS TO THE INTELLECTUAL PROPERTY BE LIABLE FOR
ANY CLAIM, OR ANY DIRECT, SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
WHATSOEVER RESULTING FROM ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF
OR IN CONNECTION WITH THE IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF THIS
INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the Intellectual Property
together with all copies in any form. The license will also terminate if you fail to comply with any term or condition
of this Agreement. Except as provided in the following sentence, no such termination of this license shall require the
termination of any third party end-user sublicense to the Intellectual Property which is in force as of the date of
notice of such termination. In addition, should the Intellectual Property, or the operation of the Intellectual Property,
infringe, or in LICENSOR’s sole opinion be likely to infringe, any patent, copyright, trademark or other right of a
third party, you agree that LICENSOR, in its sole discretion, may terminate this license without any compensation or
liability to you, your licensees or any other party. You agree upon termination of any kind to destroy or cause to be
destroyed the Intellectual Property together with all copies in any form, whether held by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all or part of the
Intellectual Property shall not be used in advertising or otherwise to promote the sale, use or other dealings in this
Intellectual Property without prior written authorization of LICENSOR or such copyright holder. LICENSOR is and
shall at all times be the sole entity that may authorize you or any third party to use certification marks, trademarks
or other special designations to indicate compliance with any LICENSOR standards or specifications.

This Agreement is governed by the laws of the Commonwealth of Massachusetts. The application to this Agreement
of the United Nations Convention on Contracts for the International Sale of Goods is hereby expressly excluded. In
the event any provision of this Agreement shall be deemed unenforceable, void or invalid, such provision shall be
modified so as to make it valid and enforceable, and as so modified the entire Agreement shall remain in full force
and effect. No decision, action or inaction by LICENSOR shall be construed to be a waiver of any rights or remedies
available to it.

None of the Intellectual Property or underlying information or technology may be downloaded or otherwise
exported or reexported in violation of U.S. export laws and regulations. In addition, you are responsible for
complying with any local laws in your jurisdiction which may impact your right to import, export or use the

2

Intellectual Property, and you represent that you have complied with any regulations or registration procedures
required by applicable law to make this license enforceable.

3

Table of Contents
1. Executive Summary. 7

2. Introduction. 9

2.1. Requirements & Research Motivation . 9

2.2. Recommendations . 10

2.3. Document contributor contact points . 10

2.4. Foreword . 11

3. References . 12

4. Terms and definitions . 13

4.1. Abbreviated terms . 15

5. Overview . 16

6. Context . 17

6.1. Scenario . 17

6.2. Use Cases. 18

6.2.1. Filtering Use Case . 18

6.2.2. Metadata Use Case . 18

7. Architecture. 19

7.1. OGC API - Features standard . 19

7.2. OGC Web Feature Service (WFS) standard . 20

7.3. OGC Web Map Tile Service (WMTS) standard . 20

7.4. OGC GeoPackage standard . 20

7.5. OGC API - Maps draft specification. 20

7.6. OGC API - Tiles draft specification . 21

7.7. VTP2 Filtering Language proof of concept . 21

7.8. VTP2 Metadata model proof of concept . 21

8. Vector Tiles GeoPackage Model . 22

8.1. Vector Tiles . 22

8.2. Portrayal Information . 23

8.3. Metadata . 24

8.4. Semantic Annotations . 25

8.4.1. Styles . 27

8.4.2. Stylable Layer Sets . 28

8.5. Attributes . 28

8.6. Attributes with Related Tables . 30

8.7. Tile Matrix Sets . 31

9. Implementations . 33

9.1. Services and Data Producers . 33

9.1.1. Ecere D103 Features, Tiles and Styles API. 33

9.1.2. Ecere D106 GeoPackage Producer . 39

4

9.1.3. GeoSolutions D100 Features API . 43

9.1.4. GeoSolutions D102 Tiles API. 49

9.1.5. interactive instruments D101 Features, Tiles and Styles API . 53

9.1.6. Support for filtering . 60

9.1.7. Support for additional tiling schemes . 60

9.1.8. Image Matters D107 GeoPackage . 64

9.1.9. Terranodo D100 Features API . 66

9.2. Client applications . 67

9.2.1. Ecere D105 OGC API Client and D106 GeoPackage visualization . 67

9.2.2. GeoSolutions D104 Client . 71

9.2.3. Skymantics D104 Client . 74

10. Results. 81

10.1. Considerations. 81

10.1.1. Portrayal information . 81

10.1.2. Shared or Disjoint APIs . 82

10.1.3. Static API. 82

10.1.4. Tile Cache vs. Tile Set . 83

10.1.5. Out of bounds and empty tiles. 83

10.1.6. Collections . 84

10.2. Technology Integration Experiments . 85

10.2.1. Data Exchange TIEs . 86

10.2.2. Styles Encoding TIEs . 87

10.2.3. Multi-Layer Tile TIEs . 88

10.2.4. Multiple Projections TIEs . 88

10.2.5. TileJSON (Metadata) TIEs . 90

10.2.6. Filtering TIEs . 91

11. Key Findings . 93

11.1. Bounding box inconsistency . 93

11.2. Online and offline access to multi-layer vector tiles can be supported by OGC APIs and

GeoPackage . 93

11.3. The absence of a way to describe schemas creates difficulty for data transfer from an

OGC API to a GeoPackage . 94

11.4. There is a need for generic collections that do not advertise much about their contents . . . 94

11.5. There is a need for multi-layer tiles without having explicit collections 94

11.6. The need to test larger datasets . 95

11.7. Proposed GeoPackage extensions are ready for progression . 95

11.8. Consistency of schemas across some OGC resources could be improved 95

12. Recommendations . 96

12.1. Key recommendations . 96

12.1.1. Publish schemas through the Tiles and Features APIs . 96

12.1.2. Development of a standard for Tile Set Metadata . 96

5

12.1.3. Introduce additional concepts in the OGC Symbology Conceptual Core Model 96

12.1.4. OGC API - Tiles should provide direction on multi-layer vector tiles schemas 96

12.1.5. OGC API - Tiles should allow for multi-layer tiles that are without explicit collections . 97

12.1.6. TileJSON editors should register a media type for the specification 97

12.1.7. OGC API - Common should allow for collections that do not advertise their content

types . 98

12.1.8. Development of Mapbox Vector Tiles and TileJSON as OGC Community Standards 98

12.2. Future Work. 98

Appendix A: Proposed GeoPackage Extensions (Informative) . 100

A.1. Vector Tiles Extension. 100

A.2. Mapbox Vector Tiles Extension . 102

A.3. GeoJSON Vector Tiles Extension. 104

A.4. GeoPackage Portrayal Extension . 105

A.5. GeoPackage Semantic Annotation Extension . 108

A.6. Vector Tiles Attributes Extension. 110

A.7. GeoPackage Tile Matrix Set Extension . 112

Appendix B: Additional Screenshots . 116

B.1. GeoSolutions D101 Feature Server . 116

B.1.1. GeoSolutions D104 Client . 116

B.1.2. Ecere D103 Features, Tiles and Styles API . 117

B.2. Ecere D103 Client . 121

B.3. interactive instruments . 123

Appendix C: Revision History . 127

Appendix D: Bibliography . 128

6

Chapter 1. Executive Summary
Consistent online and offline support for data access is important, particularly in environments
where networks have Denied, Degraded, Intermittent or Limited (DDIL) connectivity. In some cases,
end-users of geospatial data have to operate in such environments over long periods of time.
Humanitarian agencies, the military, and first responders are some of the groups that work in such
challenging operational environments.

The OGC Vector Tiles Pilot Phase 2 (VTP2) Interoperability Initiative sought to deliver a consistent,
interoperable online/offline architecture consisting of feature and tile servers, and GeoPackage-
producing components that could publish, display and query vector tiles. This document
interchangeably uses the terms "tiled feature data" and "vector tiles" to refer to the approach of
tiling vector feature data. The objectives of the VTP2 initiative were as follows:

a. Metadata: Describe stored tile caches in necessary detail, using the NSG Metadata Foundation
(NMF), to enable usage and updating of each tile cache without analyzing each individual tile.

b. Filtering Language: Develop a filtering language for vector tiles, then implement and exercise
the filtering language on clients and servers.

c. GeoPackage: Using GeoPackage [https://portal.opengeospatial.org/files/12-128r15] technology, develop
solutions for robust offline/online usage scenarios by associating tiled vector feature tables in
GeoPackages with attribute tables to allow applying similar filters to GeoPackages as being
applied to the draft OGC API - Tiles [https://github.com/opengeospatial/OGC-API-Tiles/tree/master/core]
specification.

d. Style Sharing: Develop online/offline symbol and style sharing for content in vector tiles. In
other words, enable a user to request pre-rendered tiled vector data by defining a particular
style while online and then be able to render the data on the client-side when the connection is
lost.

e. Experimentation: Test structuring content in vector tiles using the following Tile Matrix Sets
delivered by tile and feature servers and implemented in GeoPackages: EPSG:3395 and
EPSG:4326 as specified in Annex D of the OGC Two Dimensional Tile Matrix Set standard
[http://docs.opengeospatial.org/is/17-083r2/17-083r2.html].

The various APIs used in this pilot are from the emerging suite of OGC API standards. The first of
the OGC API standards to be approved by the OGC Membership and the OGC Technical Committee
(TC) is the OGC API - Features [http://docs.opengeospatial.org/is/17-069r3/17-069r3.html] standard. The TC is
composed of individuals representing organizations that are duly recognized members in good
standing of the OGC [1]. The main function of the TC is to provide an open, collaborative forum for
professional discussion related to the consensus development and/or evaluation, approval, and
revision of OGC international standards. The pilot also explored the draft OGC API - Tiles and OGC
API - Styles [https://github.com/opengeospatial/ogcapi-styles] specifications. Feature and tile servers that
implement these APIs were deployed. The data encodings used in the pilot included Mapbox Vector
Tiles (MVT), GeoJSON, and GeoPackage.

Whereas the feature and tile servers allowed the pilot participants to explore online support for
vector tiles, GeoPackage allowed the pilot participants to explore offline support. The use of
GeoPackage potentially offers applications a container that could carry tiled datasets in a portable

7

https://portal.opengeospatial.org/files/12-128r15
https://github.com/opengeospatial/OGC-API-Tiles/tree/master/core
http://docs.opengeospatial.org/is/17-083r2/17-083r2.html
http://docs.opengeospatial.org/is/17-069r3/17-069r3.html
https://github.com/opengeospatial/ogcapi-styles
https://github.com/opengeospatial/ogcapi-styles

fashion that allows use when an application is offline.

The VTP2 initiative concluded that an architecture that enables consistent online and offline
support of vector tiles can be implemented using the suite of draft and approved OGC API
specifications and the GeoPackage standard. This was demonstrated by the successful
implementation of the VTP2 pilot architecture, which included implementations of the OGC API -
Features standard, OGC API - Tiles draft specification, OGC API – Styles draft specification and the
OGC GeoPackage standard.

The following recommendations, which are described in more detail in Section 12, were identified
as a result of the work completed in the VTP2 initiative:

1. OGC API - Tiles and OGC API - Features should be extended to allow for publishing schemas.

2. The Styled Layer Descriptor (SLD) Standards Working Group (SWG), by virtue of being
responsible for the OGC Symbology Conceptual Core Model, should introduce the additional
concepts: sprite, stylable layer set, stylesheet, style encoding, symbol, and symbol content.

3. A standard for Tile Set Metadata should be developed by an appropriate SWG.

4. OGC API - Tiles should provide direction on multi-layer vector tiles schemas, ideally as an
optional extension.

5. OGC API - Tiles should allow for multi-layer tiles that are without explicit collections.

6. TileJSON editors should register a media type for the specification.

7. OGC API - Common should allow for collections that do not advertise their content types.

8. The originators of the TileJSON and MVT specifications should be encouraged to submit the
specifications into the OGC for consideration as OGC Community Standards.

[1] While it is preferable to remove the attributes from the tiles when using the Vector Tiles Attributes Extension, it is not
mandatory to do so. If the GeoPackage producer is not capable of modifying the vector tiles to remove the attributes, it is
acceptable to leave them in place.

[2] For consistency with other implementations, it is expected that the gpkgext_vt_fields table will still be populated when this
extension is in use.

8

Chapter 2. Introduction
This OGC Engineering Report (ER) provides a summary of the research and findings from Phase 2 of
the OGC Vector Tiles Pilot (VTP2). The goal of VTP2 was to deliver a consistent, interoperable
online/offline architecture for vector tiles based on feature and tile servers, as well as GeoPackage.
All Application Programming Interface (API) implementations and service types deployed in the
pilot were implemented to support the prototype vector tile metadata model and filtering language.
These were two essential work items of VTP2. The feature and tile servers included
implementations of the OGC API – Features standard and the draft OGC API – Tiles specification.
The feature and tile servers provided support for a variety of Coordinate Reference Systems (CRS).
This ER provides an overview of each of the components, their implementation decisions and the
challenges faced.

The VTP2 participants intend to use the results of the work in VTP2 to inform the development of
OGC APIs, GeoPackage, and web service standards to enable consistent use both online and offline,
particularly in DDIL environments. Such consistent use of tiled feature data online and offline will
improve interoperability and usability of geospatial applications. Therefore, the value of the VTP2
work to organizations is expected to be in the efficiencies and productivity that comes from greater
interoperability and usability.

2.1. Requirements & Research Motivation
The motivation for performing the VTP2 pilot was the increasing need to enable consistent access to
geospatial resources such as tiled feature data (i.e. vector tiles), styles and metadata in networked
environments through Web APIs, and in DDIL environments using GeoPackage.

A detailed description of the requirements was presented in the Call for Participation
[https://portal.ogc.org/files/89870]. In brief, the requirements addressed by the work presented in this
Summary ER were to:

• Design a metadata model that can describe fundamental aspects of the tiles, such as date,
creator, source, tiling scheme (tile matrix set), space partitions, and styles;

• Design a vector tiles filtering language, with filters similar to OGC Filter Encoding 2.0 or CQL
(Common Query Language), and with a degree of consistency between GeoPackage, tile and
feature servers;

• Develop solutions for robust offline/online usage scenarios using GeoPackage technology and
develop methods to associate vector tile tables in GeoPackages with attribute tables;

• Develop online/offline symbol and style sharing for vector tiles e.g. a user can request pre-
rendered tiled vector data by defining a particular style while online. As network connectivity is
lost, the user can then request data from the GeoPackage and render the GeoPackage content
client-side;

• Evaluate GeoPackages with vector tile data for the ability to support portrayal and attributes in
an offline environment;

• Design methods to store symbols in easily accessible online locations such as the Styles API and
Amazon S3 ‘buckets’ and offline resource folders or GeoPackage tables;

9

https://portal.ogc.org/files/89870

• Design methods to retrieve and apply style information based on the emerging OGC API - Styles
specification; and

• Conduct experimentation involving tests of vector tiles using the WorldMercatorWGS84Quad
[http://www.opengis.net/def/tilematrixset/OGC/1.0/WorldMercatorWGS84Quad] and WorldCRS84Quad
[http://www.opengis.net/def/tilematrixset/OGC/1.0/WorldCRS84Quad] tile matrix sets referenced to the
EPSG:3395 [http://www.opengis.net/def/crs/EPSG/0/3395] and EPSG:4326 [http://www.opengis.net/def/crs/

EPSG/0/4326] Coordinate Reference Systems respectively.

2.2. Recommendations
In addition to the recommendations listed in the Executive Summary, the following were identified
by the participants as areas for future work in OGC Innovation Program initiatives such as pilots
and testbeds:

• Exploring the use of Collections (some of which has already started in the SWGs)

• Variable Width Tile matrices (two examples being GNOSISGlobalGrid [http://schemas.opengis.net/

tms/1.0/json/examples/GNOSISGlobalGrid.json] and CDBGlobalGrid [http://maps.ecere.com/geoapi/

tileMatrixSets/CDBGlobalGrid]). One of the reasons for looking into variable width tile matrices is
that currently one needs four Tile Matrix Sets (TMS) to cover the Earth pole-to-pole, when using
current non-WebMercator TMS. It would therefore be useful to have a Tile Matrix Set that can
cover the Earth pole-to-pole but that has better accuracy than WebMercator.

• Use cases that do not only focus on visualization, such as the ability to re-construct geometry in
support of data analysis. In this regard, a compact format that can be streamed, for example
FlatGeoBuff [https://github.com/bjornharrtell/flatgeobuf], could be investigated. For Mapbox vector
tiles, future use cases could include data extraction that is geared towards analysis and editing
rather than visualization and interactivity.

• Implementation of tiled data as part of processing workflows (e.g. in parallel and/or distributed
processing environments).

• Better specification of the CRS used in tiled GeoJSON (CRS84 vs the tile matrix set’s own CRS)
needs to be analyzed.

• Experimentation with FlatGeobuf should occur. FlatGeobuf is a variation of geobuf geared
towards simple features and focusing on performance and compactness.

• Development of beta compliance tests for OGC API - Tiles, OGC API - Styles, OGC API - Maps, and
others that are needed. The compliance tests would be implemented as executable test suites for
running in TEAM Engine - OGC’s validator.

• Testing larger datasets

2.3. Document contributor contact points
All questions regarding this document should be directed to the editor or the contributors:

Contacts

10

http://www.opengis.net/def/tilematrixset/OGC/1.0/WorldMercatorWGS84Quad
http://www.opengis.net/def/tilematrixset/OGC/1.0/WorldCRS84Quad
http://www.opengis.net/def/crs/EPSG/0/3395
http://www.opengis.net/def/crs/EPSG/0/4326
http://schemas.opengis.net/tms/1.0/json/examples/GNOSISGlobalGrid.json
http://maps.ecere.com/geoapi/tileMatrixSets/CDBGlobalGrid
https://github.com/bjornharrtell/flatgeobuf

Name Organization Role

Gobe Hobona OGC Editor

Terry Idol OGC Editor

Jeff Harrison AGC Contributor

Jeff Yutzler Image Matters Contributor

Clemens Portele interactive instruments Contributor

Sergio Taleisnik Skymantics Contributor

Logan Stark Skymantics Contributor

Andrea Aime GeoSolutions Contributor

Stefano Bovio GeoSolutions Contributor

Jérôme Jacovella-St-Louis Ecere Corporation Contributor

Patrick Dion Ecere Corporation Contributor

Carl Reed Carl Reed & Associates Contributor

2.4. Foreword
Attention is drawn to the possibility that some of the elements of this document may be the subject
of patent rights. The Open Geospatial Consortium shall not be held responsible for identifying any
or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any
relevant patent claims or other intellectual property rights of which they may be aware that might
be infringed by any implementation of the standard set forth in this document, and to provide
supporting documentation.

11

Chapter 3. References
The following normative documents are referenced in this document.

• OGC: OGC 12-080r2, OGC OWS Context Conceptual Model 1.0 Standard (2014)
[https://portal.opengeospatial.org/files/?artifact_id=55182]

• OGC: OGC 12-128r15, OGC GeoPackage 1.2.1 Standard (2018) [https://www.geopackage.org/spec120/

index.html]

• OGC: OGC 07-057r7, OGC® OpenGIS Web Map Tile Service Implementation Standard (2010)
[http://portal.opengeospatial.org/files/?artifact_id=35326]

• OGC: OGC 17-069r3, OGC API - Features - Part 1: Core (2019) [http://docs.opengeospatial.org/is/17-069r3/

17-069r3.html]

• OGC: OGC 05-078r4, Styled Layer Descriptor, Version 1.1 (2007) [http://portal.opengeospatial.org/files/?

artifact_id=22364]

• OGC: OGC 15-120r5, Volume 0: Primer for the OGC CDB Standard: Model and Physical Data Store
Structure (2018) [https://portal.opengeospatial.org/files/15-120r5]

• OGC: OGC 15-113r5, Volume 1: OGC CDB Core Standard: Model and Physical Data Store Structure
(2018) [https://portal.opengeospatial.org/files/15-113r5]

• OGC: OGC 16-005r3, Volume 2: OGC CDB Core: Model and Physical Structure: Informative
Annexes (2018) [https://portal.opengeospatial.org/files/16-005r3]

• IETF: RFC-7946 The GeoJSON Format (2016) [https://tools.ietf.org/html/rfc7946]

12

https://portal.opengeospatial.org/files/?artifact_id=55182
https://www.geopackage.org/spec120/index.html
http://portal.opengeospatial.org/files/?artifact_id=35326
http://docs.opengeospatial.org/is/17-069r3/17-069r3.html
http://portal.opengeospatial.org/files/?artifact_id=22364
https://portal.opengeospatial.org/files/15-120r5
https://portal.opengeospatial.org/files/15-120r5
https://portal.opengeospatial.org/files/15-113r5
https://portal.opengeospatial.org/files/15-113r5
https://portal.opengeospatial.org/files/16-005r3
https://portal.opengeospatial.org/files/16-005r3
https://tools.ietf.org/html/rfc7946

Chapter 4. Terms and definitions
For the purposes of this report, the definitions specified in Clause 4 of the OWS Common
Implementation Standard OGC 06-121r9 [https://portal.opengeospatial.org/files/?artifact_id=38867&version=2]
shall apply. In addition, the following terms and definitions apply.

● portrayal

the act of rendering digital data into a visual form

● queryable

a property that can be queried

● <portrayal> sprite

an image representing a symbol; multiple sprites may be stored together in a collection as sub-
images

● stylable layer set

a collection of styles designed to be used within the same domain

● style

a sequence of rules of symbolizing instructions to be applied by a rendering engine on one or
more features and/or coverages

● style encoding

specification to express a style as one or more files

● stylesheet

representation of a style in a machine-readable form

● style metadata

essential information about a style in order to support users in discovering and selecting styles
for rendering their data and for visual style editors to create user interfaces for editing a style

● symbol

a graphical representation of a concept that is rendered during portrayal

● symbol content

representation of a symbol in machine-readable form

● symbol encoding

specification to express one or more sprites in one or more files

● tile

geometric shape with known properties that may or may not be the result of a tiling
(tessellation) process. A tile consists of a single connected "piece" without "holes" or "lines"
(topological disc).

13

https://portal.opengeospatial.org/files/?artifact_id=38867&version=2

NOTE

For the purposes of this OGC ER, a tile is a small rectangular representation of
geographic data, often part of a set of such elements, covering a tiling scheme and
sharing similar information content and graphical styling. A tile can be uniquely
defined in a tile matrix by one integer index in each dimension. Tiles are mainly
used for fast transfer (particularly in the web) and easy display at the resolution of
a rendering device. Tiles can be grid based pictorial representations, coverage
subsets, or feature based representations (e.g., vector tiles).

● tile matrix

a grid tiling scheme that defines how space is partitioned into a set of conterminous tiles at a
fixed scale.

NOTE
A tile matrix constitutes a tessellation of the space that resembles a matrix in a 2D
space characterized by a matrix width (columns) and a matrix height (rows).

● tile matrix set

a tiling scheme composed by collection of tile matrices defined at different scales covering
approximately the same area and has a common coordinate reference system.

● tile set

set of tiles - a collection of subsets of the space being partitioned.

NOTE
For the purposes of this OGC ER, a tile is a series of actual tiles contain data and
following a common tiling scheme.

● tiling scheme

a scheme that defines how space is partitioned into individual tiled units. A tiling scheme
defines the spatial reference system, the geometric properties of a tile, which space a uniquely
identified tile occupies, and reversely, which unique identifier corresponds to a space satisfying
the geometric properties to be a tile.

NOTE
A tiling scheme is not restricted to a coordinate reference system or a tile matrix set
and allows for other spatial reference systems such as DGGS and other
organizations including irregular ones.

● vector tile

a tile that contains vector information that has been simplified at the tile scale resolution and
clipped at the tile boundaries.

● Web API

API using an architectural style that is founded on the technologies of the Web [source: OGC API -
Features - Part 1: Core]

NOTE
See Best Practice 24: Use Web Standards as the foundation of APIs [https://www.w3.org/

TR/dwbp/#APIHttpVerbs] (W3C Data on the Web Best Practices) for more detail.

14

https://www.w3.org/TR/dwbp/#APIHttpVerbs

4.1. Abbreviated terms
• API Application Programming Interface

• CRS Coordinate Reference System

• DDIL Denied, Degraded, Intermittent or Limited connectivity networks

• OGC Open Geospatial Consortium

• WFS Web Feature Service

• WMS Web Map Service

• WMTS Web Map Tile Service

• VT Vector Tiles, Vector Tiling, Vectiles

15

Chapter 5. Overview
Section 6 presents the context for the pilot, including the scenario and use cases.

Section 7 presents the architecture and outlines the standards and draft specifications used by the
pilot.

Section 8 presents the Vector Tiles GeoPackage Model implemented in the VTP2 pilot.

Section 9 describes the products that were deployed by testbed participants in order to implement
the architecture described in Section 7.

Section 10 presents the results of the pilot, including considerations and technology integration
experiments.

Section 11 presents the findings of the pilot.

Section 12 presents the recommendations and ideas for future work.

Appendix A presents GeoPackage extensions proposed by the VTP2 initiative.

Appendix B presents additional screenshots for some of the components deployed by the VTP2
participants.

Appendix C presents the revision history of this document.

Appendix D presents the bibliography.

16

Chapter 6. Context
The sets of tiled feature data organized through vector tiling are colloquially referred to as vector
tiles. Vector tiles may consist of one or more layers and may be accompanied by styling information
that allows a client application to render the tiled feature data consistently across tiles. By virtue of
containing feature data, vector tiles allow client applications to modify how geographic features are
presented. This contrasts with map tiles which are generated through pre-rendering on the server-
side thereby preventing client-side modification of the presentation. Consequently, client
applications can adapt vector tiles to display device characteristics such as resolution and color-hue
management. Client applications can also adapt requests for vector tiles sent to servers to consider
bandwidth constraints. These are some of the benefits of vector tiles.

The primary goal of Phase 1 of the Vector Tiles Pilot (VTP1) was to define candidate extensions to
existing OGC standards as a way to advance the use of tiled feature data as part of the OGC
standards baseline. More specifically, VTP1 participants developed proofs of concept for extending
OGC API - Features (at the time called WFS3), WMTS and GeoPackage. An extension to VTP1
developed a set of possible extensions to GeoPackage 1.2 that provide mechanisms for storing and
retrieving vector tiles in a GeoPackage. The data encodings used in VTP1 and its extension included
Mapbox Vector Tiles (MVT) and GeoJSON. VTP1 applied a use case on the visualization of feature
data on a client. The three main scenarios considered by VTP1 were consumption of tiled feature
data by a web client, a desktop client and a mobile client [2].

VTP2 had the goal of delivering a consistent, interoperable online/offline architecture consisting of
feature and tile servers, and GeoPackage-producing components that could publish, display and
query vector tiles.

Figure 1. VTP2 scenario

6.1. Scenario
The VTP2 Initiative implemented the scenario described below.

A truck driver is tasked with delivering humanitarian supplies to a refugee camp in a country with

17

limited or intermittent communications infrastructure.

Before departing from the dispatch center, the truck driver prepares the maps and data they will need
for navigating to the refugee camp. From a collection of tiled feature data for the entire world, the
truck driver acquires the subset of tiles covering the route to the camp and the area around the camp.
The truck driver excludes the tiles and feature attributes that have no information. The truck driver
also excludes data from more than 6 months ago. Having acquired the tiled feature data, the truck
driver then stores the data in a portable external drive that they can carry with them.

6.2. Use Cases
Vector Tiles can be used to support several different use cases. Taking the truck driver mentioned
in the scenario above as an end-user, this section presents use cases addressed by the participants
of the VTP2 initiative.

6.2.1. Filtering Use Case

An end-user has a very large data set with more than 700 different feature types, the end-user requires
Filters and Filter Builders to constrain the types of features that go into the vector tile sets that may be
used offline and overlaid on raster tile imagery.

The Filters and Filter Builders are used to constrain the types of features, remove attributes that
consistently have 'no information', set the bounding box or area, indicate a date/time range and select
output formats (MVT and/or GeoJSON). The filter would then be sent to the API to generate vector tile
sets that may be used offline and overlaid on raster tile imagery.

6.2.2. Metadata Use Case

Tile Set Metadata is used to describe the content of the tile sets received from the API. The end user
requires access to the tile sets in a complete offline environment and utilizing tile set metadata to
quickly review the main elements and information about those tile sets without having to parse each
tile of the tile set.

18

Chapter 7. Architecture
To support the objectives of this initiative, the following types of components were built by the
participants: feature servers, tile servers, GeoPackage producers, and Client Applications. The
feature servers were exposed through implementations of OGC API - Features, whereas the tile
servers were exposed through implementations of OGC API - Tiles. The following subsections
describe each of the components. Figure 2 shows the architecture designed for the pilot.

Figure 2. The OGC Vector Tiles Pilot Phase 2 architecture

The components shown in Figure 2 are based on the standards and draft specifications described in
the following subsections.

7.1. OGC API - Features standard
The OGC API - Features standard specifies API building blocks to create, modify and query features
on the Web. Part 1 of the standard specifies the core capabilities and is restricted to fetching
features where geometries are represented in the WGS 84 Coordinate Reference System with axis
order longitude-latitude. The core specifies mandatory capabilities that every implementing service
has to support and is restricted to read-access to geospatial data. Amongst the capabilities is support
for collections through a /collections path. The collections capabilities specified in the standard
describe requirements only for collections consisting of features. That is, each collection considered
by the standard is a feature collection. Further, each feature in a dataset is part of exactly one
collection. At the time of writing this report, development of additional capabilities that address
specific needs (e.g. support for different CRS [http://docs.opengeospatial.org/DRAFTS/18-058.html]) is well
underway. Other envisaged future capabilities include, for example, support for creating and
modifying data, more complex data models, and richer queries. The OGC API - Features standard

19

http://docs.opengeospatial.org/DRAFTS/18-058.html

builds on the Web Feature Service (WFS) standard and has previously been referred to as WFS 3.0.

7.2. OGC Web Feature Service (WFS) standard
The OGC Web Feature Service (WFS) standard specifies a service interface for discovery operations,
query operations, locking operations, transaction operations for data and operations to manage
stored, parameterized query expressions. Discovery operations allow the service to be interrogated
to determine its capabilities and to retrieve the application schema that defines the feature types
that the service offers. Query operations allow features or values of feature properties to be
retrieved from the underlying data store based upon constraints, defined by the client, on feature
properties. Locking operations allow exclusive access to features for the purpose of modifying or
deleting features. Transaction operations allow features to be created, changed, replaced and
deleted from the underlying data store. Stored query operations allow clients to create, drop, list
and described parameterized query expressions that are stored by the server and can be repeatedly
invoked using different parameter values.

7.3. OGC Web Map Tile Service (WMTS) standard
The OGC Web Map Tile Service (WMTS) standard specifies a service interface for providing digital
maps using predefined image tiles. The purpose of a WMTS service is to serve maps divided in
individual tiles, thereby improving performance and scalability. The standard allows an
implementing service to advertise the tiles it has available through a standardized declaration
common to all OGC web services. This declaration defines the tiles available in each layer (i.e. each
type of content), in each graphical representation style, in each format, in each coordinate
reference system, at each scale, and over each geographic fragment of the total covered area.

7.4. OGC GeoPackage standard
The OGC GeoPackage standard describes an open, standards-based, platform-independent,
portable, self-describing, compact format for transferring geospatial information. The standard
describes a set of conventions for storing the following within a SQLite database:

• Vector features

• Tile matrix sets of imagery and raster maps at various scales

• Extensions for handling specific types of resources such as tiled gridded coverage data and
related tables

To be clear, a GeoPackage is the SQLite container and the GeoPackage Encoding Standard governs
the rules and requirements of content stored in a GeoPackage container. The GeoPackage standard
defines the schema for a GeoPackage, including table definitions, integrity assertions, format
limitations, and content constraints. The required and supported content of a GeoPackage is
entirely defined in the standard.

7.5. OGC API - Maps draft specification
The OGC API - Maps draft specification describes an API that can serve spatially referenced and

20

dynamically rendered electronic maps [3]. The specification describes the discovery and query
operations of an API that provides access to electronic maps in a manner independent of the
underlying data store. The query operations allow dynamically rendered maps to be retrieved from
the underlying data store based upon simple selection criteria, defined by the client. The OGC API -
Maps draft specification builds on the Web Map Service (WMS) standard (OGC 06-042
[http://portal.opengeospatial.org/files/?artifact_id=14416]).

7.6. OGC API - Tiles draft specification
The OGC API - Tiles draft specification describes an API building block that can enable other OGC
API implementations to serve maps or tiled feature data divided into individual tiles [4]. The draft
specification includes concepts originating from the WMTS standard although such concepts have
been revised to allow for tiling other types of resources, not only maps. The OGC API - Tiles draft
specification references the OGC Two Dimensional Tile Matrix Set (TMS) standard (OGC 17-083r2
[http://docs.opengeospatial.org/is/17-083r2/17-083r2.html]). The TMS standard defines the rules and
requirements for a tile matrix set as a way to index space based on a set of regular grids defining a
domain (tile matrix) for a limited list of scales in a CRS.

7.7. VTP2 Filtering Language proof of concept
Within the context of the architecture described in Figure 2 the initiative participants sought to
design a filtering language to support the publication and use of vector tiles, within the context of
the architecture described in Section 7. The filtering language is described in detail in the OGC
Vector Tiles Pilot 2: Vector Tiles Filtering Language Engineering Report [5].

7.8. VTP2 Metadata model proof of concept
Within the context of the architecture described in Figure 2 the initiative participants sought to
design a metadata model to support the publication and use of vector tiles, within the context of the
architecture described in Section 7. Using the NSG Metadata Foundation (NMF), the metadata model
was designed to describe stored tile caches in sufficient detail to allow usage and updating of a tile
cache without needing to analyze each individual tile in the cache. The NMF defines the conceptual
schema profile for specifying geospatial metadata in and for the US National System for Geospatial
Intelligence (NSG) [6]. The metadata model is described in detail in the OGC Vector Tiles Pilot 2: Tile
Set Metadata Engineering Report [7].

21

http://portal.opengeospatial.org/files/?artifact_id=14416
http://docs.opengeospatial.org/is/17-083r2/17-083r2.html

Chapter 8. Vector Tiles GeoPackage Model
The VTP2 CFP states a requirement for robust online/offline use scenarios based on the GeoPackage
Standard. This includes the following:

• A metadata model for the tiles, tile matrix set, and styles;

• Methods to associate vector tile tables in GeoPackages with attribute tables to allow applying
similar filters to GeoPackages as being applied to the OGC API - Tiles;

• Online/offline symbol and style sharing.

The following subsections describe how this information can be stored in a GeoPackage. Appendix
A documents draft GeoPackage extensions to support the approaches described here.

8.1. Vector Tiles
The following demonstrates how tiled feature data, such as vector tiles, can be inserted directly into
a GeoPackage and have the attributes remain embedded in the vector tiles. This approach requires
the least amount of server-side processing to produce the GeoPackage. As illustrated in Figure 3, an
application would apply the following process:

1. Ensure required tables are present:

◦ gpkg_extensions as per the GeoPackage Extension Mechanism [http://www.geopackage.org/

spec121/#_extensions]

◦ gpkgext_vt_layers as per gpkgext_vt_layers

◦ gpkgext_vt_fields as per gpkgext_vt_fields

2. Populate gpkg_extensions with:

◦ references to all tables mentioned above as per gpkg_extensions Table Rows

◦ reference to the MVT Extension and/or GeoJSON Extension as needed

3. Add a row to gpkg_contents for each user-defined vector tiles table with a data_type of "vector-
tiles".

4. Add a row to gpkgext_vt_layers for each vector tiles layer, referencing the table_name from
gpkg_contents.

5. Add a row to gpkgext_vt_fields for each field referenced in the vector tiles, referencing the
layer_id from gpkgext_vt_layers.

6. Add a row to the user-defined vector tiles table for each vector tile.

22

http://www.geopackage.org/spec121/#_extensions

Figure 3. Vector Tiles with Embedded Attributes

NOTE
The need for the gpkgext_vt_layers.geometry_type_name column was identified at the
end of the Pilot. This column was not in place during the TIEs.

8.2. Portrayal Information
This section describes extending the direct insertion of tiled feature data to provide the portrayal
information (styles and symbols) needed to render the tiled data properly. In this approach, the
client must couple the layers to the stylesheets. As illustrated in Figure 4, the process is as follows:

1. Ensure required tables are present as per GeoPackage Portrayal Extension:

◦ gpkgext_styles

◦ gpkgext_stylesheets

◦ gpkgext_symbols

◦ gpkgext_symbol_content

2. Populate gpkg_extensions with references to all tables mentioned above.

3. Add a row to gpkgext_stylesheets for each stylesheet capable of rendering the layer.

4. Add a row to gpkgext_styles for each named style.

23

5. Add a row to gpkgext_symbols for each symbol used in the stylesheets.

6. Add a row to gpkgext_symbol_content for each file containing symbol data.

7. Add a row to gpkgext_symbol_images for each image, referencing rows in gpkgext_symbols and
gpkgext_symbol_content and containing sprite information if needed.

Figure 4. GeoPackage Portrayal with Vector Tiles

8.3. Metadata
This section is concerned with the metadata aspects of the Vector Tiles GeoPackage model. A wider
discussion relating to metadata work conducted in VTP2 is presented in the OGC Vector Tiles Pilot 2:
Tile Set Metadata Engineering Report [7]. The GeoPackage Metadata Extension
[http://www.geopackage.org/guidance/extensions/metadata.html] is used to add metadata for any business
object (layer, feature, tile, style, symbol, etc.) to contents in a GeoPackage.

NOTE
All of the caveats regarding metadata profiles [https://docs.opengeospatial.org/dp/19-

047.html#_metadata_profiles] apply here.

Through the following process, metadata is added to any GeoPackage business object:

1. Ensure required tables are present as per the GeoPackage Metadata Extension
[http://www.geopackage.org/spec121/#extension_metadata]

◦ gpkg_metadata

◦ gpkg_metadata_reference

2. Populate gpkg_extensions with references to all tables mentioned above.

3. Add a row to gpkg_metadata for each metadata document.

4. Add a row to gpkg_metadata_reference for each business object described by a metadata
document, referencing the corresponding table name, column name, and row identifier.

Figure 5 illustrates a GeoPackage with style and symbol metadata.

24

http://www.geopackage.org/guidance/extensions/metadata.html
https://docs.opengeospatial.org/dp/19-047.html#_metadata_profiles
http://www.geopackage.org/spec121/#extension_metadata

Figure 5. Vector Tiles with Styles, Symbols, and Style Metadata

8.4. Semantic Annotations
Semantic annotations provide a way to represent the meaning of a feature that is to be portrayed.
Such annotations are resolvable via a URI and can be placed on any business object (layer, feature,
tile, style, etc.). Semantic annotations are implemented in a GeoPackage through the Semantic
Annotations Extension. As illustrated in Figure 6, semantic annotations may be placed on virtually
any row in the GeoPackage. (Some tables already have URIs and when that is the case, the URIs are
shared for consistency.)

25

Figure 6. Semantic Annotations for GeoPackage business objects

To establish semantic annotations in a GeoPackage, the process is as follows:

1. Ensure required tables are present as per the Semantic Annotations Extension:

◦ gpkgext_sa_reference

◦ gpkgext_semantic_annotations

2. Populate gpkg_extensions with references to all tables mentioned above.

3. Add a row to gpkgext_semantic_annotations for every semantic annotation. (See below for the
specific type to use.)

4. Add a row to gpkgext_sa_reference for every row that must be annotated.

In Portrayal Information, there is no explicit coupling between layers and styles. Coupling, in this
context, refers to association of styles with layers. Coupling is completely the responsibility of the
user and/or client application. In many scenarios, it is beneficial for the GeoPackage to explicitly
declare the coupling. In VTP2, this was done through semantic annotations. There are two ways
that this can be done.

styles

The URI in gpkgext_semantic_annotations (the same as in gpkgext_styles) allows conventional
layers or vector tiles layers to be annotated as suitable for use with that style. See an example in
Table 4.

stylable layer sets

A new URI allows conventional layers, vector tiles layers, and styles to be annotated as belonging
to the same stylable layer set. See an example in Table 6.

Both approaches are described below through a tested example. Both worked examples start with
the following common base information.

26

Table 1. gpkg_contents

rowid table_name data_type

0 basemap tiles

1 tiles_daraa vector-tiles

2 overlays features

Table 2. gpkgext_styles

id style description uri

3 night Night style for
OSMTDS

'http://geosolutions.c
om/styles/osmtds-
night/'

4 topographic Topographic style for
OSMTDS

'http://geosolutions.c
om/styles/osmtds-
topographic/'

Table 3. gpkgext_vt_layers

id table_name name

13 tiles_daraa agricultureSrf

14 tiles_daraa settlementSrf

8.4.1. Styles

In this example, the two styles ("night" and "topographic") are shared by the vector tiles and the
overlays. First, two semantic annotations are created (one for each style).

Table 4. gpkgext_semantic_annotations

id type title description uri

23 style night Night style for
OSMTDS

'http://geosolutio
ns.com/styles/os
mtds-night/'

24 style topographic Topographic
style for
OSMTDS

'http://geosolutio
ns.com/styles/os
mtds-
topographic/'

Then, the layers (both conventional and vector tiles) and the styles are tagged with those
annotations.

Table 5. gpkgext_sa_reference

table_name key_column_name key_value sa_id

gpkg_contents rowid 2 23

gpkgext_vt_layers id 13 23

27

table_name key_column_name key_value sa_id

gpkgext_vt_layers id 14 23

gpkg_contents rowid 2 24

gpkgext_vt_layers id 13 24

gpkgext_vt_layers id 14 24

gpkgext_styles id 3 23

gpkgext_styles id 4 24

NOTE
The fact that the styles are also stored in the GeoPackage is secondary. It is not
mandatory to do so, but when the architecture calls for it, the styles and semantic
annotations will have the same URI.

8.4.2. Stylable Layer Sets

In this example, the two styles are part of the same stylable layer set that works for both the vector
tiles and the overlays. First, a semantic annotation is created for the stylable layer set.

Table 6. gpkgext_semantic_annotations

id type title description uri

33 StylableLayerSet OSMTDS stylable layer set
for
OpenStreetMap
TDS

'http://opengis/st
ylableLayerSets/
OSMTDS'

Then, the layers and styles are all tagged with this annotation.

Table 7. gpkgext_sa_reference

table_name key_column_name key_value sa_id

gpkgext_vt_layers id 13 33

gpkgext_vt_layers id 14 33

gpkg_contents rowid 2 33

gpkgext_styles id 3 33

gpkgext_styles id 4 33

8.5. Attributes
As described previously, attribute information is typically embedded in with the content contained
in vector tiles. However, keeping the attributes embedded in the vector tiles undermines the
capabilities of a GeoPackage-based architecture for the following reasons:

1. Since features may span multiple tiles, having the attribute information duplicated across each
tile containing a particular feature is redundant.

28

2. Queries against the embedded attributes are not possible without opening a number of
candidate tiles individually, which is an inefficient process.

3. There is no obvious way to identify the candidate tiles to open, beyond knowledge of the area of
interest of a particular query.

In response, this section presents an alternate approach for managing attributes in a way that
mitigates all three issues. Through the Vector Tiles Attributes Extension, a GeoPackage may contain
an attributes table [https://www.geopackage.org/spec121/#attributes] for each vector tiles layer.

To use this approach, the application should apply the process as illustrated by Figure 7:

1. Ensure required tables are present:

◦ an attributes table, preferably one with bounding box values min_x, min_y, max_x, and max_y
(to be used in spatial indexing as described below)

2. Populate gpkg_extensions with all required references, as per:

◦ the RTree Spatial Indexes Extension [http://www.geopackage.org/guidance/extensions/

rtree_spatial_indexes.html] (optional)

3. Add a row to gpkg_contents for each user-defined attributes table.

4. Populate the attributes table with the attributes from the vector tiles.

5. Remove the attributes from the vector tiles. (optional) [3]

6. Populate the attributes_table_name row of the gpkgext_vt_layers table with the name of the
attributes table. [4]

7. Establish an R-Tree spatial index on the attributes table based on the bounding box attributes in
the attributes table. (optional)

29

https://www.geopackage.org/spec121/#attributes
http://www.geopackage.org/guidance/extensions/rtree_spatial_indexes.html

Figure 7. GeoPackage Vector Tiles with Relational Attributes

8.6. Attributes with Related Tables
The approach described in the previous section provides significant benefits for scenarios where
features need to be filtered by their attributes and spatial extents. However, there is a limitation if
it is not possible or practical to isolate which tiles to open to find the geometries for the features
that satisfy a particular query. The GeoPackage Related Tables Extension [http://www.geopackage.org/

guidance/extensions/related_tables.html] can be used to establish a many-to-many mapping between
features and the tiles containing those features. Once this is done, the query can be performed to
identify a result set (based on feature IDs) and the mapping table can be queried to identify the tile
or tiles that contain the geometries for those features. In some scenarios, this will improve the
performance of filtering operations.

To use this approach, the process is as illustrated by Figure 8:

1. Ensure required tables are present:

◦ gpkgext_relations as per the Related Tables Extension

◦ a Related Tables Extension mapping table [http://www.geopackage.org/guidance/extensions/

related_tables.html#user-defined-mapping-table] for each tile set - attributes table combination

2. Populate gpkg_extensions with all required references, as per:

◦ the Related Tables Extension [http://docs.opengeospatial.org/is/18-000/18-000.html#

30

http://www.geopackage.org/guidance/extensions/related_tables.html
http://www.geopackage.org/guidance/extensions/related_tables.html#user-defined-mapping-table
http://docs.opengeospatial.org/is/18-000/18-000.html#gpkg_extensions_records

gpkg_extensions_records]

◦ this extension

3. Add a row to gpkgext_relations for each tiles table / attributes table combination, naming the
corresponding mapping table.

4. Add a row to the mapping table for each feature-tile combination.

Figure 8. GeoPackage Vector Tiles Attribute Extension

8.7. Tile Matrix Sets
The adoption of the GeoPackage Encoding Standard predated the adoption of the OGC Tile Matrix
Set (TMS) Standard [http://docs.opengeospatial.org/is/17-083r2/17-083r2.html]. The TMS Standard introduces
tile matrix sets as first class business objects where in GeoPackage they were treated as attributes
of tile pyramids. Allowing multiple tile pyramids to share common tile matrix sets improves
consistency and eliminates the redundancy of copying tile matrix information for each tile
pyramid. In addition, the TMS Standard introduces an option for variable-width tile matrix sets.
The GeoPackage Tile Matrix Set Extension implements both concepts in GeoPackage.

To use this approach, the process is as illustrated by Figure 9:

1. Add a row to gpkgext_tile_matrix_set for every tile matrix set used in the GeoPackage.

2. Add rows to gpkgext_tile_matrix for each tile matrix set, describing the individual zoom levels.

3. If variable-width tile matrixes are in use, add rows to gpkgext_tile_matrix_variable_widths for
all cases where the coalescence coefficient is greater than 1.

4. Add a row to gpkgext_tile_matrix_tables for every tiles table, referencing the tile matrix set in
use.

31

http://docs.opengeospatial.org/is/17-083r2/17-083r2.html
http://docs.opengeospatial.org/is/17-083r2/17-083r2.html

Figure 9. GeoPackage Tile Matrix Set Extension

[3] While it is preferable to remove the attributes from the tiles when using the Vector Tiles Attributes Extension, it is not
mandatory to do so. If the GeoPackage producer is not capable of modifying the vector tiles to remove the attributes, it is
acceptable to leave them in place.

[4] For consistency with other implementations, it is expected that the gpkgext_vt_fields table will still be populated when this
extension is in use.

32

Chapter 9. Implementations

9.1. Services and Data Producers
This section describes the technologies and approaches taken for implementing the services and
data producing components of the architecture.

9.1.1. Ecere D103 Features, Tiles and Styles API

Ecere improved the service implementation of the Features, Tiles and Styles APIs deployed during
OGC Testbed-15, with new capabilities such as support for new tiling schemes, filtering and
TileJSON tileset metadata. This instance of the GNOSIS Map Server was used to serve multiple
datasets, including imagery, elevation data and OpenStreetMap vector data, by pilot participants in
Technology Integration Experiments. The landing page of the server is shown in Figure 10.

Figure 10. Landing page for GNOSIS Map Server

The server dynamically sources data from multiple tiled data stores, which can be either GNOSIS
Data Stores or GeoPackages, but could eventually also be external OGC APIs for cascading servers,
as well as chained rendering and processing. A screenshot showing the layers and styles served
from a data source is presented in Figure 11.

33

Figure 11. Vector and elevation layers (collections) and styles served from a GeoPackage

Requests are not constrained to the nature of the source data, as the server can re-project to
another coordinate reference system, re-tile to a different tiling scheme, re-encode to another
format and/or re-assemble vector features or images on-the-fly.

34

Figure 12. Cultural Surfaces from Daraa (vector features, available whole, tiled, or clipped to BBOX)

Figure 13. The Tiles API for cultural surfaces served from a GeoPackage

The server supports encoding vector features in multiple encodings:

• GeoJSON

• Mapbox Vector Tiles

• GNOSIS Map Tiles (developed on Testbed 13)

35

• MapML (developed on Testbed 15)

A previous iteration of the service also supported the Geography Markup Language (GML), as well
as GeoECON (similar to GeoJSON but based on eC Object Notation [http://ec-lang.org/econ]), but these
formats were not yet functional in the latest iteration at the conclusion of the pilot.

Figure 14. Styles being served directly from GeoPackage portrayal extensions

The Styles API provides a list of available styles suitable for portraying a particular dataset. The
server performs (as best as it can manage) translation between supported styles
encoding — GNOSIS Cascading Map Style Sheet (CMSS), SLD/SE, and MapboxGL styling — using the
native CMSS as a bridge between SLD/SE and MapboxGL. CMSS is a geospatial symbology profile of
ECCSS (eC Cascading Style Sheets, intended for additional uses such as styling user interfaces), and
was originally developed as en encoding for the Symbology Conceptual Model developed in OGC
Testbed-14. When requesting a style specifically for a single collection, the style will also be filtered
to only include the rules pertaining to that particular collection. Support for uploading new styles
or modifying existing styles was not yet supported at the conclusion of the pilot.

36

http://ec-lang.org/econ

Figure 15. Only highest elevation points returned from CMSS filtering expression

Filtering support was implemented for both the Tiles API and Features API, and is described in
detail in the VTP2 Filtering Language Engineering Report. Support for comparison of attribute
values, geometry intersection with a bounding box, as well as logical and arithmetic operations was
added. The expressions syntax from the CMSS styling language, as used within selectors or the
values of styling properties of a symbolizer, is what could be achieved during the pilot. Support for
the CQL filtering language is a capability planned to be added eventually.

Figure 16. Multi-layer CMSS filter applied to a tile displayed in QGIS

With CMSS, it was possible to experiment with multi-layer filtering. The ability to select specific
layers to include within multi-layer tiles makes it possible to greatly reduce the size of the tiles

37

produced. This can also be done in conjunction with a scale-based selector, making it possible to re-
use the same tiles template for all zoom levels.

The new support for TileJSON tileset metadata conveys key information such as the layers found
within a tileset, the fields for attribute information, the vector geometry type, the zoom levels as
well as a simple URL template for retrieving the tiles themselves. This information is particularly
useful for describing tiles consisting of multiple layers, as no other standard mechanism had yet
been defined to do so with the Tiles API. Providing this metadata in a TileJSON format also enables
compatibility with the rich set of tools available in the Mapbox ecosystem.

Ecere’s implementation of the Tiles API already supported the GlobalCRS84Scale, GlobalCRS84Pixel,
GoogleCRS84Quad, WorldCRS84Quad, and WebMercatorQuad tiling schemes.

Figure 17. Supported tiling schemes

During the pilot, support for three additional schemes was implemented:

• WorldMercatorWGS84Quad: a quad-tree based on EPSG:3395 (World Mercator, using a proper
WGS84 ellipsoid),

• CDBGlobalGrid (an alias for CDB Global Grid): a multi-part quad-tree based based on EPSG:4326,
and representing both the OGC CDB Levels of Detail and CDB Zones, also using variable width
(defined in OGC 15-113r5 [https://portal.opengeospatial.org/files/15-113r5] and OGC 16-005r3
[https://portal.opengeospatial.org/files/16-005r3]). All tile matrices from level 0 and higher are defined
to be 1024x1024 pixels. The CDBGlobalGrid also has negative zoom levels (down to -10), for
which instead of dividing space differently, each tile maintains the same geographic bounds, but
gets divided into fewer pixels (each dimension reduced by 2 at the next smaller level).

• GNOSISGlobalGrid (an alias for GNOSIS Global Grid): an almost-quad-tree based on EPSG:4326,
with variable widths to approximate equal area tiles, as now defined by the OGC Two
Dimensional Tile Matrix Set standard. See Figure 18 and Figure 19 for an illustration of support
for this scheme. The standard introduces two constraints compared to Ecere’s previous
implementation of the GNOSIS Global Grid: all columns with the same number should align
regardless of a row’s variable width (with different columns sometimes representing the same
tile), and rows should always be numbered from the top (north).

38

https://portal.opengeospatial.org/files/15-113r5
https://portal.opengeospatial.org/files/16-005r3

Figure 18. Level 2 of the GNOSIS Global Grid, shown with variable widths coalescence coefficients

Figure 19. GNOSIS Global Grid tile matrix set definition

9.1.2. Ecere D106 GeoPackage Producer

Ecere improved its GeoPackage producer with support for vector tiles extensions built in the first
phase of the pilot and also enhanced during Testbed-15 (Open Portrayal Framework). This
capability is integrated within GNOSIS Cartographer, allowing the export of imagery, gridded
coverages and vector data to GeoPackages in a tiled manner.

The GeoPackage standard and extensions define how to store the geospatial data, styles and
metadata (including coordinate reference systems and tiling schemes). During the second phase of
the pilot, a new extension better aligning GeoPackages with the OGC Two Dimensional Tile Matrix
Set standard was developed, while vector tiles and portrayal extensions defined in the first phase

39

and in Testbed 15 saw clarifications and improvements. GNOSIS Cartographer’s GeoPackage
producer was improved to reflect these additions and changes.

The new TMS extension enabled tiling schemes making use of variable width tile matrices, such as
the GNOSIS Global Grid and CDB Global Grid. It also avoids duplicating the full description of the
same tile matrix sets for each layer, as it is common for multiple layers in one GeoPackage to use
the same tile matrix set, especially in the context of multi-layer vector tiles. The compatibility with
the standard GeoPackage tile matrix set tables is provided using SQL views on the extension tables.
All GeoPackages produced by Ecere, each following one of four different tiling schemes
(WebMercatorQuad, WorldMercatorWGS84Quad, WorldCRS84Quad, GNOSIS Global Grid) leveraged
this TMS extension.

Figure 20. Portrayal extensions tables in GeoPackage produced by Ecere

Important progress was made on clarifying how to store symbology information within
GeoPackages, how data layers and styles should be associated using flexible semantic annotations,
and how images or SVG symbols should be stored and referenced by style sheets, including the
possibility of using either individual or sprite sheets, as used in Mapbox GL styles. The improved
specifications also facilitate using the exact same style sheets offline and online. The GeoPackages
produced by Ecere included style sheets and symbols demonstrating the full extent of these
capabilities, following development to reflect the updated specifications.

40

Figure 21. GeoPackage exporting options in GNOSIS Cartographer

When generating a GeoPackage, the user is presented with a dialog including a number of options.
One is the choice of an encoding, for both vector and raster formats. The producer supports
encoding vector tiles as Mapbox Vector Tiles, GeoJSON or GNOSIS Map Tiles. Only the Mapbox
Vector Tiles encoding is available when choosing to encode multiple layers per tile. For the second
phase of the pilot, Ecere focused on generating GeoPackages encoded as Mapbox Vector Tiles, in
both one layer per tile and multiple layer per tile flavors. The GNOSIS visualization tools are
optimized to work with individual layers per tiles, each in their own SQLite blob, which facilitates
directly accessing a specific layer of a tile without having to decode an entire tile comprising
multiple layers.

Another important option is whether to store attributes embedded within the tiles themselves, or in
an attributes table (see the Attributes Table extension). Embedding the attributes within the tiles is
not an option with GNOSIS Map Tiles, which only defines how to store geometry and associated
numeric IDs referencing attributes in a database table. When using an attributes table, two
additional options are available which provide mechanisms to relate the tiles with the attributes
table. One such mechanism is a Features/Tiles mapping table, based on the GeoPackage Related
Tables extension. The other is an R-tree spatial index which can store the extent of each feature and
serves the dual purpose of identifying a limited set of tiles covered by a certain feature, while also
allowing to efficiently focus a query on a specific area of interest. Both mechanisms can be used
together, and were included in all GeoPackages including attributes tables generated by Ecere. The
R-tree spatial index created by the producer uses 32-bit integer decimal degrees multiplied by a
factor of 107 to store the extents, maintaining the same precision as OpenStreetMap. Most
GeoPackages generated during this second phase used the attributes table approach, but the
embedded attributes option was also tested.

41

Figure 22. Performing queries enabled by attributes tables, R-Trees and Features/Tiles mapping tables

The use of an attributes table instead of embedded attributes is highly recommended, as on one
hand it greatly reduces the size of the GeoPackage, while on the other it also enables the use of SQL
queries, which together with compact vector tiles and a spatial index (also recommended) result in
a very efficient general purpose geospatial vector data store, able to handle a large amount of both
geometry and attributes information. For example, it should be capable of easily scaling to the
entire OpenStreetMap Planet dataset in a single GeoPackage, wherever a single large database file
is practical. Practical examples of attributes and spatial queries with the GeoPackages produced by
Ecere are discussed in the VTP2 Filtering Language Engineering Report.

An important concept which would also greatly help covering large sparse extents for whole planet
GeoPackage experiments would be a mechanism to identify completely full tiles, as previously
discussed in Testbed 13 - Vector Tiles and the first phase of the pilot. An additional boolean flag
column to the tiles table, or the use of a view may be required for this purpose. A value of full = true
for a given tile would mean that no additional detail can be found at any more detailed zoom levels,
but the content of this tile should be used instead. This would be particularly useful for the interior
of vast land or ocean polygons, as it would allow to simply omit millions of tile entries. Potentially
only the special case of entirely filled polygon tiles could be considered.

The GeoPackages produced were also tested in the Ecere client applications, as well as a backing
data store for the GNOSIS Map Server Tiles API (requiring the use of attributes tables and R-trees
for full functionality).

42

Figure 23. Visualizing the World Mercator / Single Layer GeoPackage produced by Ecere

9.1.3. GeoSolutions D100 Features API

GeoSolutions sought to include Vector Tiles resources below the collections exposed in their Feature
Server which supports tiles and styles [8]. GeoSolutions extended the Feature Server implemented
in VTP1 which had been built on top of GeoServer.

The GeoSolutions Feature Server supports the OGC API - Features standard. During VTP2 the
following new capabilities and improvements were implemented:

• Upgraded the implementation to match the Features API 1.0 release

• Ran the CITE tests and fixed the issues reported (i.e. issues 86 [https://github.com/opengeospatial/ets-

ogcapi-features10/issues/86] and 89 [https://github.com/opengeospatial/ets-ogcapi-features10/issues/89]).

• Implemented the draft OGC API - Features CRS extension [https://github.com/opengeospatial/ogcapi-

features/blob/master/extensions/crs], advertising the supported CRSs and allowing to reproject
results to coordinate reference systems other than CRS84 [http://www.opengis.net/def/crs/OGC/1.3/

CRS84], as well as reporting the returned axis order as a response header.

• Exposed GeoServer (E)CQL filtering capabilities as an implementation of the current OGC API -
Features CQL extension [https://github.com/opengeospatial/ogcapi-features/tree/master/extensions/cql]
draft, along with queryables support (more details available in the VPT2 Filtering ER).

• Implemented the draft OGC API - Tiles building blocks as part of the OGC Features API, and
added filtering support in the same way as the OGC API - Features extensions.

• Added support for TileJSON metadata, allowing Mapbox clients seamless interaction with the
server.

The basic Features API now includes the filtering extension as a default, including both collection

43

https://github.com/opengeospatial/ets-ogcapi-features10/issues/86
https://github.com/opengeospatial/ets-ogcapi-features10/issues/89
https://github.com/opengeospatial/ogcapi-features/blob/master/extensions/crs
http://www.opengis.net/def/crs/OGC/1.3/CRS84
https://github.com/opengeospatial/ogcapi-features/tree/master/extensions/cql
https://github.com/opengeospatial/ogcapi-features/tree/master/extensions/cql

filtering via the cql-text language, and queryables. The intention is to move, step by step, the OGC
API - Features module towards feature parity with classic GeoServer WFS functionality. In this
spirit, the draft OGC API- Features CRS extensions was also implemented.

The OGC API - Tiles building block has been added as an optional plugin instead. When included,
the following changes appear:

• The API shows new resources for TileMatrixSet and tiles for each collection

• The landing page points at the TileMatrixSet resource

• The collections expose a link to the "tiles" and add support for encoding both Mapbox and
GeoJSON vector tiles

• The tiles resource provides access to a TileJSON description of tile contents.

Multi-layers support has not been added to this implementation, in order to preserve server
stability. This is especially for existing installations, having already a set of layers, upgrading to a
newer version of GeoServer and testing the OGC API in the process. Implementing multi-tiles
support, as currently specified, would have required implementing a features/tiles endpoint,
returning all available collections in the tiles by default.

By experience providing support, both on the public support lists, and commercially, GeoServer
installations can have a large number of layers configured: the common case includes hundreds or
thousands of them, with a small number of cases ranging in the tens of thousands, and a single case
of more than a hundred thousand layers observed in practice. With those numbers in mind,
including all the collections in tiles is not safe, and perhaps not useful. As a result, the
implementation has been postponed and an issue raised [https://github.com/opengeospatial/OGC-API-Tiles/

issues/17] on the OGC API - Tiles repository. In the meantime, multi-layer tiles can be retrieved from
the Tiles endpoint, where their contents can be controlled via the layer groups mechanism, both in
terms of layers, as well as contents based on the requested zoom level.

Figure 24 shows the landing page of the GeoSolutions Feature Server deployed in VTP2.

44

https://github.com/opengeospatial/OGC-API-Tiles/issues/17

Figure 24. Landing page of the GeoSolutions Feature Server in VTP2

Figure 25 shows the API as presented using Swagger UI.

Figure 25. API of the GeoSolutions Feature Server as presented using Swagger UI

Figure 26 shows links to the tiles description for the vtp:CultureSrf collection.

45

Figure 26. Tiles description, including link to the TileJSON metadata

In order to help clients dumping vector tiles in a GeoPackage, and to best integrate with the
Mapbox ecosystem, the tiles resources also point to TileJSON descriptions of the collection. Here is
an example, for a single collection:

``http://vtp2.geo-
solutions.it/geoserver/ogc/features/collections/vtp:CultureSrf/tiles/WebMercatorQuad/m
etadata?f=application%2Fjson``

{
 "name": "vtp:CultureSrf",
 "scheme": "xyz",
 "tiles": [
 "http://vtp2.geo-
solutions.it/geoserver/ogc/features/collections/vtp%3ACultureSrf/tiles/WebMercatorQuad
/{z}/{y}/{x}?f=application%2Fvnd.mapbox-vector-tile"
],
 "center": [
 36.123046875000355,
 32.62083957569541,
 11
],
 "bounds": [
 36.078098556,
 32.598968891,
 36.118825116,
 32.6432052850001
],
 "vector_layers": [
 {
 "id": "CultureSrf",
 "fields": {
 "LZN": "number",
 "OTH": "string",
 "ADI": "integer",
 "SAX_RS2": "string",

46

 "SAX_RS3": "string",
 "SAX_RS4": "string",
 "SAX_RS5": "string",
 "F_CODE": "string",
 "ZVH": "number",
 "FFN": "integer",
 "ADR": "string",
 "ZI005_FNA": "string",
 "ZI001_SRT": "string",
 "SAX_RS1": "string",
 "CDR": "string",
 "ZI005_NFN": "string",
 "ZI037_REL": "integer",
 "ZSAX_RX3": "string",
 "SDQ": "integer",
 "ZSAX_RX4": "string",
 "CAA": "integer",
 "SAX_RX1": "string",
 "ZI001_VSN": "string",
 "SAX_RX2": "string",
 "ZI020_GE4": "string",
 "ZSAX_RX0": "string",
 "SSR2": "integer",
 "SSR3": "integer",
 "SAX_RX7": "string",
 "HSS": "integer",
 "SAX_RX8": "string",
 "SAX_RX9": "string",
 "CAM": "integer",
 "SAX_RX5": "string",
 "SAX_RX6": "string",
 "ARA": "number",
 "VOI": "string",
 "PCF": "integer",
 "WID": "number",
 "SAX_RS6": "string",
 "HGT": "number",
 "ZI001_SDP": "string",
 "SAX_RS8": "string",
 "SAX_RS9": "string",
 "TOS": "integer",
 "ZI001_VSD": "string",
 "ZSAX_RS0": "string",
 "ZI001_VSC": "string",
 "ZI001_SDV": "string",
 "SAX_RY0": "string",
 "MCC2": "integer",
 "SAX_RY1": "string",
 "MCC3": "integer",
 "SAX_RY2": "string",
 "FFN2": "integer",

47

 "FFN3": "integer",
 "SRL": "integer",
 "ZI001_SPS": "integer",
 "VLM": "number",
 "TTY": "integer",
 "UFI": "string",
 "AWP": "integer",
 "ZI024_YWQ": "integer",
 "ZI026_CTUC": "integer",
 "CSO": "integer",
 "ZI006_MEM": "string",
 "AOO": "number",
 "SSC": "integer",
 "FCSUBTYPE": "integer",
 "LMC": "integer",
 "CCG": "integer",
 "ZI026_CTUL": "integer",
 "BEN": "string",
 "MCC": "integer",
 "HEI": "number",
 "ZI026_CTUU": "integer",
 "CCN": "string",
 "SSR": "integer",
 "ZI037_RFA": "integer",
 "ZI004_RCG": "string"
 },
 "geometry_type": "polygon"
 }
]
}

The work described above is, at the time of writing, available as two GeoServer community
modules, the improved OGC API - Features [https://github.com/geoserver/geoserver/tree/master/src/

community/ogcapi/ogcapi-features] implementation, along with the tiled features plugin, Tiled Features
[https://github.com/geoserver/geoserver/tree/master/src/community/ogcapi/ogcapi-tiled-features] adding the tiles
building blocks on the Features API implementation.

Binaries of the modules can be downloaded as part of the GeoServer nightly builds
[https://build.geoserver.org/geoserver/master/].

Finally, during VTP2 some experiments have been carried out with FlatGeoBuf
[https://docs.geoserver.org/latest/en/user/community/flatgeobuf/index.html], "a performant binary encoding
for geographic data based on flatbuffers". The format is provided as an output from the items
resource, and can be filtered just like the GeoJSON and GML ones. The superior encoding
performance, ability to stream out the response without advance preparation, and the small
network footprint, make it an interesting candidate for future experimentation. The FlatGeoBuf
module [https://docs.geoserver.org/latest/en/user/community/flatgeobuf/index.html] can also be found among
the GeoServer nightly builds.

48

https://github.com/geoserver/geoserver/tree/master/src/community/ogcapi/ogcapi-features
https://github.com/geoserver/geoserver/tree/master/src/community/ogcapi/ogcapi-tiled-features
https://build.geoserver.org/geoserver/master/
https://docs.geoserver.org/latest/en/user/community/flatgeobuf/index.html
https://docs.geoserver.org/latest/en/user/community/flatgeobuf/index.html
https://docs.geoserver.org/latest/en/user/community/flatgeobuf/index.html

9.1.4. GeoSolutions D102 Tiles API

The GeoSolutions Tiles Server implemented for VTP1 (see VTP Extension ER) already supports
Vector Tiles resources and supports styling.

The existing Tiles API publishes as collections different types of layers, including:

• Vector layers.

• Raster layers.

• Layer groups [https://docs.geoserver.org/stable/en/user/data/webadmin/layergroups.html], that is, server-
side configured layer trees, normally stacked to build a base-map in WMS and WMTS.

• Cascaded WMS and WMTS layers.

The stand-alone vector layers, as well as pure vector layer groups, are the only type of collection
exposing "data tiles", while the others serve "map" tiles only, that is, tiles rendered as PNGs.

As part of the Testbed 15 Style [9] work, most layers expose the list of styles associated to them in
the GeoServer configuration. As shown in Figure 27, the association is made by linking to the
relevant resources of the Styles API, for description and download.

Figure 27. GeoServer layer group definition as a stack of layers and associated style

Layer groups normally refer to a list of layers and styles as part of their definition, as such they do
not have a "style" of their own and the collection resource does not point to any. However, a layer
group in GeoServer can also be defined as a "style group", that is, a group whose definition is
provided as a multi-layer SLD or MapBox GL styles file. In this case the style defining the group is
made available as part of the collection resource.

Vector tile encodings supported by the server included GeoJSON and MVT formats, as illustrated in
Figure 28. The tiles server was configured to offer filtering capability, with support for SQL and an
ability to generate Vector Tiles on-the-fly with filters. The server was configured to serve tile caches
if no filters are requested.

49

https://docs.geoserver.org/stable/en/user/data/webadmin/layergroups.html

Figure 28. GeoSolutions Tile Server generation of Vector Tiles in VTP2

The GeoSolutions Tiles Server was configured to support a variety of tile matrix sets, including,
among others:

• WorldCRS84Quad [https://vtp2.geo-solutions.it/geoserver/ogc/tiles/tileMatrixSets/WorldCRS84Quad?

f=text%2Fhtml]

• EuropeanETRS89_LAEAQuad [https://vtp2.geo-solutions.it/geoserver/ogc/tiles/tileMatrixSets/

EuropeanETRS89_LAEAQuad?f=text%2Fhtml]

• UPSArcticWGS84Quad [https://vtp2.geo-solutions.it/geoserver/ogc/tiles/tileMatrixSets/UPSArcticWGS84Quad?

f=text%2Fhtml]

• GoogleCRS84Quad [https://vtp2.geo-solutions.it/geoserver/ogc/tiles/tileMatrixSets/GoogleCRS84Quad?

f=text%2Fhtml]

• WebMercatorQuad [https://vtp2.geo-solutions.it/geoserver/ogc/tiles/tileMatrixSets/WebMercatorQuad?

f=text%2Fhtml]

• EPSG:3395 [https://vtp2.geo-solutions.it/geoserver/ogc/tiles/tileMatrixSets/EPSG%3A3395?f=text%2Fhtml]

• UPSAntarcticWGS84 [https://vtp2.geo-solutions.it/geoserver/ogc/tiles/tileMatrixSets/UPSAntarcticWGS84?

f=text%2Fhtml]

• UTM##WGS84Quad [https://vtp2.geo-solutions.it/geoserver/ogc/tiles/tileMatrixSets/UTM%23%23WGS84Quad?

f=text%2Fhtml]

The API resource of the GeoSolutions Tile Server is shown on Figure 29.

50

https://vtp2.geo-solutions.it/geoserver/ogc/tiles/tileMatrixSets/WorldCRS84Quad?f=text%2Fhtml
https://vtp2.geo-solutions.it/geoserver/ogc/tiles/tileMatrixSets/EuropeanETRS89_LAEAQuad?f=text%2Fhtml
https://vtp2.geo-solutions.it/geoserver/ogc/tiles/tileMatrixSets/UPSArcticWGS84Quad?f=text%2Fhtml
https://vtp2.geo-solutions.it/geoserver/ogc/tiles/tileMatrixSets/GoogleCRS84Quad?f=text%2Fhtml
https://vtp2.geo-solutions.it/geoserver/ogc/tiles/tileMatrixSets/WebMercatorQuad?f=text%2Fhtml
https://vtp2.geo-solutions.it/geoserver/ogc/tiles/tileMatrixSets/EPSG%3A3395?f=text%2Fhtml
https://vtp2.geo-solutions.it/geoserver/ogc/tiles/tileMatrixSets/UPSAntarcticWGS84?f=text%2Fhtml
https://vtp2.geo-solutions.it/geoserver/ogc/tiles/tileMatrixSets/UTM%23%23WGS84Quad?f=text%2Fhtml

Figure 29. The landing page of the GeoSolutions Tile Server in VTP2

In order to help clients dumping vector tiles in a GeoPackage, and to best integrate with the
Mapbox ecosystem, the tiles resources also point to TileJSON descriptions of the collection. Here is
an exerpt from a multi-layer collection TileJSON:

``https://vtp2.geo-
solutions.it/geoserver/ogc/tiles/collections/vtp:daraa_vtp/tiles/%7BtileMatrixSetId%7D
/metadata?f=application%2Fjson``

{
 "name": "vtp:daraa_vtp",
 "scheme": "xyz",
 "tiles": [
 "http://vtp2.geo-
solutions.it/geoserver/ogc/tiles/collections/vtp%3Adaraa_vtp/tiles/WebMercatorQuad/{z}
/{y}/{x}?f=application%2Fvnd.mapbox-vector-tile"
],
 "center": [
 36.56250000000041,
 34.27502568554792,
 6
],
 "bounds": [
 35.8995094299316,
 32.4131851196289,

51

 36.5781326293945,
 33.1460647583008
],
 "vector_layers": [
 {
 "id": "AgricultureSrf",
 "fields": {
 "OTH": "string",
 "PVH": "number",
 "TSCL": "number",
 "ZI005_FNA": "string",
 "CDR": "string",
 "..." : "..."
 },
 "geometry_type": "polygon"
 },
 {
 "id": "VegetationSrf",
 "fields": {
 "LZN": "number",
 "OTH": "string",
 "PVH": "number",
 "TRE": "integer",
 "..." : "..."
 },
 "geometry_type": "polygon"
 },
 {
 "id": "MilitarySrf",
 "fields": {
 "OTH": "string",
 "WD3": "number",
 "FRT": "integer",
 "FRT3": "integer",
 "FRT2": "integer",
 "ZI005_FNA": "string",
 "..." : "..."
 },
 "geometry_type": "polygon"
 },
 "..."
]
}

The Tiles API is, at the time of writing, available as a community module [https://github.com/geoserver/

geoserver/tree/master/src/community/ogcapi/ogcapi-tiles], that anyone can inspect and download as part of
the GeoServer nightly builds [https://build.geoserver.org/geoserver/master/].

In the future the module is expected to be included as part of releases, as an extension. Eventually
the module will take its place in the core GeoServer download, alongside the existing WMTS

52

https://github.com/geoserver/geoserver/tree/master/src/community/ogcapi/ogcapi-tiles
https://build.geoserver.org/geoserver/master/

functionality.

9.1.5. interactive instruments D101 Features, Tiles and Styles API

9.1.5.1. Overview

At the beginning of the OGC Vector Tiles Pilot 2, the open-source tool ldproxy [https://github.com/

interactive-instruments/ldproxy] implemented the following capabilities that were the basis for the
work in the pilot:

• OGC API - Features - Part 1: Core: The following conformance classes were used in the pilot:
Core, HTML, GeoJSON, OpenAPI 3.0. ldproxy was the first OGC Reference Implementation for
the standard.

• OGC API - Features - Part 2: Coordinate Reference Systems by Reference: The latest draft (the
public review started during the pilot).

• OGC API - Tiles: The following conformance classes of the latest draft were used in the pilot:
Core, Tile Matrix Set, Tiles from more than one collection. Mapbox Vector Tiles and GeoJSON
tiles were supported.

• OGC API - Styles: The following conformance classes of the latest draft were used in the pilot:
Core, Resources, HTML, Mapbox Styles, Style Info, Queryables.

• A query parameter "properties" on all tile and feature resources to return only the selected
properties in the response.

For the demonstration server, a test dataset with data from OpenStreetMap from the region of
Daraa, Syria, converted to the Topographic Data Store schema of NGA was used. The data was
loaded into a PostgreSQL database that served as the data backend for the ldproxy deployment.

For VTP2, interactive instruments extended ldproxy with:

• Consistent server-side filtering for features in the Features and Tiles resources of the API, based
on the proposed Common Query Language (CQL) extension [https://github.com/opengeospatial/ogcapi-

features/tree/master/extensions/cql];

• Additional well-known tiling schemes - WorldCRS84Quad based on the geographic coordinates,
and WorldMercatorWGS84Quad, based on the standard Mercator projection;

• Additional metadata for tile sets and features.

9.1.5.2. The starting point

The following screenshots of the HTML view of the API resources illustrate the starting point for the
work in the pilot. The HTML view is a rendering of the JSON content that was also available for
each resource, as shown in Figure 30 and Figure 31.

53

https://github.com/interactive-instruments/ldproxy
https://github.com/opengeospatial/ogcapi-features/tree/master/extensions/cql

Figure 30. interactive instruments - the landing page of the API

Figure 31. interactive instruments - the collections (feature types) in the dataset

The API documentation page of the interactive instruments ldproxy instance is shown on Figure 32.

54

Figure 32. The API documentation page of the interactive instruments ldproxy instance in VTP2

For filtering, knowledge about the available properties for use in filter predicates is important.
These were published as a separate resource for each collection, as shown in Figure 33 for the
Transportation (Ground) features with a line string geometry.

Figure 33. interactive instruments - queryable properties for the Transportation (Ground) features with line
string geometry

To illustrate the data, here is a screenshot of a road feature Figure 34:

55

Figure 34. interactive instruments - a road feature

The following code snippet is the same feature in GeoJSON (coordinates have been truncated):

56

interactive instruments - a road feature in GeoJSON

{
 "type":"Feature",
 "links":[
 {
 "href":"https://services.interactive-
instruments.de/t15/daraa/collections/TransportationGroundCrv/items/34?f=json",
 "rel":"self",
 "type":"application/geo+json",
 "title":"This document"
 },
 {
 "href":"https://services.interactive-
instruments.de/t15/daraa/collections/TransportationGroundCrv/items/34?f=html",
 "rel":"alternate",
 "type":"text/html",
 "title":"This document as HTML"
 },
 {
 "href":"https://services.interactive-
instruments.de/t15/daraa/collections/TransportationGroundCrv?f=json",
 "rel":"collection",
 "type":"application/json",
 "title":"The collection the feature belongs to"
 }
],
 "id":"34",
 "geometry":{
 "type":"MultiLineString",
 "coordinates":[...]
 },
 "properties":{
 "F_CODE":"AP030",
 "ZI001_SDV":"2014-09-13T18:57:11Z",
 "ZI005_FNA":"No Information",
 "RTY":2,
 "RIN_ROI":3,
 "UFI":"86c0f5fe-4abd-4e0e-970a-feaf7e0ab314",
 "FCSUBTYPE":100152,
 "ZI006_MEM":"No Information",
 "ZI001_SDP":"No Information",
 "ZI016_WTC":1,
 "RIN_RTN":"No Information",
 "RLE":-999999,
 "LOC":-999999
 }
}

All features were also available as vector tiles, both for each individual collection and a single

57

multi-layer tile set, consistent with the OGC API Tiles draft specification at the time of the pilot. That
is, the Mapbox Vector Tiles tile set for every feature collection includes a single layer for the
features of the collection and the multi-collection Mapbox Vector Tiles tile set includes multiple
layers, one layer for each collection with features for that tile.

The screenshot below, in Figure 35, shows the vector tiles of the Transportation (Ground) features
in an OpenLayers map.

Figure 35. interactive instruments - Mapbox Vector Tiles for the Transportation (Ground) features in
OpenLayers

Two sample styles for the data were provided for rendering the feature data using Mapbox Styles
as the style encoding: a "topographic" style and a "night" style. The screenshots in Figure 36 and
Figure 37 illustrate the two styles using an OpenLayers map and the multi-layer vector tiles.

58

Figure 36. interactive instruments - Multi-layer vector tiles rendered using the topographic style

Figure 37. interactive instruments - Multi-layer vector tiles rendered using the night style

59

9.1.6. Support for filtering

The filtering support implemented in the pilot is documented in detail in the OGC Vector Tiles Pilot
2: Vector Tiles Filtering Language Engineering Report [http://www.opengis.net/doc/PER/vtp2-D002#

ii_implementation].

9.1.7. Support for additional tiling schemes

Support for additional tiling schemes beside the standard "WebMercatorQuad" scheme was
implemented in ldproxy. The following tiling schemes defined in the OGC Two Dimensional Tile
Matrix Set standard were deployed for all tile sets:

• Google Maps Compatible for the World (WebMercatorQuad), based on the Web Mercator
projection

• CRS84 for the World (WorldCRS84Quad), based on the geographic coordinates

• WGS84 for the World (WorldMercatorWGS84Quad), based on the standard Mercator projection

Additional screenshots are presented in Appendix B, in the subsection titled interactive
instruments.

9.1.7.1. Schema information for features

For each feature collection, a JSON schema describing the schema of the features in the collection
was implemented during the pilot as published as a schema sub-resource of the collection.

interactive instruments - information about the TransportationGroundCrv collection

{
 "title" : "Transportation - Ground (Curves)",
 "description" : "Transportation: Information about the principal means of overland
movement of people and goods from one location to another.",
 "links" : [{
 "rel" : "self",
 "type" : "application/json",
 "title" : "This document",
 "href" : "https://services.interactive-
instruments.de/t15/daraa/collections/TransportationGroundCrv?f=json"
 }, {
 "rel" : "alternate",
 "type" : "text/html",
 "title" : "This document as HTML",
 "href" : "https://services.interactive-
instruments.de/t15/daraa/collections/TransportationGroundCrv?f=html"
 }, {
 "rel" : "items",
 "type" : "application/geo+json",
 "title" : "Access the features in the collection 'Transportation - Ground
(Curves)'",
 "href" : "https://services.interactive-
instruments.de/t15/daraa/collections/TransportationGroundCrv/items?f=json"

60

http://www.opengis.net/doc/PER/vtp2-D002#ii_implementation
http://www.opengis.net/doc/PER/vtp2-D002#ii_implementation

 }, {
 "rel" : "items",
 "type" : "text/html",
 "title" : "Access the features in the collection 'Transportation - Ground
(Curves)'",
 "href" : "https://services.interactive-
instruments.de/t15/daraa/collections/TransportationGroundCrv/items?f=html"
 }, {
 "rel" : "queryables",
 "title" : "Queryable attributes",
 "href" : "https://services.interactive-
instruments.de/t15/daraa/collections/TransportationGroundCrv/queryables"
 }, {
 "rel" : "describedby",
 "type" : "application/schema+json",
 "title" : "Schema of the features",
 "href" : "https://services.interactive-
instruments.de/t15/daraa/collections/TransportationGroundCrv/schema"
 }, {
 "rel" : "tiles",
 "title" : "Access the data as vector tiles",
 "href" : "https://services.interactive-
instruments.de/t15/daraa/collections/TransportationGroundCrv/tiles"
 }],
 "id" : "TransportationGroundCrv",
 "extent" : {
 "spatial" : {
 "bbox" : [[35.9028738, 32.4168138, 36.5747694, 33.1424348]],
 "crs" : "http://www.opengis.net/def/crs/OGC/1.3/CRS84"
 },
 "temporal" : {
 "interval" : [[null, null]],
 "trs" : "http://www.opengis.net/def/uom/ISO-8601/0/Gregorian"
 }
 },
 "crs" : ["http://www.opengis.net/def/crs/OGC/1.3/CRS84",
"http://www.opengis.net/def/crs/EPSG/0/3395",
"http://www.opengis.net/def/crs/EPSG/0/3857",
"http://www.opengis.net/def/crs/EPSG/0/4326"],
 "storageCrs" : "http://www.opengis.net/def/crs/OGC/1.3/CRS84",
 "styles" : [{
 "title" : "Topographic night style",
 "links" : [{
 "rel" : "stylesheet",
 "type" : "application/vnd.mapbox.style+json",
 "title" : "Stylesheet in style encoding 'Mapbox Style'",
 "href" : "https://services.interactive-
instruments.de/t15/daraa/styles/night?f=mbs"
 }, {
 "rel" : "describedBy",
 "title" : "Style metadata",

61

 "href" : "https://services.interactive-
instruments.de/t15/daraa/styles/night/metadata"
 }, {
 "rel" : "map",
 "title" : "Map showing the Style",
 "href" : "https://services.interactive-
instruments.de/t15/daraa/styles/night/map"
 }],
 "id" : "night"
 }, {
 "title" : "Topographic style",
 "links" : [{
 "rel" : "stylesheet",
 "type" : "application/vnd.mapbox.style+json",
 "title" : "Stylesheet in style encoding 'Mapbox Style'",
 "href" : "https://services.interactive-
instruments.de/t15/daraa/styles/topographic?f=mbs"
 }, {
 "rel" : "describedBy",
 "title" : "Style metadata",
 "href" : "https://services.interactive-
instruments.de/t15/daraa/styles/topographic/metadata"
 }, {
 "rel" : "map",
 "title" : "Map showing the Style",
 "href" : "https://services.interactive-
instruments.de/t15/daraa/styles/topographic/map"
 }],
 "id" : "topographic"
 }],
 "defaultStyle" : "topographic"
}

The links include a link with rel=describedby and type=application/schema+json. The JSON schema is
shown in the code block below:

interactive instruments - JSON schema of the TransportationGroundCrv features

{
 "$schema" : "http://json-schema.org/draft-07/schema#",
 "$id" : "https://services.interactive-
instruments.de/t15/daraa/collections/TransportationGroundCrv/schema?f=json",
 "type" : "object",
 "title" : "Transportation - Ground (Curves)",
 "description" : "Transportation: Information about the principal means of overland
movement of people and goods from one location to another.",
 "required" : ["type", "geometry", "properties"],
 "properties" : {
 "type" : {
 "type" : "string",
 "enum" : ["Feature"]

62

 },
 "id" : {
 "oneOf" : [{
 "type" : "string"
 }, {
 "type" : "integer"
 }]
 },
 "links" : {
 "type" : "array",
 "items" : {
 "$ref" : "https://api.swaggerhub.com/domains/cportele/ogcapi-features-
1/1.0.0#/components/schemas/link"
 }
 },
 "geometry" : {
 "oneOf" : [{
 "$ref" : "https://geojson.org/schema/Geometry.json"
 }, {
 "type" : "null"
 }]
 },
 "properties" : {
 "oneOf" : [{
 "type" : "object",
 "properties" : {
 "id" : {
 "type" : "string"
 },
 "F_CODE" : {
 "type" : "string"
 },
 "ZI001_SDV" : {
 "type" : "string",
 "format" : "date-time"
 },
 "UFI" : {
 "type" : "string"
 },
 "ZI005_FNA" : {
 "type" : "string"
 },
 "RTY" : {
 "type" : "integer"
 },
 "FCSUBTYPE" : {
 "type" : "integer"
 },
 "TRS" : {
 "type" : "integer"
 },

63

 "RIN_ROI" : {
 "type" : "integer"
 },
 "ZI006_MEM" : {
 "type" : "string"
 },
 "ZI001_SDP" : {
 "type" : "string"
 },
 "ZI016_WTC" : {
 "type" : "integer"
 },
 "RIN_RTN" : {
 "type" : "string"
 },
 "RLE" : {
 "type" : "integer"
 },
 "LOC" : {
 "type" : "integer"
 }
 }
 }, {
 "type" : "null"
 }]
 }
 }
}

9.1.8. Image Matters D107 GeoPackage

For VTP2, Image Matters built on the capabilities implemented in Testbed-15 by extending their
GeoPackage Provisioner (producer). As shown in Figure 38, the GeoPackage Provisioner is designed
to populate a GeoPackage with the content obtained from existing web services. The Provisioner
inspects a web service, parses the relevant documents, locates the relevant content based on the
API specification (such as OGC API - Tiles), harvests that information, and writes it to the
GeoPackage. The Provisioner uses open-source libraries, sponsored by NGA, to handle the
GeoPackage operations.

64

Figure 38. Image Matters GeoPackage Provisioner

For VTP2, Image Matters updated the Provisioner to support the recent changes to the Tiles API. The
GeoPackage libraries were extended to support new GeoPackage capabilities. The Provisioner is
now able to access vector tiles, styles, and style metadata through this API by applying the following
workflow:

1. A provider hosts descriptions of well-known tile matrix sets based on the URL template
https://services.interactive-instruments.de/t15/daraa/tileMatrixSets/{TileMatrixSet}?f=json. The
layer information includes a description of the available tile matrix sets. This information goes
into gpkg_tile_matrix_set and gpkg_tile_matrix and is used in the creation of a user-defined
tiles table. Note that other providers are possible.

2. Apache SIS [http://sis.apache.org/] provides resolution and descriptions of Coordinate Reference
Systems (CRSs).

3. A Capabilities document provides links to a multi-tiles layer (conveniently called "tiles") and the
styles (if available). If available, title and description information goes into gpkg_contents along
with the name of the user-defined tiles table and the requested extents of the layer.

4. The layer information includes descriptions of the tile matrix sets it supports. Those tile matrix
sets may include tile matrix set limits, the boundaries around which tiles are available. Making
use of this information prevents the client from making unnecessary requests for non-existent
tiles.

5. The layer information includes an "item" link that provides a template for accessing tiles based
on tile matrix set, tile matrix, row, and column. The tiles are available in one or more formats
(e.g., Mapbox and GeoJSON).

6. Based on the parameters provided to the client (extents, tile matrix set, zoom levels, and tile
format), the Provisioner calculates and retrieves appropriate vector tiles and inserts them into

65

https://services.interactive-instruments.de/t15/daraa/tileMatrixSets/{TileMatrixSet}?f=json
http://sis.apache.org/

the GeoPackage.

7. The Capabilities document may contain a link to styles information. If styles are available, they
are harvested into the gpkgext_styles and gpkgext_stylesheets tables. If metadata is available
for those styles, that information is harvested into gpkg_metadata and gpkg_metadata_records.

The following endpoints were used:

• Ecere: http://maps.ecere.com/geoapi/collections/vtp/Daraa2

• GeoSolutions: https://vtp2.geo-solutions.it/geoserver/ogc/tiles/collections/vtp:daraa_vtp

• Interactive Instruments: https://services.interactive-instruments.de/t15/daraa

• Terranodo: http://ogc-vtp.gospatial.org/ogc-api-tiles

This design proved to be a good match for the emerging OGC API - Tiles. It was straight-forward to
identify the relevant information, harvest the content, and write the content to the GeoPackage.
Details on how to populate the GeoPackage with vector tiles information, including styles and
symbols, are provided in Section 8.

9.1.9. Terranodo D100 Features API

Terranodo used Tegola, a vector tile server written in the Go programming language
[https://golang.org]. Tegola supports the EPSG:4326 coordinate reference system. Terranodo created a
service with OpenStreetMap (OSM) [http://openstreetmap.org] data from geofabrik
[https://www.geofabrik.de/data/download.html] Protobuf exports, and served the exports as a set of static
resources from the Amazon Web Services (AWS) Simple Storage Service (S3). AWS S3 is one of the
services offered by the Amazon Cloud. The OSM data was converted into Postgres tables, from
where Tegola was configured to serve data from. The basic metadata for the provisioned data
indicated the bounds, min/max zoom, scheme, and grids. For each layer, the metadata described the
geometry type and valid zoom levels, among others.

The server was implemented as a tile server/service and not having any concept of styles.
Terranodo added an auto-generated style for the built-in viewer (see Figure 39), but there is no
capability to provide actual styles for a particular map or set of layers. This is left entirely up to the
client. Styles are handled separately from the server implementation. They can be defined inline
inside a client application or retrieved over HTTP. Inside these styles, filters are defined that can
specify a subset of features in a layer to be used for cartographic purposes. These styles also define
a collection of sprites (referred to as a spriteset) to use for the style as well as fonts. A sprite is an
image representing a symbol.

66

http://maps.ecere.com/geoapi/collections/vtp/Daraa2
https://vtp2.geo-solutions.it/geoserver/ogc/tiles/collections/vtp:daraa_vtp
https://services.interactive-instruments.de/t15/daraa
http://ogc-vtp.gospatial.org/ogc-api-tiles
https://golang.org
http://openstreetmap.org
https://www.geofabrik.de/data/download.html

Figure 39. Client application built into the Terranodo Tegola vector tile server.

9.2. Client applications
This section describes the technologies and approaches taken for implementing the client
application components of the VTP2 architecture.

9.2.1. Ecere D105 OGC API Client and D106 GeoPackage visualization

Ecere implemented cross-platform map client applications, shown in Figure 40 and Figure 41.
These applications supported the Features, Tiles and Styles APIs. as well as offline tiled data stores.
Capabilities for visualizing tile-based GeoPackages, including support for tiled vector and gridded
coverage extensions were a subject of deliverable D106. The applications also supported the native
GNOSIS Data Store, a compact offline tiled data store able to store coverage, imagery and vector
data, balancing the number of files versus the size of each file. These capabilities were a
continuation of Ecere’s work in the first phase of the pilot, as well as OGC Testbed-13 (Vector Tiles),
Testbed-14 (Symbology Conceptual Model) and Testbed-15 (Open Portrayal Framework).

67

Figure 40. OpenStreetMap, Imagery and Elevation data from Syria displayed in GNOSIS Cartographer GIS
tool

Figure 41. Screenshot of Ecere’s mobile Android client built using cross-platform GNOSIS SDK

The design of the clients ensures consistent functionality online and offline, permitting to support
operations faced with Degraded, Denied, Intermittent or Limited connectivity. GNOSIS
Cartographer and the simple mobile Android client are built with Ecere’s GNOSIS Software
Development Kit [http://ecere.ca/gnosis], a geospatial visualization framework, and leveraging the
Open-Source Ecere SDK [http://ecere.org], which also provides a cross-platform user interface toolkit.
The toolkits and applications are written in the eC programming language [http://ec-lang.org], and
offer bindings to additional programming languages such as C, C++ and Python.

68

http://ecere.ca/gnosis
http://ecere.ca/gnosis
http://ecere.org
http://ec-lang.org

Figure 42. Tiled vector data from all Tiles APIs and GeoPackage producers shown in GNOSIS Cartographer:
Ecere Tiles API (top-left), GeoSolutions (top-right), Terranodo (middle-left), interactive instruments (middle-
right), Ecere GeoPackage (bottom-left) and Image Matters (bottom-right)

Adjustments were made to the client code to reflect the latest development of the Tiles API,
including the use of TileJSON to better support multi-layer tiles. This enabled performing
Technology Integration Experiments with all the different service providers of the pilot, including
Ecere, interactive instruments, GeoSolutions and Terranodo. A screenshot showing tiled vector data
retrieved from different servers and rendered on the Ecere client is presented in Figure 42.

A large number of flavors and revisions of GeoPackages produced by both Ecere and Image Matters
were tested throughout the pilot. Support for updated and new extensions for vector tiles,
attributes, tiles/features mapping tables, spatial indexes, tile matrix set definitions, styles, semantic
annotations and symbols was implemented in the client. For the Ecere GeoPackages, at least 9
different combinations of single or multiple layers per tiles, embedded attributes or attributes
table, and 4 different TileMatrixSets). For Image Matters GeoPackages, each of them featured data
retrieved from the Tiles API provided by all the different participants of the pilot, in multiple
supported TileMatrixSets, which were all individually verified. Various performance improvements
were also made to the rendering engine. Additional screenshots are presented in Appendix B.

Support for two new tiling schemes was also implemented: WorldMercatorWGS84Quad and
GNOSISGlobalGrid (as defined by the TileMatrixSet standard, using Figure 18). See the Ecere Tiles

69

API implementation for more details about those tiling schemes.

Figure 43. Tiled vector data from all Tiles APIs and GeoPackage producers shown in GNOSIS Cartographer:
Ecere Tiles API (top-left), GeoSolutions (top-right), Terranodo (middle-left), interactive instruments (middle-
right), Ecere GeoPackage (bottom-left) and Image Matters (bottom-right)

GNOSIS Cartographer’s Visual Style Editor allows selecting symbology from an existing style,
modifying or defining new symbology, and updating styles, whether they are stored within a
GNOSIS Data Store or a GeoPackage, or are published through a Styles API. This functionality was
improved and tested more in depth during the initiative. Support for functions was added to the
GNOSIS Cascading Map Style Sheets (CMSS), including text manipulation and geometry / bounding
box intersection, enabling new client-side styling and filtering capabilities.

The client automatically filtered features based on the style in use, as originally intended in the
client design, but the filtering was applied on the client-side, as there was not enough time available
to implement filtering requests to the service. The automatic filtering considers a style’s selectors,
as well as visualization properties such as opacity and visibility. This automatic generation of a
filter could also be done by the server if referencing a style rather than supplying a filter. A
disadvantage of requesting pre-filtered tiles, rather than doing the filtering on the client side, is that
the client would need to discard tiles and retrieve a different version when changing between
styles.

The ability to define 3D extrusion of polygons, where the heights can be defined as attributes-based
expressions, was also used to render 3D OpenStreetMap buildings from both the Terranodo Tiles
API (Figure 68) as well as an offline GNOSIS Data Store (Figure 69).

Testing was also performed with GeoJSON tiles sourced from the GeoSolutions Tiles API stored
within a GeoPackage provided by Image Matters. As these tiles each contained multiple layers
within a single GeoJSON files, that format was not yet properly supported by the GNOSIS
visualization tools, which normally expect a separate GeoJSON per layer.

70

9.2.2. GeoSolutions D104 Client

GeoSolutions implemented a browser-based web map client application, shown in Figure 44. The
client application was implemented using MapStore a JavaScript framework based on React
[https://reactjs.org]. MapStore [https://mapstore.geo-solutions.it/] is an open source highly modular
geospatial web framework for creating, managing and securely sharing maps and mashups. React
is a JavaScript library for building user interfaces.

• live demo [http://demo.vtp2.geo-solutions.it/mapstore/index.html#/]

• repository [https://github.com/geosolutions-it/ogc-vector-tiles-vtp/tree/master/vtp2]

• offline client (stand alone app for Windows) [http://demo.vtp2.geo-solutions.it/mapstore-electron-client/

windows.zip]

Figure 44. GeoSolutions Client in VTP2

A screenshot showing multi-layer collections retrieved from different servers and rendered on the
GeoSolutions client is presented in Figure 45. Additional screenshots are presented in Appendix B.

Figure 45. GeoSolutions MapStore Client shows multi-layer collection from different servers: GeoSolutions
(top left), Interactive Instruments (top right), Ecere (bottom left) and Terranodo (bottom right)

71

https://reactjs.org
https://mapstore.geo-solutions.it/
http://demo.vtp2.geo-solutions.it/mapstore/index.html#/
https://github.com/geosolutions-it/ogc-vector-tiles-vtp/tree/master/vtp2
http://demo.vtp2.geo-solutions.it/mapstore-electron-client/windows.zip

The client implemented the following functionalities to be able to interact with all participants
services:

• connected to servers supporting OGC API - Tiles Figure 44

• added single and multi-layer collections to the map Figure 45

• selected and applied styles to a vector tiles layer Figure 46

• built and applied a CQL filter to a single collection layer Figure 47

• generated and downloaded tile set metadata Figure 48

• visualized the downloaded tile set metadata on an offline client Figure 49

• selected and applied different tile matrix sets to a vector tile layer Figure 57

Figure 46. GeoSolutions MapStore Client selection of styles from GeoSolutions

Figure 47. GeoSolutions MapStore Client with attribute and spatial filters applied to Transportation Ground
Curve layer from different services: GeoSolutions (left), Interactive Instruments (top right) and Terranodo
(bottom right)

72

Figure 48. GeoSolutions MapStore Client displays the tile set metadata download form

Figure 49. GeoSolutions MapStore Client in an Electron app displays downloaded tile set metadata offline
from different servers: GeoSolutions (top left), Interactive Instruments (top right), Ecere (bottom left) and
Terranodo (bottom right)

GeoSolutions carried out additional experimentation as listed below:

• tested support for Mapbox GL in MapStore Figure 58

• tested flatgeobuf format for Feature items Figure 59

• tested integration of MapStore in an Electron app (offline client) Figure 49

9.2.2.1. Some notes

The client was able to use styles from a Styles API implementation. If such a service is not available,
the client was able to use styles available in a static folder. Figure 46 shows selection of styles
through the user interface of the GeoSolutions Client.

GeoSolutions also added the capability to choose between two JavaScript map libraries: OpenLayers

73

or Mapbox GL. Images Figure 44 and Figure 46 show the map rendered with OpenLayers while
Figure 58 shows a screenshot of the client application with vector tiles rendered using Mapbox GL.

9.2.3. Skymantics D104 Client

Skymantics sought to use MAIDEN, an indoor navigation platform that uses computer vision and
augmented reality. MAIDEN uses the Unity engine and Vuforia SDK for augmented reality
applications in a mobile platform. MAIDEN has been used in other OGC activities, such as the OGC
3D IoT Pilot, to import IndoorGML [http://docs.opengeospatial.org/is/14-005r5/14-005r5.html] as well as 3D
Tiles [http://docs.opengeospatial.org/cs/18-053r2/18-053r2.html] (in glTF format) for displaying air quality
and room occupancy data. As the foundation for the Skymantics Vector Tiles Mobile Client, MAIDEN
incorporates Mapbox SDK to render vector tiles on a map.

The initial proposed architecture for the Skymantics D104 Client is shown in Figure 50.

Figure 50. Skymantics D104 Initiative Architecture

9.2.3.1. Conceptual Idea

Skymantics selected Unity 3D to develop a map client with augmented reality capabilities. This
software was combined with the Mapbox SDK and Mapbox Studio to provide a framework for map
utilization. This decision was made for three main reasons:

• Mapbox Vector Tiles (MVTs) was the encoding chosen for tiles served by OGC APIs during this
Pilot.

• Mapbox Documentation reviewed during the discovery phase of this Pilot stated that custom
vector tile data could indeed be used, and custom API URLs were also able to be utilised with
Mapbox SDK.

• Utilizing commercial off-the-shelf tools together with an extensively-used specification such as
MVT would benefit interoperability and facilitate further implementations.

74

http://docs.opengeospatial.org/is/14-005r5/14-005r5.html
http://docs.opengeospatial.org/cs/18-053r2/18-053r2.html
http://docs.opengeospatial.org/cs/18-053r2/18-053r2.html

9.2.3.2. Components

9.2.3.2.1. Unity 3D

Unity [https://unity.com] (also known as Unity 3D) is a cross-platform game engine developed by Unity
Technologies. The engine can be used to create three-dimensional, two-dimensional, virtual reality,
and augmented reality games, as well as simulations and other experiences. The engine has been
adopted by industries outside video gaming, such as film, automotive, architecture, engineering
and construction.

Unity gives users the ability to create games and experiences in both 2D and 3D. The engine offers a
primary scripting API in C#, in the form of plugins, and games themselves, as well as drag and drop
functionality.

Unity allows importation of sprites and an advanced 2D world renderer. For 3D games, Unity
allows specification of texture compression, mipmaps, and resolution settings for each platform
that the game engine supports, and provides support for bump mapping, reflection mapping,
parallax mapping, screen space ambient occlusion (SSAO), dynamic shadows using shadow maps,
render-to-texture and full-screen post-processing effects.

As of 2018, Unity has been used to create many of the mobile games on the market, as well as
content for augmented reality and virtual reality applications.

One of the benefits of using Unity is that a 'slippy' map can be created and modified for custom use.
Within the context of Unity, a 'slippy' map is an interactive 2D/3D map working with a variety of
online tile providers (OpenStreetMap VirtualEarth/Bing Maps) and offline sources (DBMap,
MBTiles).

9.2.3.2.2. Mapbox

Mapbox is an American provider of custom online maps for websites and applications such as
Foursquare, Lonely Planet, Facebook, the Financial Times, The Weather Channel and Snapchat.
Mapbox is the creator of, or a significant contributor to, some open source mapping libraries and
applications, including the Mapbox GL-JS JavaScript library, the MBTiles specification, the TileMill
cartography IDE, the Leaflet JavaScript library, and the CartoCSS map styling language and parser.

The data are taken from open data sources, such as OpenStreetMap and NASA, and from purchased
proprietary data sources, such as DigitalGlobe. The technology is based on Node.js, Mapnik, GDAL,
and Leaflet. Mapbox uses anonymised data from telemetry pings, such as Strava and RunKeeper, to
identify likely missing data in OpenStreetMap with automatic methods, then manually applies the
fixes or reports the issue to OSM contributors.

Mapbox SDK for Unity [https://www.mapbox.com/unity/] allows developers to generate maps and
location data optimized for Unity. Written from the ground up in C#, the Maps SDK for Unity
unlocks global data to generate custom 3D worlds, power location lookup, and incorporate traffic-
based directions in Unity. This SDK connects to Mapbox Studio through the Unity Inspector window
in the Unity interface. Mapbox Studio is an online map design studio developed by Mapbox.
Mapbox Studio is available for free to all registered users on mapbox.com. Its primary feature is a
graphical style editor for authoring styles for Mapbox-hosted vector maps. It also includes a dataset
editor that allows developers to import and edit GeoJSON data.

75

https://unity.com
https://www.mapbox.com/unity/

Mapbox has defined a specification for vector map tiles called 'vector-tile-spec' which uses Google
protocol buffers for space-efficient data serialisation. Web Mercator is the projection of reference,
but vector tiles may be used to represent data with any projection and tile extent scheme. It is also
tied to the Mapnik rendering engine, using a serialized version of the internal data that Mapnik
uses.

As illustrated in Figure 50, the architecture supports MVT display interfacing with implementations
of the OGC API - Features to retrieve metadata, selection of styles through the Styles API, and
querying of filtered data based on metadata.

9.2.3.3. Challenges Encountered During Development

Skymantics’ initial approach was to use the Mapbox SDK to directly access the OGC Tiles API and
Styles API to retrieve the tiles and render them within Unity. However, it was discovered that the
SDK was preconfigured to interface with a valid Mapbox Studio API and a user ID key. This
constraint appears to have been introduced after the Mapbox SDK 1.4 release. Furthermore,
Mapbox restricts the styling options by only allowing its Mapbox Studio application to style tilesets.
The implication of this restriction is that styles would not be applied directly in Unity, eliminating
the possibility of dynamically styling maps in the mobile application as well.

Since Mapbox SDK does not connect to third-party APIs out-of-the-box, Skymantics explored the
open source nature of the SDK to modify the code to make it work with OGC APIs. However, it was
discovered that the code structure was deeply nested, and modifying the function calls for the APIs
would have required rewriting over 50% of their codebase.

A C# library called 'vector-tile-cs' [https://github.com/mapbox/vector-tile-cs] is an open source code made
by the same developers as Mapbox, so it was also tested in Mapbox SDK. The script included a
location to enter the URL of an API to connect to, however, it was commented out. When the script
is executed with an OGC API endpoint, the response noted that it required a valid Mapbox API.

Since Skymantics was unable to access the OGC API directly through the Mapbox SDK, a custom C#
script was developed to access the API and download the desired tilesets and store them on a local
drive. It was assumed that once the Tiles were available within the Unity environment, that the
Mapbox SDK would be able to render the tiles. However, this proved to not be the case.

Skymantics explored the use of other rendering tools that had the potential for integration with
Unity. One Unity plugin, geojsontomesh [https://github.com/peted70/geojsontomesh], was designed for use
with the Microsoft HoloLens Platform, and enables JSON objects to be rendered as a Unity game
object with a mesh overlay. Using this plugin, Tile features were able to be retrieved and displayed
within Unity. However, it was found that this plugin was incompatible with the current Unity JSON
plugins used for Skymantics’ client, and was not able to render the map images. Due to the time
constraints of the pilot, this plugin was not investigated further.

Mapbox Studio allows clients to upload JSON encodings of Mapbox styles. Skymantics connected to
the Styles API to access the JSON styles encodings and loaded them into Mapbox Studio. However,
during these TIEs with other participants, errors were encountered when accessing each
participant’s Style encoding. It was assumed that there were inconsistencies in the way each JSON
style was created, which may be incompatible with the Mapbox style format. Manual creation of
Mapbox styles within Mapbox Studio produced successful styling of the Tiles for rendering in

76

https://github.com/mapbox/vector-tile-cs
https://github.com/peted70/geojsontomesh

Mapbox SDK and Unity.

9.2.3.4. Final Implementation

After significant exploration in developmental approaches in which several lessons learned were
recorded, a final implementation produced a successful demonstration of a mobile mapping
application with augmented reality capabilities.

A C# script was developed to connect to the OGC APIs of the Pilot participants and download the
tilesets and styles into a local file system as JSON files. Tilesets and styles were successfully accessed
and retrieved from the APIs of all participants.

Figure 51. Skymantics D104 Daraa Agriculture Tileset Styled and Rendered in MapBox Studio

Next, these tilesets were uploaded to Mapbox Studio in accordance with Mapbox user guidelines for
later retrieval using the Mapbox SDK. The tilesets were then styled using the Mapbox Studio built-in
style editor to produce various styles such as night mode, etc. Once tilesets and loaded and styled
(as seen in Figure 51), they were published and made available to Unity by using the user ID key
and Mapbox API endpoint.

As seen in Figure 52 and Figure 53, the same Daraa map was loaded into Unity with the dark
background (A.K.A. Night Mode) and light background (A.K.A. Day Mode) styles, respectively. The
endpoint URLs of the combinations of tilesets and styles were tagged with a label in a Mapbox SDK.

77

Figure 52. Skymantics D104 Daraa Tileset Rendering in Dark Style

Figure 53. Skymantics D104 Daraa Tileset Rendering in Light Style

Once map rendering in Unity was successful, a mobile application was compiled. The mobile app
can visualize the map in augmented reality by overlaying the map on top of camera vision; these
AR capabilities were enabled through the Mapbox SDK and the Google AR Core
[https://developers.google.com/ar/discover] product. Upon initialization, the app used the device camera
to detect a flat plane or surface and then rendered the map on the flat surface. As seen in Figure 54,
the map can be manipulated by dragging to move the map, and use of pinch and zoom gestures to
focus in certain areas.

78

https://developers.google.com/ar/discover

Figure 54. Map of Daraa Being Displayed in Skymantics’ Augmented Reality Mobile Application

9.2.3.5. Future Work

The work carried out during this Pilot paved the way for future developments in mapping
applications combined with augmented reality capabilities.

The largest challenge in this part of the project was the use of Mapbox SDK and Mapbox Studio with
Unity, due to constraints on the manipulation of maps in Unity and consequently in the final mobile
application. The challenge is described in detail in the Section titled 'Challenges Encountered
During Development'.

Future work should consider a number of different alternative approaches. One alternative is to
render the maps directly in Unity through a custom-built Slippy map. Augmented Reality
capabilities would be introduced by implementing Google AR Core directly into Unity. Tilesets and
styles would be downloaded from OGC APIs using the scripts developed by Skymantics during this
Pilot, and custom Unity C# scripts would enable dynamic filtering and styling capabilities within
the mobile application.

A more accessible approach would be to continue using the Mapbox SDK for Unity, accepting its
constraints of not allowing dynamic map loading, filtering and styling, but expanding the mapping
capabilities of Unity. To accomplish this, future work could anticipate in advance a large number of
combinations of layers, styles, and filters that an end user would be requiring, and make them
easily available in the Augmented Reality mobile application. To do this, one Mapbox style per
tileset/filter/style combination would be created in Mapbox Studio, and made available in Unity by
means of individual 'scenes' that the end user would select in the mobile app. Each Unity 'scene'
would access a specific Mapbox style URL previously created.

This approach would benefit from the following extra developments:

• Adopting more strict encodings of styles published by Styles API implementations for those
styles to match Mapbox Studio specifications, enable direct upload of Styles, and avoid users the
need of manually creating styles.

79

• Further exploring alternatives to programmatically uploading, filtering and styling tilesets in
Mapbox Studio in order to trigger these commands from a Unity mobile application, giving
users more control over the maps being rendered.

80

Chapter 10. Results
This section presents the results of implementing the various components. This section also
discusses some of the issues and challenges encountered during the implementation, deployment
and testing of the components.

10.1. Considerations

10.1.1. Portrayal information

This subsection presents a summary of the issues considered by the initiative participants in
relation to portrayal information.

10.1.1.1. Styles

The Pilot participants considered a number of approaches for handling styles within the context of
the architecture shown in Section 7. The participants noted that while connected to a
telecommunications network, an end-user could use a client application to request stylesheets from
an implementation of the OGC API – Styles proof of concept that was developed in Testbed-15 [10].
Once the end-user retrieves the styles, the application could store those styles in a GeoPackage for
use in DDIL environments.

The location for placing styles in the architecture was therefore considered. Participants noted that
symbols are currently stored in a variety of places such as in a resources folder that could then be
referenced by a GeoPackage. Typically, with vector tiles, an application that handles vector tiles
would reference icons, styles, and stripes through URLs. The same goes for SLD. SLD documents can
prescribe the rendering of symbols through an embedded Symbology Encoding element, but can
also reference external symbols through URLs. There is no standardized location for symbols to be
stored.

The VTP2 pilot designed an approach for storing styles, along with other business objects in a
GeoPackage. One of the GeoPackage extensions designed in the Pilot enables Semantic Annotations
which are annotations that are resolvable via a URI and can be placed on any business object
(layer, feature, tile, style, etc.). Semantic annotations are implemented in GeoPackage through the
Semantic Annotations Extension which is described in the section titled Semantic Annotations. The
metadata for styles is handled in the same way as metadata for other business objects; that is, the
GeoPackage Metadata Extension is used to add metadata for any business object (layer, feature, tile,
style, etc.) in the GeoPackage.

10.1.1.2. Links to styles

Another issue raised was how styles are accessed through the Styles API. Currently, the Styles API
provides resource links to each stylesheet, the link relation type stylesheet and the media type of
the style encoding in type. The href is then a "clickable", format-specific URI. Since the URL for a
stylesheet of a specific format is unique, this approach makes access to stylesheets of different
formats efficient because the URL for a format-specific stylesheet is unique. In order to have one
link per style for all stylesheets, participants considered whether an alternative could involve use
of a link relation type style without media type hints. This approach would require an alternate

81

mechanism to determine the available style encodings for a style. One option would be to
implement HEAD support on the Style resource in combination with including the links in the HTTP
headers. The self/alternate links could then be used to determine the available stylesheets. Issue
#2 [https://github.com/opengeospatial/ogcapi-styles/issues/2] was created in the OGC API - Styles Github
repository in order to advance this topic within the SWG.

10.1.1.3. Sprites

In addition to specifications of symbols, participants noted that sprites, glyphs and fonts are equally
important. The handling of such artifacts both online and offline was therefore considered. In some
cases, the same name is used for icons in a GeoPackage table and those of the symbol file. This
enables an application to cross reference uses of the icon to the symbol file itself.

Extending this approach to sprites, participants noted that individual symbols that are entries in a
GeoPackage could be given the same name as a JSON-encoded sprite configuration file, and then
referenced from an SLD document. Then when styling with the Mapbox GL, an application could
ignore the sprite URL and use the name of the actual ID into the symbols table. The JSON-encoded
sprite configuration file could include information such as the name, height, width, pixel ratio, XY
anchor, and storage location for each sprite.

Participants noted that Appendix B of the draft NSG Vector Tile Interoperability Specification has an
example of a JSON encoding of a sprite configuration [11]. The specification describes how to access
a sprite for a particular symbol.

10.1.2. Shared or Disjoint APIs

The participants made an observation that the OGC APIs that are being developed share some
common patterns, which provides the APIs with a common foundation for paths and resources. The
VTP2 participants referred to such an approach as a Shared API strategy. The collections path and
support for bounding box (BBOX) querying are some of the patterns that provide a Shared API
when implemented as described in the OGC API – Common draft specification.

In contrast, the participants also observed that an alternative to the Shared API strategy is the
Disjoint API approach whereby each API has its own path scheme for accessing resources. Some
resources may appear in two or more APIs such as features in Features API and Tiles API
implementations. Further, a service that implements the Tiles API may operate independently or as
a building block that is attached to another API. Therefore consideration of what types of
constraints may be needed to facilitate interoperability between implementations of the Tiles API is
necessary.

10.1.3. Static API

A Static API for serving tiles was another API strategy considered in the pilot. In such a strategy,
tiles are provided through a web server simply as a system of files and folders where the
hierarchical arrangement of the files documented in a JSON file that is also available through the
same web server. This API strategy has the benefit of making it relatively easy to move large
collections of tile sets from one storage system to another, as the location of the tiles can be inferred
from the hierarchical arrangement of the folders. Moreover, should the JSON file be corrupted, it
can be easily generated by reviewing the hierarchical arrangement of the folders.

82

https://github.com/opengeospatial/ogcapi-styles/issues/2
https://github.com/opengeospatial/ogcapi-styles/issues/2

A precondition for supporting a Static API is if the client application provides a request without any
query parameters, a client application should get a reasonable response. Such a precondition was
observed to be different from the approach taken by classic OGC web services (other than WMTS)
which required that the SERVICE and REQUEST parameters be provided by a client application. The
participants observed that with GeoPackage it is not the API that does the filtering, but instead it is
the GeoPackage library. More specifically, the SQLite file itself does not have code for filtering. The
SQLite library does the filtering by operating on the SQLite file.

Whereas a Static API offers the benefit of simplicity and ease of moving tiles from one storage to
another, a Static API is also limited in its capabilities. For example, a Static API does not allow
reprojection to other coordinate reference systems and would not allow support for returning the
tiles in different media types.

10.1.4. Tile Cache vs. Tile Set

Initially, the participants considered a repository of tiles to be a cache and such a repository was
initially referred to as a Tile Cache. However after some additional consideration, the participants
noted that Tile Cache to some people means a location where a collection of tiles can be placed to
service some client applications. For example, an end-user could create a cache and place it in a
USB storage device, enabling a truck driver (in the VTP2 scenario) to bring up the tiles and display
them on a dashboard mounted device while driving. Such a collection of tiles therefore has
application in access and portrayal of information, not just in storage. The participants observed
that it becomes confusing when the term Tile Cache is used because there are different aspects to
the use of such collections of tiles such as storage, access and update. The participants therefore
concluded that the term Tile Set was more appropriate for the context of the VTP2 initiative.

10.1.5. Out of bounds and empty tiles

In order to populate a GeoPackage in the VTP2 initiative, a client requests tiles and does not
necessarily inspect the content. Since some tiles media types cannot be 0 bytes in size, there is a
possibility that the client may not know whether the tile is empty (although Mapbox vector tiles can
be of 0 bytes).

One potential solution would be that:

1. An HTTP 204 return code could be returned by the server, assuming the requested tile was
within the TileMatrixLimits. This would allow 0-byte responses for media types which cannot
be of 0 bytes. There are some arguments about whether that is proper or not for an HTTP GET
request, but the HTTP specification does say that such a response is valid.

2. When a requested tile falls outside the TileMatrixLimit, but within the overall global
TileMatrixSet definition, an HTTP 404 code should be returned (this should be in line with
current draft specs).

3. However, if the tile falls outside of the global TileMatrixSet definition altogether, an HTTP 400
code would be more appropriate (this may not be reflected right now in the draft specs).

4. Also, VTP2 participants suggested two optional tile statuses, which could be included as a
response header:

◦ 'Empty all the way zoomed in' — for large areas where there is absolutely no data at any

83

zoom level even further down, but within the TileMatrixLimit. This would avoid having to
request the levels further down and save tons of requests.

◦ 'Completely full tile' — for large polygons with detailed contours, e.g. lands and oceans as
filled polygons. This would avoid having to request the levels further down and save tons of
requests.

There are drawbacks to the potential solution described above:

• If the server is streaming the response, the server may start the response at a point when it is
unknown whether the response will contain any features or not. In such a case, supporting the
HTTP 204 approach would have a negative impact on the performance for fetching tiles that are
not empty, at least in the situations where tiles are constructed dynamically.

• The additional status code would require special handling in clients.

• An HTTP 204 response to a GET request is valid HTTP. However, client developers may still find
using HTTP 204 status codes for a GET request unusual if they are unfamiliar with its use in the
context proposed above. There should be sufficient feedback from client implementors about
whether they think that use of the HTTP 204 code is a good idea or not.

• An HTTP 204 response may be considered, by some, as the equivalent to a null/nil value without
any content type. This would be different from an empty set in a content type. Related to this is
also that the behavior would differ from the behavior of the Features resource in OGC API -
Features (/collections/{collectionId}/items).

10.1.6. Collections

The concept of Collections as a resource was introduced by OGC API - Features - Part 1:Core and
adopted by OGC API - Common. Part 2 [https://github.com/opengeospatial/oapi_common/blob/master/

collections/OAPI_Common-Collections.adoc] of the draft OGC API - Common specification focuses on
Collections. In the OGC API - Features standard, 'collection' is used as a synonym for 'feature
collection'. A property called 'itemType' acts as an indicator about the type of the items in the
collection. If an OGC API uses an "…/items/{id}" path, then the itemType describes the resource type
that a client application can access at that URL. In OGC API - Features it is "feature", whereas in the
draft OGC API - Records specification it will be "record", etc. In some OGC APIs, itemType is not
relevant and may be left out. The draft OGC API - Tiles specification illustrates the relationship
between collections, tiles and maps as shown in Figure 55.

84

https://github.com/opengeospatial/oapi_common/blob/master/collections/OAPI_Common-Collections.adoc

Figure 55. Relationships between Tiles, Maps and Collections in OGC API - Tiles

The VTP2 participants noted that, in some cases, the concept 'Collections' complicates matters
because the content in the collections may be untyped. A collection might have a tiles link - or not.
They could also have queryables and/or items. They might even have more collections. This forces a
developer to create a very generic Collections class with a variety of methods which might or might
not be applicable to the current situation. This approach may work but VTP2 participants noted
that the approach is not very elegant because there is no telling what a client application could find
in a particular document. An alternative approach would be to have clearly distinguished object
types that report things such as feature collections, tile pyramids, and so forth.

10.2. Technology Integration Experiments

85

10.2.1. Data Exchange TIEs

An X is placed where there has been a successful exchange of vector tiles data between client and
server/data producer.

An — is placed where a TIE is not required.

Table 8. Technology Integration Experiments (TIE)

GeoSolutions
D104 Client

Skymantics D104
Client

Ecere D105 Client Image Matters
Client

Ecere D100
Features API

X X X X

Ecere D103 Tiles
API

X X X X

Ecere D101 Styles
API

X X X

Ecere D106 GPKG  —   —  X  — 

GeoSolutions D100
Features API

X X X X

GeoSolutions D102
Tiles API

X X X X

GeoSolutions D102
Styles API

X X X

interactive
instruments D101
Features API

X X X X

interactive
instruments D101
Tiles API

X X X X

interactive
instruments D101
Styles API

X X X

Image Matters
D107 GPKG

 —   —  X  — 

Terranodo D100
Features API

 —   —   —   — 

Terranodo D100
Tiles API

X X X

Terranodo D100
Styles API

X X X

NOTE Services on rows and Clients on columns

86

10.2.2. Styles Encoding TIEs

An X is placed where there has been a successful exchange of styles between client and server/data
producer.

An — is placed where a TIE is not required.

Table 9. Technology Integration Experiments (TIE)

GeoSolutions
D104 Client

Skymantics D104
Client

Ecere D105 Client Image Matters
Client

Ecere D101 Styles
API (MBStyles)

X X X

Ecere D101 Styles
API (SLD)

X X X

Ecere D106 GPKG
(MBStyles)

 —  X  — 

Ecere D106 GPKG
(SLD)

 —  X  — 

GeoSolutions D102
Styles API
(MBStyles)

X X X

GeoSolutions D102
Styles API (SLD)

X X X

interactive
instruments D101
Styles API
(MBStyles)

X X X

interactive
instruments D101
Styles API (SLD)

X X X

Image Matters
D107 GPKG
(MBStyles)

 —  X  — 

Image Matters
D107 GPKG (SLD)

 —  X  — 

Terranodo D100
Styles API
(MBStyles)

X X X

Terranodo D100
Styles API (SLD)

 —   —   —   — 

NOTE Services on rows and Clients on columns

87

10.2.3. Multi-Layer Tile TIEs

An X is placed where there has been a successful exchange of multi-layer vector tiles data between
client and server/data producer.

An — is placed where a TIE is not required.

Table 10. Technology Integration Experiments (TIE)

GeoSolutions
D104 Client

Skymantics D104
Client

Ecere D105 Client Image Matters
Client

Ecere D103 Tiles
API

X X X

Ecere D106 GPKG  —  X  — 

GeoSolutions D102
Tiles API

X X X

interactive
instruments D101
Tiles API

X X X

Image Matters
D107 GPKG

 —  X  — 

Terranodo D100
Tiles API

X X X

NOTE Services on rows and Clients on columns

10.2.4. Multiple Projections TIEs

An X is placed where servers have provided vector tiles in multiple projections and clients have
been able to display the vector tiles.

An — is placed where a TIE is not required.

Table 11. Technology Integration Experiments (TIE)

GeoSolutions
D104 Client

Skymantics D104
Client

Ecere D105 Client Image Matters
Client

Ecere D103 Tiles
API -
WorldMercatorW
GS84Quad

X X X

Ecere D103 Tiles
API -
WebMercatorQua
d

X X X

88

GeoSolutions
D104 Client

Skymantics D104
Client

Ecere D105 Client Image Matters
Client

Ecere D103 Tiles
API -
WorldCRS84Quad

X X X X

Ecere D106 GPKG -
WorldMercatorW
GS84Quad

 —   —  X  — 

Ecere D106 GPKG -
WebMercatorQua
d

 —   —  X  — 

Ecere D106 GPKG -
WorldCRS84Quad

 —   —  X  — 

Ecere D106 GPKG -
GNOSISGlobalGrid

 —   —  X  — 

GeoSolutions D102
Tiles API -
WorldMercatorW
GS84Quad

X X X X

GeoSolutions D102
Tiles API -
WebMercatorQua
d

X X X X

GeoSolutions D102
Tiles API -
WorldCRS84Quad

X X X X

interactive
instruments D101
Tiles API -
WorldMercatorW
GS84Quad

X X X X

interactive
instruments D101
Tiles API -
WebMercatorQua
d

X X X X

interactive
instruments D101
Tiles API -
WorldCRS84Quad

X X X X

89

GeoSolutions
D104 Client

Skymantics D104
Client

Ecere D105 Client Image Matters
Client

Image Matters
D107 GPKG -
WorldMercatorW
GS84Quad

 —   —  X  — 

Image Matters
D107 GPKG -
WebMercatorQua
d

 —   —  X  — 

Image Matters
D107 GPKG -
WorldCRS84Quad

 —   —  X  — 

Terranodo D100
Tiles API -
WorldMercatorW
GS84Quad

 —   —   —   — 

Terranodo D100
Tiles API -
WebMercatorQua
d

X X X

Terranodo D100
Tiles API -
WorldCRS84Quad

X X X

NOTE Services on rows and Clients on columns

10.2.5. TileJSON (Metadata) TIEs

An X is placed where there has been a successful exchange of Vector Tiles Metadata based on the
VTP2 metadata model or TileJSON (via describedby rel link).

An — is placed where a TIE is not required.

Table 12. Technology Integration Experiments (TIE)

GeoSolutions
D104 Client

Skymantics
D104 Client

Ecere D105
Client

Image Matters
Client

Terranodo
Client (in

kind)

Ecere D103
Tiles API

X X X X

GeoSolutions
D102 Tiles API

X X X X X

90

GeoSolutions
D104 Client

Skymantics
D104 Client

Ecere D105
Client

Image Matters
Client

Terranodo
Client (in

kind)

interactive
instruments
D101 Tiles API

X X X X X

Terranodo
D100 Tiles API

X X X X X

NOTE Services on rows and Clients on columns

10.2.6. Filtering TIEs

An X is placed where there has been a successful application of the VTP2 filtering approach.

An — is placed where a TIE is not required.

Table 13. Technology Integration Experiments (TIE)

GeoSolutions
D104 Client

Skymantics D104
Client

Ecere D105 Client Image Matters
Client

Ecere D100
Features API

 — 

Ecere D103 Tiles
API

 — 

Ecere D106 GPKG  —   — 

GeoSolutions D100
Features API

X  — 

GeoSolutions D102
Tiles API

X  — 

interactive
instruments D101
Features API

X  — 

interactive
instruments D101
Tiles API

X  — 

Image Matters
D107 GPKG

 —   — 

Terranodo D100
Features API

 —   —   —   — 

Terranodo D100
Tiles API

X  — 

91

NOTE Services on rows and Clients on columns

92

Chapter 11. Key Findings
Several of the considerations are discussed in Section 10. The following subsections focus solely on
key findings.

11.1. Bounding box inconsistency
Bounding boxes are expressed inconsistently in the various APIs used in this pilot. Some
participants took issue with the varied approaches. Of particular concern is the coordinate order.
Some bounding boxes are composed of an array of numeric values. Other bounding boxes have a
defined pair of corners (e.g., lower left and upper right) with numeric values.

Some OGC standards declare a coordinate order and others allow the coordinate order to be
declared through the specified Coordinate Reference System (CRS). It is even possible for the
specification and the CRS to conflict. For example, consider the following JSON block:

"boundingBox" : {
 "crs" : "http://www.opengis.net/def/crs/EPSG/0/4326",
 "lowerCorner" : [
 -90,
 -180
],
 "upperCorner" : [
 90,
 180
]
}

The underlying specification requires (x, y, [z]) order but this is contradicted by the CRS which
specifies (lat, lon) order. Some participants viewed the need to resolve the CRS as an undesired
complication that is not necessary to calculate tile boundaries. Other participants viewed it
necessary for applications to enforce consistency between the declared CRS and the coordinate
values.

While ISO 6709 specifies (latitude, longitude) coordinate order for geographic point locations,
modern schema-based encodings like JSON and XML make this approach unnecessary. A better
approach may be for the schema to explicitly define the values (rather than using arrays) so that
there is no potential confusion. However, this needs to be addressed in an OGC-wide way, perhaps
as an update to OGC 08-038r7, Revision to Axis Order Policy and Recommendations
[https://portal.opengeospatial.org/files/?artifact_id=76024].

11.2. Online and offline access to multi-layer vector
tiles can be supported by OGC APIs and GeoPackage
A key finding of the pilot is that an architecture that enables consistent online and offline support
of tiled feature data can be implemented using the OGC API - Features and GeoPackage standards,

93

https://portal.opengeospatial.org/files/?artifact_id=76024

as well as the draft OGC API - Tiles specification. This was shown by the successful implementation
of the VTP2 pilot architecture.

11.3. The absence of a way to describe schemas creates
difficulty for data transfer from an OGC API to a
GeoPackage
With regard to the OGC API – Features standard, another finding is that the absence of a way to
describe schemas makes it difficult to transfer data from a Features API endpoint to an offline
datastore such as a GeoPackage. This is because a GeoPackage relies on a schema to structure
tables. Whereas a queryables resource could address some of the requirement, descriptions of
queryables are designed to be simple and less detailed than schema descriptions. Applications can,
of course, still download a complete dataset and then parse every property in order to build a new
schema. However, such a workaround would be computationally expensive and less efficient than
reading a schema document that is already published by the API. There is therefore a need for a
standard way for implementations of the Features API to describe the schemas of the feature
datasets they publish.

The VTP2 participants noted that the OGC API - Features SWG has identified a potential future work
item for an OGC API - Features extension that would offer schema support. The discussion on this
need is recorded in an issue [https://github.com/opengeospatial/ogcapi-features/issues/56] on the SWG’s
GitHub repository.

This finding is supported by the successful TIEs that involved transferring data from the OGC API
implementations to the GeoPackage implementations. Participants worked around this problem by
using the draft OGC API – Tiles specification and accessing tile set metadata in the TileJSON format.

11.4. There is a need for generic collections that do not
advertise much about their contents
Another finding related to the draft Tiles and Common API specifications, is that there is a need for
"generic" collections that do not advertise much about their contents.

This ability would address the situation in which one wants to publish a collection that may, at
anytime, consist of a variety of data objects. The collection, for instance, could represent a
container (e.g. OWS Context) that is able to hold any type of resource. This could allow for an OGC
API that is akin to the Web Object Service (WOS) that was demonstrated in OGC Testbed-12 [12].

11.5. There is a need for multi-layer tiles without
having explicit collections
Another finding related to the draft Tiles and Common API specifications, is that there is a need for
an ability to offer multi-layer tiles without having explicit collections. Such a capability would
address the situation in which one wants to cascade a common XYZ tile service offering MVT files.
This involves wrapping the XYZ tile service in a standalone Tiles API (as in, one that does not offer

94

https://github.com/opengeospatial/ogcapi-features/issues/56

feature or coverage resources on the side), without exposing the internal layering structure as
separate collections. In such a case, all that is desired is to offer tiles and not the separate
collections.

11.6. The need to test larger datasets
Throughout the Pilot, the dataset size was presented as a risk factor when making architecture
design decisions. The dataset used in the pilot was appropriate for the use case and scenario
applied, however, there was a risk that some of the design decisions made during the Pilot may not
scale to larger datasets. To mitigate this risk and to further test the implementations developed
during this Pilot, future initiatives should make use of larger datasets for testing. For example, OGC
Testbed-16 makes use of a significantly larger dataset from Ordnance Survey.

11.7. Proposed GeoPackage extensions are ready for
progression
The proposed GeoPackage Extensions that support Mapbox Vector Tiles and GeoJSON Vector Tiles
are mature enough for further discussion and development by the GeoPackage SWG. The
extensions were developed in both the VTP2 and Testbed-15 initiatives. Implementations of the
extensions have been demonstrated to work, in both initiatives.

11.8. Consistency of schemas across some OGC
resources could be improved
A participant attempted to use OGC resources for tile matrix set definitions. OGC provides tile
matrix set definitions at the URL template http://schemas.opengis.net/tms/1.0/json/examples/
{TileMatrixSet}.json. However, this approach had to be discarded when it was discovered that
documents provided by this URL template do not follow a consistent schema.

95

http://schemas.opengis.net/tms/1.0/json/examples/{TileMatrixSet}.json
http://schemas.opengis.net/tms/1.0/json/examples/{TileMatrixSet}.json

Chapter 12. Recommendations
This section presents the recommendations and ideas for future work.

12.1. Key recommendations

12.1.1. Publish schemas through the Tiles and Features APIs

At the time of publication of this ER, there was no requirement nor specification within the OGC
API suite for publishing schema information for a feature layer. This is a problem for clients of tiled
feature data because the schema can only be ascertained by scanning all the features contained in
all tiles and discovering their complete set of properties.

There are use cases where this is reasonable. However, this will not scale in the tiled feature data
use case. The VTP2 participants agreed that there should be a common way to express this
information and that servers serving tiled feature data should make use of this capability.

12.1.2. Development of a standard for Tile Set Metadata

As described in the OGC Vector Tiles Pilot 2: Tile Set Metadata Engineering Report [7] the VTP2
participants successfully designed and implemented a Tile Set Metadata Model,. A relevant OGC
SWG could therefore review and consider developing a standard based on the outputs of this
initiative. As the tiling of 2D vector data affects several different domains, a new SWG may be
needed for developing a standard for Tile Set Metadata. Alternatively, the charter of an existing
SWG could be adapted by the TC to include development of a standard for Tile Set Metadata.

12.1.3. Introduce additional concepts in the OGC Symbology Conceptual
Core Model

The OGC is currently developing the Symbology Conceptual Core Model (SCCM). Based on the
requirements of VTP2, the participants of VTP2 recommend that the Portrayal DWG and the SLD
SWG (which is responsible for the SCCM) should discuss and potentially include the following
concepts in the SCCM, all of which are defined in the Terms and definitions clause of this ER:

• sprite

• stylable layer set

• stylesheet

• style encoding

• symbol

• symbol content

12.1.4. OGC API - Tiles should provide direction on multi-layer vector tiles
schemas

VTP2 participants noted that developers want to deliver multi-layer Mapbox Vector Tiles (MVTs)

96

using the Tiles API. Further, developers would like to have a good way to advertise the structure of
the layers found in the vector tiles, along with their attributes for cases where these are available
and stable across tiles.

One possible approach would be to deliver each layer as a collection, each collection having a
'describedby' link relation that refers to a resource providing information about the link’s context.
The approach would also involve gathering the multi-layer vector tiles via the "tiles from more than
one collection" requirement class. A client needing a schema would then scan over the collections
about to be requested and gather the schemas. This is, however, not ideal in all scenarios. For
example:

• One might not want to make the individual collections available.

• One might not want to expose the "tiles from more than one collection" extension.

Another possible approach the initiative participants would like to explore is serving multi-layer
MVT files from a single collection in the Tiles API and then having a single 'describedby' link
reporting the structure of the multi-layer vector tile, possibly as a TileJSON document. VTP2
participants recommend that the draft OGC API - Tiles specification be updated to provide some
direction in this regard.

12.1.5. OGC API - Tiles should allow for multi-layer tiles that are without
explicit collections

VTP2 participants noted that developers want to deliver multi-layer MVTs, that are without explicit
collections, through the Tiles API.

One possible approach would be to deliver each layer as a collection and then build multi-layer tiles
via the "tiles from more than one collection" requirement class that is specified by the draft OGC
API – Tiles specification. This is however not ideal in all scenarios. For example:

• One might not want to make the single collections available

• One might not want to expose the "tiles from more than one collection" extension

The participants also noted that an alternative approach would be to serve multi-layer MVT files
from a single collection in the OGC Tiles API, as there is nothing preventing use of an "itemType:
unknown" for this purpose.

The VTP2 participants therefore recommend that the concept of a Collection is given a definition
that is general enough (in OGC API - Common) to allow service implementers to advertise certain
types of structure (schemas, MVT tile layer descriptions) when such resources are available and
useful. This should be considered by the OGC API - Common SWG in its work on OGC API - Common
- Part 2: Collections. Such generalization of the concept would make it useful to other data models
(e.g. a collection as a map or as a coverage).

12.1.6. TileJSON editors should register a media type for the specification

Currently there is no registered media type for TileJSON. This creates difficulty for applications
attempting to retrieve TileJSON files from an API. There is a need for a media type for TileJSON to
be registered with Internet Assigned Numbers Authority (IANA), instead of using "application/json".

97

NOTE TileJSON is not an OGC standard.

VTP2 recommends that the editors of TileJSON should be encouraged to register a media type for
TileJSON at IANA. An example of how the draft OGC API - Tiles specification could support TileJSON,
with the WorldCRS84Quad, is shown in the scheme at: https://services.interactive-instruments.de/
t15/daraa/tiles/WorldCRS84Quad/metadata

NOTE
V3 document: https://github.com/mapbox/tilejson-spec/tree/3.0/3.0.0 (unlike version
2.2, this document contains a list of layers and attributes, among other things).

12.1.7. OGC API - Common should allow for collections that do not advertise
their content types

As stated in Section 11, the pilot found a need for "generic" collections that do not advertise much
about their contents. In the case of tiles, the Tiles API would allow tiles to be offered without
exposing the internal layering structure as separate collections. Implementations may also provide
sufficient metadata for client applications to efficiently retrieve the collections. VTP2 recommends
that OGC API - Common should be updated to allow for generic collections that do not advertise
their content types. This recommendation was posted as a comment to issue #36 [https://github.com/

opengeospatial/oapi_common/issues/36#issuecomment-598086780] on the OGC API - Common GitHub
repository.

12.1.8. Development of Mapbox Vector Tiles and TileJSON as OGC
Community Standards

The pilot demonstrated the potential utility of TileJSON and Mapbox Vector Tiles (MVT) within
implementations of OGC API - Tiles. The originators of the TileJSON and MVT specifications should
be encouraged to submit the specifications into the OGC for consideration as OGC Community
Standards.

This would require the originators of the specifications to submit the specifications into the OGC
process.

NOTE TileJSON and MVT are not OGC standards.

12.2. Future Work
The following were identified by the pilot participants as areas for future work in OGC Innovation
Program initiatives such as pilots and testbeds:

• Exploring the use of Collections.

• Variable Width Tile matrices (two examples being GNOSISGlobalGrid [http://schemas.opengis.net/

tms/1.0/json/examples/GNOSISGlobalGrid.json] and CDBGlobalGrid [http://maps.ecere.com/geoapi/

tileMatrixSets/CDBGlobalGrid]). One of the reasons for looking into variable width tile matrices is
that currently one needs four Tile Matrix Sets to cover the Earth pole-to-pole, when using
current non-WebMercator TMS. It would therefore be useful to have a Tile Matrix Set that can
cover the Earth pole-to-pole but that has better accuracy than WebMercator.

98

https://services.interactive-instruments.de/t15/daraa/tiles/WorldCRS84Quad/metadata
https://services.interactive-instruments.de/t15/daraa/tiles/WorldCRS84Quad/metadata
https://github.com/mapbox/tilejson-spec/tree/3.0/3.0.0
https://github.com/opengeospatial/oapi_common/issues/36#issuecomment-598086780
http://schemas.opengis.net/tms/1.0/json/examples/GNOSISGlobalGrid.json
http://maps.ecere.com/geoapi/tileMatrixSets/CDBGlobalGrid

• Use cases that do not only focus on visualization, e.g. the ability to re-construct geometry in
support of data analysis. In this regard, a compact format that can be streamed, for example
FlatGeoBuff [https://github.com/bjornharrtell/flatgeobuf], could be investigated. For Mapbox vector
tiles, future use cases could include data extraction that is geared towards analysis and editing
rather than visualization and interactivity.

• Implementation of tiled data as part of processing workflows (e.g. in parallel and/or distributed
processing environments).

• Better specification of the CRS used in tiled GeoJSON (CRS84 vs the tile matrix set’s own CRS)
needs to be analyzed.

• Experimentation with FlatGeobuf should occur. FlatGeobuf is a variation of geobuf geared
towards simple features and focusing on performance and compactness.

• Development of beta compliance tests for OGC API - Tiles, OGC API - Styles, OGC API - Maps, and
others that are needed. The compliance tests would be implemented as executable test suites for
running in TEAM Engine - OGC’s validator.

• Testing Larger Datasets.

99

https://github.com/bjornharrtell/flatgeobuf

Appendix A: Proposed GeoPackage
Extensions (Informative)

A.1. Vector Tiles Extension

Extension Title

Vector Tiles

Introduction

The GeoPackage Vector Tiles extension defines the rules and requirements for encoding tiled
feature data in a format commonly known as "vector tiles" into a GeoPackage data store.

WARNING
This extension does not define an encoding for vector tiles. To be usable, an
additional extension such as Mapbox Vector Tiles Extension or GeoJSON Vector
Tiles Extension must also be used.

This extension, like all GeoPackage extensions, is intended to be transparent and to not interfere
with GeoPackage-compliant software packages that do not support the extension.

Extension Author

Image Matters LLC, in collaboration with the participants of the OGC Vector Tiles Pilot and OGC
Testbed-15.

Extension Name or Template

im_vector_tiles (If this extension is adopted by the OGC, then gpkg_vector_tiles will be named as
an alias.)

Extension Type

This extension provides new requirements dependent on GeoPackage Clause 2.2 (tiles)
[http://www.geopackage.org/spec121/index.html#tiles].

Applicability

This extension defines an alternate way to encode feature information into a GeoPackage.

Scope

read-write

Specification

100

http://www.geopackage.org/spec121/index.html#tiles

If this extension is in use, then all of the Tiles Option [http://www.geopackage.org/guidance/getting-

started.html#tiles] applies. The individual tiles (tile_data in a tile pyramid user data table) are vector
tiles.

NOTE Individual vector tiles MAY be deflate compressed.

gpkg_extensions

To use this extension, add the following rows to this table.

Table 14. gpkg_extensions Table Rows

table_name column_name extension_name definition scope

gpkgext_vt_layers NULL im_vector_tiles a reference to this
file

read-write

gpkgext_vt_fields NULL im_vector_tiles a reference to this
file

read-write

NOTE
The values in the definition column SHOULD refer in some human-readable way to
this extension specification. If the extension is adopted by the OGC, it will gain the
"gpkg_" prefix and get a different definition permalink.

gpkg_contents

Like any other content type, add a row for each tile set, using a data_type of "vector-tiles".

gpkg_spatial_ref_sys

Like any other content type, the Spatial Reference System (SRS) for the content to be stored must be
registered in this table. See clause 1.1.2 in the core GeoPackage standard. While any valid SRS may
be used, Web Mercator (EPSG:3857) maintains compatibility with MVT.

New Table Definitions

There are two additional required metadata tables, gpkgext_vt_layers and gpkgext_vt_fields, that
mirror the vector_layers key from the JSON object from the metadata from MBTiles
[https://github.com/mapbox/mbtiles-spec/blob/master/1.3/spec.md#vector_layers]. This allows client software to
understand the feature schemas without having to open individual tiles. As with other GeoPackage
tables, this extension takes no position on how either of these tables are to be used by a client.

gpkgext_vt_layers

The gpkgext_vt_layers table describes the layers in a vector tiles set. The columns in this table are:

• id is a primary key

• table_name matches the entry in gpkg_contents

• name is the layer name

• description is an optional text description

101

http://www.geopackage.org/guidance/getting-started.html#tiles
https://github.com/mapbox/mbtiles-spec/blob/master/1.3/spec.md#vector_layers

• minzoom and maxzoom are the optional integer minimum and maximum zoom levels

• attributes_table_name is the optional name of an attributes table containing the attributes
(when not embedded in the vector tiles)

• geometry_type_name is the name of the geometry type for this layer as per the same column in
gpkg_geometry_columns [http://www.geopackage.org/spec121/#r25]

gpkgext_vt_fields

The gpkgext_vt_fields table describes the fields (attributes) for a tiled feature data layer. The
columns in this table are:

• id is a primary key

• layer_id is a foreign key to id in gpkgext_vt_layers

• name is the field name

• type is either "String", "Number", or "Boolean"

NOTE This table is not to be used for layers with a non-null attributes_table_name.

A.2. Mapbox Vector Tiles Extension

Extension Title

Mapbox Vector Tiles

Introduction

The GeoPackage Mapbox Vector Tiles extension defines the rules and requirements for encoding
vector tiles in a GeoPackage data store as Mapbox Vector Tiles. This extension is based on the
Mapbox Vector Tiles (MVT) specification [https://www.mapbox.com/vector-tiles/specification/] version 2.1
[https://github.com/mapbox/vector-tile-spec/tree/master/2.1]. Note that this format uses Google Protocol
Buffers [https://github.com/google/protobuf] as the content encoding for each tile.

This extension, like all GeoPackage extensions, is intended to be transparent and to not interfere
with GeoPackage-compliant software packages that do not support the extension.

Extension Author

Image Matters LLC, in collaboration with the participants of the OGC Vector Tiles Pilot and OGC
Testbed-15.

Extension Name or Template

im_vector_tiles_mapbox (If this extension is adopted by the OGC, then gpkg_mapbox_vector_tiles will
be named as an alias.)

Extension Type

102

http://www.geopackage.org/spec121/#r25
http://www.geopackage.org/spec121/#r25
https://www.mapbox.com/vector-tiles/specification/
https://github.com/mapbox/vector-tile-spec/tree/master/2.1
https://github.com/google/protobuf
https://github.com/google/protobuf

This extension defines an encoding for the Vector Tiles Extension.

Applicability

This extension defines a specific encoding for Vector Tiles in a GeoPackage.

Scope

read-write

Specification

If this extension is in use, then all of the Vector Tiles Extension applies.

User Data Tables

Like other tile-based content, the physical data for a tile set is stored in a user-defined tiles table
[http://www.geopackage.org/guidance/getting-started.html#user-data-tables]. The tile_data is a Google Protocol
Buffer as defined by MVT [https://github.com/mapbox/vector-tile-spec/blob/master/2.1/vector_tile.proto].

gpkg_extensions

To use this extension, add a row to this table for each tile pyramid user data table.

Table 15. gpkg_extensions Table Rows

table_name column_name extension_name definition scope

tile pyramid user
data table name

tile_data im_vector_tiles_ma
pbox

a reference to this
file

read-write

NOTE
The values in the definition column SHOULD refer in some human-readable way to
this extension specification. If the extension is adopted by the OGC, it will gain the
"gpkg_" prefix and get a different definition permalink.

gpkgext_vt_layers

The Mapbox Vector Tiles specification does not distinguish between geometry types with a
multiplicity of one (point, linestring, and polygon) and those with a multiplicity greater than one
(multipoint, multilinestring, and multipolygon). In order to maintain consistency with
gpkg_geometry_columns, the allowed values for the geometry_type_name column are as follows:

• GEOMETRY (corresponds to UNKNOWN in MVT, which is experimental and optional)

• MULTIPOINT (corresponds to POINT in MVT)

• MULTILINESTRING (corresponds to LINESTRING in MVT)

• MULTIPOLYGON (corresponds to POLYGON in MVT)

103

http://www.geopackage.org/guidance/getting-started.html#user-data-tables
https://github.com/mapbox/vector-tile-spec/blob/master/2.1/vector_tile.proto

A.3. GeoJSON Vector Tiles Extension

Extension Title

GeoJSON Vector Tiles

Introduction

The GeoPackage Vector Tiles extension defines the rules and requirements for encoding vector tiles
in a GeoPackage data store using The GeoJSON Format [https://tools.ietf.org/html/rfc7946].

This extension, like all GeoPackage extensions, is intended to be transparent and to not interfere
with GeoPackage-compliant software packages that do not support the extension.

Extension Author

Image Matters LLC, in collaboration with the participants of the OGC Vector Tiles Pilot and OGC
Testbed-15.

Extension Name or Template

im_vector_tiles_geojson (If this extension is adopted by the OGC, then gpkg_geojson_vector_tiles
will be named as an alias.)

Extension Type

This extension defines an encoding for the Vector Tiles Extension.

Applicability

This extension defines a specific encoding for GeoJSON Vector Tiles in a GeoPackage.

Scope

read-write

Specification

If this extension is in use, then all of the Vector Tiles Extension applies.

User Data Tables

Like other tile-based content, the physical data for a tile set is stored in a user-defined tiles table
[http://www.geopackage.org/guidance/getting-started.html#user-data-tables]. The tile_data is a GeoJSON
Feature Collection [https://tools.ietf.org/html/rfc7946#section-3.3].

The GeoJSON Format does not restrict feature collections from having heterogeneous feature types
(layers), nor does it define a standard way to distinguish the various feature types in a feature
collection. This creates additional complexity for developers that must be accounted for. If more

104

https://tools.ietf.org/html/rfc7946
http://www.geopackage.org/guidance/getting-started.html#user-data-tables
https://tools.ietf.org/html/rfc7946#section-3.3
https://tools.ietf.org/html/rfc7946#section-3.3

than one layer is present in the feature collection, then a conventional feature ID must be used. The
ID is a composite value containing the following:

• the feature type name

• the delimiter .

• a numeric feature ID for that feature

gpkg_extensions

To use this extension, add a row to this table for each tile pyramid user data table.

Table 16. gpkg_extensions Table Rows

table_name column_name extension_name definition scope

tile pyramid user
data table name

tile_data im_vector_tiles_ge
ojson

a reference to this
file

read-write

NOTE
The values in the definition column SHOULD refer in some human-readable way to
this extension specification. If the extension is adopted by the OGC, it will gain the
"gpkg_" prefix and get a different definition permalink.

gpkgext_vt_layers

The GeoJSON Format does not restrict feature collections from having features with heterogeneous
geometry types, nor does it define a standard way to declare the various geometry types in use. This
creates additional complexity for developers that must be accounted for. It is reasonable for a layer
to have features with at least one geometry type, for example one with a multiplicity of one (Point,
Linestring, or Polygon) and one with a multiplicity greater than one (MultiPoint, MultiLinestring, or
MultiPolygon). Therefore, GeoJSON-based vector tiles layers should have a geometry_type_name of
"GEOMETRY" unless it can be determined that all of the geometries of that layer have the same
geometry type. Then the corresponding core geometry type name [http://www.geopackage.org/spec121/#

geometry_types] is to be used.

In addition, there must be a row in this table for each layer in the tile set. If there is more than one
layer, the corresponding features are identified through their composite ID (see above).

A.4. GeoPackage Portrayal Extension

Extension Title

Portrayal

Introduction

This extension provides a mechanism for styles and symbols needed to implement portrayal in a
GeoPackage.

Extension Author

105

http://www.geopackage.org/spec121/#geometry_types

Image Matters LLC, in collaboration with the participants of OGC Testbed-15 and the OGC Vector
Tiles Pilot 2.

Extension Name or Template

im_portrayal (will become gpkg_portrayal if adopted by the OGC)

Extension Type

New requirement dependent on GeoPackage Core (Clause 1) [http://www.geopackage.org/spec/#core].

Applicability

This extension allows for styles and symbols to be stored in a GeoPackage. How those styles are
used is outside of the scope of this specification.

Scope

read-write

Specification

gpkg_extensions

To use this extension, add the following rows to this table.

Table 17. gpkg_extensions Table Rows

table_name column_name extension_name definition scope

gpkgext_styles null im_portrayal a reference to this
file

read-write

gpkgext_symbols null im_portrayal a reference to this
file

read-write

gpkgext_stylesheet
s

null im_portrayal a reference to this
file

read-write

gpkgext_symbol_con
tent

null im_portrayal a reference to this
file

read-write

gpkgext_symbol_ima
ges

null im_portrayal a reference to this
file

read-write

NOTE
The values in the definition column SHOULD refer in some human-readable way to
this extension specification. If the extension is adopted by the OGC, it will gain the
"gpkg_" prefix and get a different definition permalink.

New Table Definitions

Following are definitions of the tables for this extension. As with other GeoPackage tables, this

106

http://www.geopackage.org/spec/#core

extension takes no position on how either of these tables are to be used by a client.

gpkgext_styles

This table contains styles. The columns of this table are:

• id is a primary key

• style is text naming a specific style

• description is an optional text description

• uri is a resolvable URI

NOTE
Where possible, URIs should resolve to a network-accessible resource. When that is
not possible, they should be unique. If no existing URI scheme is available, a URI can
take the form of: gpkgstyle::[stylable layer set]::[org]::[style]

gpkgext_stylesheets

This table contains stylesheets. The columns of this table are:

• id is a primary key

• style_id is a foreign key to gpkgext_styles

• format is the format of the stylesheet (e.g., mbstyle or sld)

• stylesheet is the actual stylesheet BLOB (since some stylesheets are binary)

gpkgext_symbols

This table contains symbols. The columns of this table are:

• id is a primary key

• symbol is text naming a specific symbol

• description is an optional text description

• uri is a resolvable URI

NOTE
Where possible, URIs should resolve to a network-accessible resource. When that is
not possible, they should be unique. If no existing URI scheme is available, a URI can
take the form of: gpkgsym::[stylable layer set]::[org]::[style]::[symbol]

gpkgext_symbol_images

This table contains images representing symbols, with optional support for sprites. The columns of
this table are:

• id is a primary key

• symbol_id is a foreign key to gpkgext_symbols

• content_id is a foreign key to gpkgext_symbol_content

• width, height are optional parameters that are required for sprites or for when there are

107

multiple versions of the same image with different sizes

• offset_x, offset_y, pixel_ratio are optional parameters for sprite information (NULL if the
entire symbol is used)

gpkgext_symbol_content

This table contains the content (data) for symbols. The columns of this table are:

• id is a primary key

• format is the media type (formerly MIME type, e.g., image/svg+xml or image/png) of the symbol

• content is the actual symbol BLOB

• uri is a resolvable name to uniquely reference a specific content entry, e.g., for use in Mapbox
GL styles "sprite" property to reference a particular sprite sheet

A.5. GeoPackage Semantic Annotation Extension

Extension Title

Semantic Annotations Extension

Introduction

A semantic annotation is a semantically grounded term that can be applied to another concept. Use
of this extension enables semantic annotations to be applied to any business object in the current
GeoPackage.

Extension Author

Image Matters LLC, in collaboration with the participants of OGC Testbed-15.

Extension Name or Template

im_semantic_annotations (will become gpkg_semantic_annotations if adopted by the OGC)

Extension Type

New requirement optionally dependent on the GeoPackage Schema Extension
[http://www.geopackage.org/spec121/#extension_schema].

Applicability

This extension can be applied to any GeoPackage business object (layers, features, tiles, styles, etc.).

Scope

read-write

108

http://www.geopackage.org/spec121/#extension_schema

Specification

gpkg_extensions

To use this extension, add the following rows to this table in addition to the rows required for the
Schema Extension (if used).

Table 18. gpkg_extensions table row

table_name column_name extension_name definition scope

gpkgext_semantic_a
nnotations

null im_semantic_annota
tions

a reference to this
file

read-write

gpkgext_sa_referen
ce

null im_semantic_annota
tions

a reference to this
file

read-write

NOTE
The values in the definition column SHOULD refer in some human-readable way to
this extension specification. If the extension is adopted by OGC, it will gain the
"gpkg_" prefix and get a different definition permalink.

New Table Definitions

Following are definitions of the tables for this extension. As with other GeoPackage tables, this
extension takes no position on how either of these tables are to be used by a client.

gpkgext_semantic_annotations

When this extension is in use, add a table with this name and the following columns:

• id is a primary key

• type is a semantically grounded type (category) for the annotation

• title is a human-readable title for the annotation

• description is an optional human-readable text description for the annotation

• uri is the resolvable URI for the semantic concept

gpkgext_sa_reference

When this extension is in use, add a table with this name and the following columns:

• table_name is the name of the table containing the business object

• key_column_name is the name of the integer column in the specified table that acts as a key; if no
such column exists, rowid can be used

• key_value is the value of the key column that uniquely identifies the row

• sa_id is a foreign key to gpkgext_semantic_annotations

Using Semantic Annotations

To use semantic annotations, do the following:

109

1. Add rows to gpkgext_semantic_annotations for every annotation you want to use.

a. Optionally, use the Schema Extension to establish an enumeration for the types and further
describe those types. See http://www.geopackage.org/guidance/extensions/schema.html for
more details.

2. Add a row to gpkgext_sa_reference for every row of every table requiring the annotation. There
can be a many-to-many mapping between business object rows and semantic annotations.

A.6. Vector Tiles Attributes Extension
This extension defines a relationship between features of a vector tiles layer and vector tiles
containing those features. When this extension is used, it is possible to perform a relational query
and isolate only the vector tiles containing relevant features. In some circumstances this has the
potential to greatly improve application performance.

Background

The GeoPackage Related Tables Extension [http://docs.opengeospatial.org/is/18-000/18-000.html] (RTE)
defines the rules and requirements for creating relationships in a GeoPackage data store between
geospatial data tables and other tables that contain or reference related content such as attributes
or media. As an example, this can be used to establish a many-to-many relationship between
features (e.g., points, lines, or areas) and multimedia files. By definition, the "left" side of the
relationship is the "base" data and the "right" side of the relationship is the "related" data. The
mapping table links related rows in those tables of those types by reference to their primary keys.

When relating vector tiles with the attributes of the features in those tiles, the base data is the
vector tiles and the related data is the attributes as illustrated by Table Diagram. The "GeoPackage
Extension for Related Tables" allows a GeoPackage to contain additional data that is related to
geospatial (e.g., features) or attributes data. When relating tiled feature data with attributes, the
tiled feature data is the "base" data and the attributes are the "related" data.

Figure 56. Table Diagram

110

http://www.geopackage.org/guidance/extensions/schema.html
http://docs.opengeospatial.org/is/18-000/18-000.html

NOTE

The RTE does not define a requirements class to map tiles tables with attributes
tables. This section defines a requirements class that will fill this need. A note has
been added to the proposed RTE standard to indicate that additional requirements
classes are possible. For information on using the Related Tables Extension, see the
Getting Started Guide [https://github.com/opengeospatial/geopackage-related-tables/wiki/

Getting-Started].

gpkg_extensions

To use this extension, add the following rows to this table as described in gpkg_extensions
[http://www.geopackage.org/guidance/getting-started.html#gpkg_extensions].

Table 19. gpkg_extensions Table Rows

table_name column_name extension_name definition scope

gpkgext_relations null related_tables https://github.com/
opengeospatial/
geopackage-
related-tables

read-write

name of actual
User-defined
Mapping Table

null related_tables https://github.com/
opengeospatial/
geopackage-
related-tables

read-write

NOTE
The values in the definition column SHOULD refer in some human-readable way to
this extension specification. If the extension is adopted by the OGC, it will gain the
"gpkg_" prefix and get a different definition permalink.

gpkgext_relations

This table describes extended relationships. The table requires the following columns:

Table 20. gpkgext_relations Table Rows

Column Description

id primary key

base_table_name Name of the vector tiles table

base_primary_column id (all user-defined tiles tables have this column)

related_table_name Name of the user-defined attributes table

related_primary_column Name of the primary key column in
related_table_name

relation_name vector_tiles_attributes

mapping_table_name Name of a User-defined Mapping Table

Add a row to this table for each vector tiles layer with attributes in an attributes table.

111

https://github.com/opengeospatial/geopackage-related-tables/wiki/Getting-Started
http://www.geopackage.org/guidance/getting-started.html#gpkg_extensions
https://github.com/opengeospatial/geopackage-related-tables
https://github.com/opengeospatial/geopackage-related-tables
https://github.com/opengeospatial/geopackage-related-tables
https://github.com/opengeospatial/geopackage-related-tables
https://github.com/opengeospatial/geopackage-related-tables
https://github.com/opengeospatial/geopackage-related-tables
https://github.com/opengeospatial/geopackage-related-tables
https://github.com/opengeospatial/geopackage-related-tables

gpkgext_vt_layers

Set the attributes_table_name column to the appropriate table for each vector tiles layer with
attributes in an attributes table.

User-defined Mapping Table

A user-defined mapping table [http://www.geopackage.org/guidance/extensions/related_tables.html#user-

defined-mapping-table] describes the many-to-many relationships between base data (tiles) and
related data (features). A user-defined mapping table requires at least the following columns:

Table 21. gpkgext_relations Table Rows

Column Description

base_id tile ID (the primary key value of the base data
table)

related_id feature ID (the primary key value of the related
data table)

TIP
By adding row to this table for each feature/tile instance, it is possible for a client to
query for features by their attributes. However, full population of this table is not
mandatory. It may be prudent to omit some entries for space reasons.

A.7. GeoPackage Tile Matrix Set Extension

Extension Title

Tile Matrix Set Extension

Introduction

This extension provides alignment with OGC Two Dimensional Tile Matrix Set
[http://docs.opengeospatial.org/is/17-083r2/17-083r2.html] (OGC 17-083r2).

Extension Author

Ecere, in collaboration with the Image Matters and other participants of OGC Vector Tiles Pilot
Phase 2.

Extension Name or Template

ecere_tms (will become gpkg_tms if adopted by the OGC)

Extension Type

New requirement dependent on the GeoPackage Tiles Option [http://www.geopackage.org/spec121/#tiles].

Applicability

112

http://www.geopackage.org/guidance/extensions/related_tables.html#user-defined-mapping-table
http://docs.opengeospatial.org/is/17-083r2/17-083r2.html
http://www.geopackage.org/spec121/#tiles

This extension allows description and sharing of tile matrix sets, including those with variable
extents and row widths.

Scope

read-write

Specification

gpkg_extensions

To use this extension, add the following rows to this table.

Table 22. gpkg_extensions table row

table_name column_name extension_name definition scope

gpkgext_tile_matri
x_set

null ecere_tms a reference to this
file

read-write

gpkgext_tile_matri
x

null ecere_tms a reference to this
file

read-write

gpkgext_tile_matri
x_tables

null ecere_tms a reference to this
file

read-write

gpkgext_tile_matri
x_variable_widths

null ecere_tms a reference to this
file

read-write

gpkg_tile_matrix_s
et

null ecere_tms a reference to this
file

write-only

gpkg_tile_matrix null ecere_tms a reference to this
file

write-only

NOTE
The values in the definition column SHOULD refer in some human-readable way to
this extension specification. If the extension is adopted by OGC, it will gain the
"gpkg_" prefix and get a different definition permalink.

Table Definitions

Following are definitions of the tables for this extension. As with other GeoPackage tables, this
extension takes no position on how either of these tables are to be used by a client.

gpkgext_tile_matrix_set

When this extension is in use, add a table with this name and the following columns:

• id is a primary key

• tms is a human-readable title for the tile matrix set

• description is an optional human-readable description for the tile matrix set

• uri is a machine-readable URI for the tile matrix set

113

• srs_id is the SRS for the tile matrix set and is a foreign key to gpkg_spatial_ref_sys.srs_id

• min_x, min_y, max_x, and max_y represent the bounding box of the tile matrix set

gpkgext_tile_matrix

When this extension is in use, add a table with this name and the following columns:

• id is a primary key

• tms_id is a foreign key to gpkgext_tile_matrix_set.id

• zoom_level indicates the zoom levels present in the file

• matrix_width and matrix_height describe the size of the tile matrix in tiles

• tile_width and tile_height describe the size of each tile in pixels

• pixel_x_size and pixel_y_size describe the size of each pixel

• left and top are the top left corner of the tile matrix, which can potentially be different than the
tile matrix set

• scale_denominator is an optional double representing scale denominator with respect to a
"standardized rendering pixel size" of 0.28 mm × 0.28 mm

gpkgext_tile_matrix_tables

When this extension is in use, add a table with this name and the following columns:

• table_name is a primary key and also a foreign key to gpkg_contents.table_name

• tms_id is a foreign key to gpkgext_tile_matrix_set.id

• min_level and max_level are the minimum and maximum zoom levels

gpkgext_tile_matrix_variable_widths

When this extension is in use, add a table with this name and the following columns:

• id is a primary key

• tm_id is a foreign key to gpkgext_tile_matrix.id

• min_row and max_row describe the minimum and maximum tile row index where the given
coalescence coefficient applies

• coalesce is an integer coalescence coefficient

View Definitions

To maintain compatibility with clients that are not aware of this extension, the following views are
created.

gpkg_tile_matrix_set

When using this extension, replace this table with a view to maintain compatibility with GeoPackge
clients that are not aware of this extension.

1. Copy all rows of gpkg_tile_matrix_set into gpkgext_tile_matrix_set. Where possible, use an

114

existing or well-known tile matrix set. If the tile matrix set URI cannot be determined, use the
table_name as the URI.

2. For each row copied, add a row to gpkgext_tile_matrix_tables.

3. DROP gpkg_tile_matrix_set.

4. CREATE VIEW gpkg_tile_matrix_set AS SELECT a.table_name, b.srs_id, b.min_x, b.min_y,
b.max_x, b.max_y FROM gpkgext_tile_matrix_tables a, gpkgext_tile_matrix_set b WHERE
a.tms_id = b.id.

WARNING

When this view is in place, clients that are not aware of this extension will not
be able to add new tile pyramids to the GeoPackage. The development of
triggers to turn this view into an updateable view (TBD) would eliminate this
restriction.

gpkg_tile_matrix

When using this extension, replace this table with a view to maintain compatibility with GeoPackge
clients that are not aware of this extension.

1. Copy all rows of gpkg_tile_matrix into gpkgext_tile_matrix. Where possible, use an existing or
well-known tile matrix set. If the tile matrix set URI cannot be determined, use the table_name
as the URI.

2. DROP gpkg_tile_matrix.

3. CREATE VIEW gpkg_tile_matrix AS SELECT a.table_name, b.zoom_level, b.matrix_width,
b.matrix_height, b.tile_width, b.tile_height, b.pixel_x_size, b.pixel_y_size FROM
gpkgext_tile_matrix_tables a, gpkgext_tile_matrix b WHERE a.tms_id = b.tms_id AND
b.zoom_level >= a.min_level AND b.zoom_level ⇐ a.max_level AND b.id NOT IN (SELECT
DISTINCT tm_id FROM gpkgext_tile_matrix_variable_widths);.

WARNING

When this view is in place, clients that are not aware of this extension will not
be able to add new tile pyramids to the GeoPackage. The development of
triggers to turn this view into an updateable view (TBD) would eliminate this
restriction.

NOTE
This approach hides tables that have variable-width tile matrix sets from the
compatibility view. An alternate approach (TBD) would create a shadow tile matrix
set that excludes all variable-width tile matrix rows.

115

Appendix B: Additional Screenshots

B.1. GeoSolutions D101 Feature Server
An additional screenshot for the GeoSolutions feature server is presented below, in Figure 56.

Figure 57. Collection description, including link to the data tiles

B.1.1. GeoSolutions D104 Client

Additional screenshots for the GeoSolutions client are presented below.

Figure 58. GeoSolutions MapStore Client uses different tile matrix set: WebMercatorQuad (left),
WorldCRS84Quad (top right) and WorldMercatorWGS84Quad (bottom right)

116

Figure 59. GeoSolutions MapStore Client with Mapbox GL-support

Figure 60. GeoSolutions MapStore Client shows feature items from GeoServer in flatgeobuf format

B.1.2. Ecere D103 Features, Tiles and Styles API

Additional screenshots of the Ecere Features, Tiles and Styles servers are below.

117

Figure 61. Natural Earth imagery data (available whole, tiled or clipped to BBOX)

118

Figure 62. Daraa DTED elevation data (gridded coverage, available whole, tiled or clipped to BBOX)

119

Figure 63. GeoPackage files generated including the OSM TDS vector data and elevation data (2 DTED Level
1 cells)

Figure 64. CDB Global Grid tile matrix set (negative levels starting at 1x1 pixel)

120

Figure 65. CDB Global Grid tile matrix set (positive levels — 1024x1024 pixels)

B.2. Ecere D103 Client
Additional screenshots for the Ecere client applications are presented below.

These screenshots include imagery from Google Maps (c) CNES / Airbus, Maxar Technology,
TerraMetrics, NASA, U.S. Geological Survey, Landsat / Copernicus, global 3" elevation data from
View Finder Panoramas by Jonathan de Ferranti, from Shuttle Radar Topography Mission (NASA,
NGA, U.S. Geological Survey) and other sources, as well as VTP2 datasets, including profiles of
OpenStreetMap data (c) OpenStreetMap Contributors.

Figure 66. Ecere’s mobile Android client accessing GeoSolutions Tiles API

121

Figure 67. Ecere’s mobile Android client accessing Ecere Tiles API

Figure 68. Ecere’s mobile Android client accessing Ecere Tiles API (closer top-down view)

122

Figure 69. Damascus OpenStreetMap 3D Buildings from Terranodo Tiles API displayed in GNOSIS
Cartographer

Figure 70. Singapore OpenStreetMap 3D Buildings from vector tiles stored in GNOSIS Data Store displayed
in GNOSIS Cartographer

B.3. interactive instruments
The next three screenshots (Figure 70,Figure 71, and Figure 72) show the multi-layer vector tiles in
an OpenLayers map using a simple wireframe style for all three tiling schemes:

123

Figure 71. interactive instruments - Multi-layer vector tiles in the standard "WebMercatorQuad" tiling
scheme

124

Figure 72. interactive instruments - Multi-layer vector tiles in the "WorldCRS84Quad" tiling scheme

125

Figure 73. interactive instruments - Multi-layer vector tiles in the "WorldMercatorWGS84Quad" tiling
scheme

126

Appendix C: Revision History
Table 23. Revision History

Date Editor Release Primary
clauses
modified

Descriptions

2020-01-10 G. Hobona .1 all initial version

2020-03-25 G. Hobona .2 all Revision, based
on Carl Reed’s
review

2020-04-09 G. Hobona .3 all Revision, based
on Terry Idol’s
review

127

Appendix D: Bibliography
[1] Simmons, S., Reed, C.: Technical Committee Policies and Procedures. OGC 05-020r24,Open
Geospatial Consortium, https://docs.opengeospatial.org/pol/05-020r24/05-020r24.html (2016).

[2] Meek, S.: OGC Vector Tiles Pilot: Summary Engineering Report. OGC 18-086,Open Geospatial
Consortium, https://docs.opengeospatial.org/per/18-086r1.html (2019).

[3] Open Geospatial Consortium: OGC API - Maps draft specification, https://github.com/
opengeospatial/OGC-API-Tiles/tree/master/core.

[4] Open Geospatial Consortium: OGC API - Tiles draft specification, https://github.com/
opengeospatial/OGC-API-Tiles/tree/master/core.

[5] Aime, A., Bovolo, S.: OGC Vector Tiles Pilot 2: Vector Tiles Filtering Language Engineering Report.
OGC 19-084,Open Geospatial Consortium, https://www.opengeospatial.org/docs/er (2020).

[6] NGA: National System for Geospatial Intelligence (NSG) Metadata Foundation (NMF) - Version
3.0. NGA.STND.0012_3.0,National Geospatial Intelligence Agency (2016).

[7] Taleisnik, S.: OGC Vector Tiles Pilot 2: Tile Set Metadata Engineering Report. OGC 19-082,Open
Geospatial Consortium, https://www.opengeospatial.org/docs/er (2020).

[8] Yutzler, J.: Vector Tiles Pilot Extension Engineering Report. OGC 18-101,Open Geospatial
Consortium, http://docs.opengeospatial.org/per/18-101.html (2019).

[9] Portele, C.: OGC Testbed-15: Styles API Engineering Report. OGC 19-010r2,Open Geospatial
Consortium, http://docs.opengeospatial.org/per/19-010r2.html (2019).

[10] Portele, C.: OGC Testbed-14 Next Generation APIs: Complex Feature Handling Engineering
Report. OGC 18-021,Open Geospatial Consortium, https://docs.opengeospatial.org/per/18-021.html
(2019).

[11] NGA: NSG vector tiles draft interoperability specification.

[12] Klopfer, M.: OGC Testbed-12 General Feature Model Engineering Report. OGC 16-047r1,Open
Geospatial Consortium, http://docs.opengeospatial.org/per/16-047r1.html (2016).

128

https://docs.opengeospatial.org/pol/05-020r24/05-020r24.html
https://docs.opengeospatial.org/per/18-086r1.html
https://github.com/opengeospatial/OGC-API-Tiles/tree/master/core
https://github.com/opengeospatial/OGC-API-Tiles/tree/master/core
https://github.com/opengeospatial/OGC-API-Tiles/tree/master/core
https://github.com/opengeospatial/OGC-API-Tiles/tree/master/core
https://www.opengeospatial.org/docs/er
https://www.opengeospatial.org/docs/er
http://docs.opengeospatial.org/per/18-101.html
http://docs.opengeospatial.org/per/19-010r2.html
https://docs.opengeospatial.org/per/18-021.html
http://docs.opengeospatial.org/per/16-047r1.html

	{title}
	Table of Contents
	Chapter 1. Executive Summary
	Chapter 2. Introduction
	2.1. Requirements & Research Motivation
	2.2. Recommendations
	2.3. Document contributor contact points
	2.4. Foreword

	Chapter 3. References
	Chapter 4. Terms and definitions
	4.1. Abbreviated terms

	Chapter 5. Overview
	Chapter 6. Context
	6.1. Scenario
	6.2. Use Cases
	6.2.1. Filtering Use Case
	6.2.2. Metadata Use Case

	Chapter 7. Architecture
	7.1. OGC API - Features standard
	7.2. OGC Web Feature Service (WFS) standard
	7.3. OGC Web Map Tile Service (WMTS) standard
	7.4. OGC GeoPackage standard
	7.5. OGC API - Maps draft specification
	7.6. OGC API - Tiles draft specification
	7.7. VTP2 Filtering Language proof of concept
	7.8. VTP2 Metadata model proof of concept

	Chapter 8. Vector Tiles GeoPackage Model
	8.1. Vector Tiles
	8.2. Portrayal Information
	8.3. Metadata
	8.4. Semantic Annotations
	8.4.1. Styles
	8.4.2. Stylable Layer Sets

	8.5. Attributes
	8.6. Attributes with Related Tables
	8.7. Tile Matrix Sets

	Chapter 9. Implementations
	9.1. Services and Data Producers
	9.1.1. Ecere D103 Features, Tiles and Styles API
	9.1.2. Ecere D106 GeoPackage Producer
	9.1.3. GeoSolutions D100 Features API
	9.1.4. GeoSolutions D102 Tiles API
	9.1.5. interactive instruments D101 Features, Tiles and Styles API
	9.1.6. Support for filtering
	9.1.7. Support for additional tiling schemes
	9.1.8. Image Matters D107 GeoPackage
	9.1.9. Terranodo D100 Features API

	9.2. Client applications
	9.2.1. Ecere D105 OGC API Client and D106 GeoPackage visualization
	9.2.2. GeoSolutions D104 Client
	9.2.3. Skymantics D104 Client

	Chapter 10. Results
	10.1. Considerations
	10.1.1. Portrayal information
	10.1.2. Shared or Disjoint APIs
	10.1.3. Static API
	10.1.4. Tile Cache vs. Tile Set
	10.1.5. Out of bounds and empty tiles
	10.1.6. Collections

	10.2. Technology Integration Experiments
	10.2.1. Data Exchange TIEs
	10.2.2. Styles Encoding TIEs
	10.2.3. Multi-Layer Tile TIEs
	10.2.4. Multiple Projections TIEs
	10.2.5. TileJSON (Metadata) TIEs
	10.2.6. Filtering TIEs

	Chapter 11. Key Findings
	11.1. Bounding box inconsistency
	11.2. Online and offline access to multi-layer vector tiles can be supported by OGC APIs and GeoPackage
	11.3. The absence of a way to describe schemas creates difficulty for data transfer from an OGC API to a GeoPackage
	11.4. There is a need for generic collections that do not advertise much about their contents
	11.5. There is a need for multi-layer tiles without having explicit collections
	11.6. The need to test larger datasets
	11.7. Proposed GeoPackage extensions are ready for progression
	11.8. Consistency of schemas across some OGC resources could be improved

	Chapter 12. Recommendations
	12.1. Key recommendations
	12.1.1. Publish schemas through the Tiles and Features APIs
	12.1.2. Development of a standard for Tile Set Metadata
	12.1.3. Introduce additional concepts in the OGC Symbology Conceptual Core Model
	12.1.4. OGC API - Tiles should provide direction on multi-layer vector tiles schemas
	12.1.5. OGC API - Tiles should allow for multi-layer tiles that are without explicit collections
	12.1.6. TileJSON editors should register a media type for the specification
	12.1.7. OGC API - Common should allow for collections that do not advertise their content types
	12.1.8. Development of Mapbox Vector Tiles and TileJSON as OGC Community Standards

	12.2. Future Work

	Appendix A: Proposed GeoPackage Extensions (Informative)
	A.1. Vector Tiles Extension
	A.2. Mapbox Vector Tiles Extension
	A.3. GeoJSON Vector Tiles Extension
	A.4. GeoPackage Portrayal Extension
	A.5. GeoPackage Semantic Annotation Extension
	A.6. Vector Tiles Attributes Extension
	A.7. GeoPackage Tile Matrix Set Extension

	Appendix B: Additional Screenshots
	B.1. GeoSolutions D101 Feature Server
	B.1.1. GeoSolutions D104 Client
	B.1.2. Ecere D103 Features, Tiles and Styles API

	B.2. Ecere D103 Client
	B.3. interactive instruments

	Appendix C: Revision History
	Appendix D: Bibliography

