
OGC Vector Tiles Pilot 2
Vector Tiles Filtering Language Engineering Report

Publication Date: 2020-07-08

Approval Date: 2020-06-26

Submission Date: 2020-05-05

Reference number of this document: OGC 19-084

Reference URL for this document: http://www.opengis.net/doc/PER/vtp2-D002

Category: OGC Public Engineering Report

Editor: Andrea Aime

Title: OGC Vector Tiles Pilot 2: Vector Tiles Filtering Language Engineering Report

OGC Public Engineering Report
COPYRIGHT

Copyright © 2020 Open Geospatial Consortium. To obtain additional rights of use, visit
http://www.opengeospatial.org/

WARNING

This document is not an OGC Standard. This document is an OGC Public Engineering Report created
as a deliverable in an OGC Interoperability Initiative and is not an official position of the OGC
membership. It is distributed for review and comment. It is subject to change without notice and
may not be referred to as an OGC Standard. Further, any OGC Public Engineering Report should not
be referenced as required or mandatory technology in procurements. However, the discussions in
this document could very well lead to the definition of an OGC Standard.

1

http://www.opengis.net/doc/PER/vtp2-D002
http://www.opengeospatial.org/

LICENSE AGREEMENT

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of charge and subject to the
terms set forth below, to any person obtaining a copy of this Intellectual Property and any associated
documentation, to deal in the Intellectual Property without restriction (except as set forth below), including without
limitation the rights to implement, use, copy, modify, merge, publish, distribute, and/or sublicense copies of the
Intellectual Property, and to permit persons to whom the Intellectual Property is furnished to do so, provided that
all copyright notices on the intellectual property are retained intact and that each person to whom the Intellectual
Property is furnished agrees to the terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include, in addition to
the above copyright notice, a notice that the Intellectual Property includes modifications that have not been
approved or adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY PATENTS THAT
MAY BE IN FORCE ANYWHERE IN THE WORLD. THE INTELLECTUAL PROPERTY IS PROVIDED "AS IS", WITHOUT
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE DO NOT WARRANT THAT THE FUNCTIONS
CONTAINED IN THE INTELLECTUAL PROPERTY WILL MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF
THE INTELLECTUAL PROPERTY WILL BE UNINTERRUPTED OR ERROR FREE. ANY USE OF THE INTELLECTUAL
PROPERTY SHALL BE MADE ENTIRELY AT THE USER’S OWN RISK. IN NO EVENT SHALL THE COPYRIGHT HOLDER
OR ANY CONTRIBUTOR OF INTELLECTUAL PROPERTY RIGHTS TO THE INTELLECTUAL PROPERTY BE LIABLE FOR
ANY CLAIM, OR ANY DIRECT, SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
WHATSOEVER RESULTING FROM ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF
OR IN CONNECTION WITH THE IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF THIS
INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the Intellectual Property
together with all copies in any form. The license will also terminate if you fail to comply with any term or condition
of this Agreement. Except as provided in the following sentence, no such termination of this license shall require the
termination of any third party end-user sublicense to the Intellectual Property which is in force as of the date of
notice of such termination. In addition, should the Intellectual Property, or the operation of the Intellectual Property,
infringe, or in LICENSOR’s sole opinion be likely to infringe, any patent, copyright, trademark or other right of a
third party, you agree that LICENSOR, in its sole discretion, may terminate this license without any compensation or
liability to you, your licensees or any other party. You agree upon termination of any kind to destroy or cause to be
destroyed the Intellectual Property together with all copies in any form, whether held by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all or part of the
Intellectual Property shall not be used in advertising or otherwise to promote the sale, use or other dealings in this
Intellectual Property without prior written authorization of LICENSOR or such copyright holder. LICENSOR is and
shall at all times be the sole entity that may authorize you or any third party to use certification marks, trademarks
or other special designations to indicate compliance with any LICENSOR standards or specifications.

This Agreement is governed by the laws of the Commonwealth of Massachusetts. The application to this Agreement
of the United Nations Convention on Contracts for the International Sale of Goods is hereby expressly excluded. In
the event any provision of this Agreement shall be deemed unenforceable, void or invalid, such provision shall be
modified so as to make it valid and enforceable, and as so modified the entire Agreement shall remain in full force
and effect. No decision, action or inaction by LICENSOR shall be construed to be a waiver of any rights or remedies
available to it.

None of the Intellectual Property or underlying information or technology may be downloaded or otherwise
exported or reexported in violation of U.S. export laws and regulations. In addition, you are responsible for
complying with any local laws in your jurisdiction which may impact your right to import, export or use the

2

Intellectual Property, and you represent that you have complied with any regulations or registration procedures
required by applicable law to make this license enforceable.

3

Table of Contents
1. Subject. 7

1.1. Target Scenario . 7

2. Executive Summary. 9

2.1. Document contributor contact points . 10

2.2. Foreword . 10

3. References . 11

4. Terms and definitions . 12

4.1. Abbreviated terms . 12

5. Overview . 13

6. Introduction. 14

7. Previous work . 15

7.1. Filter Encoding . 15

7.2. Catalog Services . 15

7.3. CQL adoption and extension in open source software . 17

7.4. OGC Testbed 14 . 18

7.5. OGC Testbed 15 . 18

7.6. STAC and OGC API Sprint, OGC API Filtering extension . 19

8. Filter Conceptual Model and VTP2 testing considerations. 24

8.1. Conceptual model . 24

8.2. The CQL language. 25

9. Filtering Tiles. 27

9.1. Vector Tiles Pilot 2 testing operator subset . 27

9.2. Queryables . 27

9.3. Single and multi-layer tile filtering . 27

10. Filtering GeoPackages with Vector Tiles. 29

10.1. Attributes in Attributes Tables . 29

10.2. Spatial Filtering. 29

11. Implementations . 34

11.1. GeoSolutions D100 OGC API - Features . 34

11.2. Terranodo D100 OGC API - Tiles . 37

11.2.1. CQL. 38

11.2.2. Sample Requests . 38

11.2.3. Queryables . 40

11.3. interactive instruments D101 Features, Tiles and Styles API. 41

11.3.1. The starting point . 41

11.3.2. Support for filters . 46

11.4. GeoSolutions D102 OGC API - Tiles. 57

11.5. Ecere D103 Features & OGC API - Tiles . 60

4

11.5.1. Examples of filtering expressions used with the OGC API - Features 60

11.5.2. Use of filtering for vector tiles . 65

11.5.3. Multi-layer and scale-based filtering (OGC API - Tiles) . 67

11.5.4. POST requests to the OGC API - Tiles . 72

11.5.5. Filtering driven by styles . 73

11.5.6. Retrieving attributes separately from geometry. 73

11.5.7. CMSS Expressions Syntax . 73

11.6. Ecere D105 Client . 75

11.7. Ecere D107 GeoPackage producer & client . 76

11.8. Skymantics D104 Client. 77

11.8.1. Challenges Encountered . 77

11.8.2. Filtering Within Unity and Mapbox Studio . 78

11.8.3. Future Work. 80

11.9. GeoSolutions D104 Client . 81

11.9.1. Attribute filter . 83

11.9.2. Spatial filter . 83

11.9.3. Temporal filter. 84

11.9.4. Mixed filters . 85

12. Results and findings . 87

12.1. Issues Encountered . 87

12.1.1. CQL language issues. 87

12.1.2. Quoted identifiers. 87

12.1.3. ENVELOPE constructor . 87

12.1.4. EXISTS operator . 87

12.2. Findings . 87

12.2.1. Client-side versus Server-side filtering . 87

12.2.2. Client-side control of contents and default filtering . 88

12.2.3. Filter capabilities and desired minimum filtering operator set . 89

12.3. Recommendations . 89

12.3.1. CQL CRS geometry support. 89

12.3.2. Filter capabilities support. 89

12.3.3. Support for complex filtering . 89

12.4. Future work . 90

12.4.1. Selection of returned attributes . 90

12.4.2. JSON based filtering languages . 90

12.4.3. Explore multi-layer tile filtering and querying support . 90

Appendix A: CQL BNF . 92

Appendix B: Queryables . 100

B.1. Requirement Class "Queryables" . 100

B.1.1. Fetch the queryable properties of the features in a collection . 100

Appendix C: Filter capabilities . 106

5

Appendix D: Revision History . 109

Appendix E: Bibliography . 112

6

Chapter 1. Subject
The OGC Vector Tiles Pilot 2: Vector Tiles Filtering Language Engineering Report (ER) defines a filter
language for vector data delivered as tiles (also known as vector tiles). The language applies to
vector tiles served through implementations of the OGC API – Features standard and the draft OGC
API - Tiles specification, but can be generally applied on all services supporting filtering by
attributes.

The ER further includes an assessment of filter languages, styles and online/offline symbol sharing
for GeoPackages, OGC API - Features and OGC API - Tiles implementations for accuracy and
completeness in applications that render vector tiles at local to regional scales.

1.1. Target Scenario
The main benefits for transitioning from raster tiles to vector tiles has been the possibility of
flexible map styling and the reduction of storage space required for maps, the latter allowing for
maps being stored on devices with lower storage capacity as well as requiring lower bandwidth
communications for transmission. In some cases, maps represented with vector tiles can be 20 to 30
times smaller than the same maps represented by raster tiles. This reduction enables the possibility
of storing large sets of maps (i.e.,tile sets) into secure and lightweight removable media devices.

As described in Figure 1, a tile set repository (such as GeoPackage, Static Cache, or Compact Cache
V2) is being used by a humanitarian relief convoy in the middle of the desert and with limited to no
connectivity, supported by a group of interconnected systems working and communicating with
each other. The repositories are generated at Command Post Computing Environments (CPCE) and
comprise tile sets, styles, maps and routes served by National-level Services and Enterprise-level
Services, which communicate with each other throughout OGC API Styles, API Tiles, API Images and
API Routes.

7

Figure 1. Sponsor Modular Scenario

The intention of working with vector tile sets is to transition from classic raster maps into using up-
to-date and small-sized vector maps which allow for different styles to be applied as needed. An
end user would easily transition from a Day Tpographic styling during daytime operations, to Night
Topographic during night time, or even a hybrid satellite imagery/vector overlay styling.

Tile content filtering, as described in this ER, allows preparing a tile set specifically targeted to the
mission, focusing on pertinent information, further reducing the final size of the package being
downloaded on the mobile units, as well as limiting potential confusion.

8

Chapter 2. Executive Summary
Consistent application of filters on data is important, whether an application is connected to a
network or not. This is more so in environments with Denied, Degraded, Intermittent or Limited
(DDIL) connectivity. This engineering report presents work conducted by the OGC Vector Tiles Pilot
Phase 2 (VTP2) project with respect to filter languages.

VTP2 sought to deliver a consistent, interoperable online/offline architecture consisting of feature
and tile servers, and GeoPackage-producing components that could publish, display and query
vector tiles. One of the objectives of the VTP2 pilot was to develop a filtering language for vector
tiles, and implement and exercise the filtering language on clients and servers.

The purpose of this Engineering Report and associated component implementations is to study the
filtering and production of tiled feature data (also known as vector tiles) and GeoPackages, with
particular attention to the following filtering features based on spatial and temporal aspects, as
well as alphanumeric

The APIs applied in the pilot are from the emerging suite of OGC API standards. The first of the OGC
API standards to be approved by the Technical Committee is the OGC API - Features standard. The
pilot also explored the draft OGC API - Tiles and OGC API - Styles specifications.

The report also focuses on the opportunity for client-side versus server-side filtering, coupled with
the possibility of caching, overall performance and user experience.

Feature and tile servers deployed in VTP2 implemented the OGC API - Features standard, and the
draft OGC API - Tiles and OGC API - Styles specifications. Whereas the feature and tile servers
allowed the pilot to explore online support for vector tiles, GeoPackage allowed the pilot to explore
offline support.

The key findings of the pilot, with regard to a vector tiles filter language, are:

• Both server-side and client-side filtering are important. Server-side filtering reduces payload
size and can simplify the client-side development. The client-side helps to keep tiles static, and
thus cacheable, while adding interactivity.

• In the context of vector tiles some pre-defined server-side filters are important, to include
pertinent information depending on the zoom level, and to keep the vector tile size in control.

• The filtering language can contain operators that are not needed for specific applications, and
difficulties of implementing a text-based parsers may limit its implementations.

The pilot made the following recommendations, with regard to a vector tiles filter language:

• A way to advertise support for a subset of filtering operators and expressions should be
developed and included in filtering extensions.

• JSON based filtering languages should be explored to lower the implementation cost and
provide a suitable option for clients offering Graphical User Interfaces (GUIs) to build filters.

• Complex filtering and multi-layer filtering should be investigated, and methods to support them
implemented.

9

• While filtering can reduce the number of returned items, it’s also necessary to develop support
for limiting the returned attributes. A querying extension should both advertise which
attributes can be removed, and provide ways to limit them in requests.

• Support for complex, eventually multi-layer filtering should be explored, allowing to perform
queries that are too large to fit the limits of a URL, as well as to avoid providing the same query
into all tile requests.

2.1. Document contributor contact points
All questions regarding this document should be directed to the editor or the contributors:

Contacts

Name Organization Role

Andrea Aime GeoSolutions Editor

Stefano Bovio GeoSolutions Contributor

Clemens Portele interactive instruments Contributor

Jeff Yutzler Image Matters Contributor

Jerome Jacovella-St-Louis Ecere Contributor

Jeffrey Johnson Terranodo Contributor

Sergio Taleisnik Skymantics Contributor

Jeff Harrison AGC Contributor

2.2. Foreword
Attention is drawn to the possibility that some of the elements of this document may be the subject
of patent rights. The Open Geospatial Consortium shall not be held responsible for identifying any
or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any
relevant patent claims or other intellectual property rights of which they may be aware that might
be infringed by any implementation of the standard set forth in this document, and to provide
supporting documentation.

10

Chapter 3. References
The following normative documents are referenced in this document.

• OGC: OGC 17-069r3, OGC® API - Features - Part 1: Core [http://docs.opengeospatial.org/is/17-069r3/17-

069r3.html]

• OGC: OGC 09-026r2, OGC® Filter Encoding 2.0 Encoding Standard – With Corrigendum
[http://docs.opengeospatial.org/is/09-026r2/09-026r2.html]

• OGC: OGC 12-168r6, OGC® Catalogue Services 3.0 - General Model [http://docs.opengeospatial.org/is/

12-168r6/12-168r6.html]

• OGC: OGC 12-176r7, OGC® Catalogue Services 3.0 Specification - HTTP Protocol Binding
[https://docs.opengeospatial.org/is/12-176r7/12-176r7.html]

• OGC: OGC 05-078r4, OGC® Styled Layer Descriptor profile of the Web Map Service
Implementation Specification [http://portal.opengeospatial.org/files/?artifact_id=22364]

• OGC: OGC 07-057r7, OpenGIS® Web Map Tile Service Implementation Standard
[http://portal.opengeospatial.org/files/?artifact_id=35326]

• OGC: OGC 17-083r2, OGC Two® Dimensional Tile Matrix Set [http://docs.opengeospatial.org/is/17-

083r2/17-083r2.html]

• OGC: OGC 19-014r1, Core Tiling Conceptual and Logical Models for 2D Euclidean Space, Draft
[https://portal.opengeospatial.org/files/91763]

11

http://docs.opengeospatial.org/is/17-069r3/17-069r3.html
http://docs.opengeospatial.org/is/09-026r2/09-026r2.html
http://docs.opengeospatial.org/is/12-168r6/12-168r6.html
https://docs.opengeospatial.org/is/12-176r7/12-176r7.html
http://portal.opengeospatial.org/files/?artifact_id=22364
http://portal.opengeospatial.org/files/?artifact_id=22364
http://portal.opengeospatial.org/files/?artifact_id=35326
http://docs.opengeospatial.org/is/17-083r2/17-083r2.html
https://portal.opengeospatial.org/files/91763

Chapter 4. Terms and definitions
For the purposes of this report, the definitions specified in Clause 4 of the OWS Common
Implementation Standard OGC 06-121r9 [https://portal.opengeospatial.org/files/?artifact_id=38867&version=2]
shall apply. In addition, the following terms and definitions apply.

● tile

geometric shape with known properties that may or may not be the result of a tiling
(tessellation) process. A tile consists of a single connected "piece" without "holes" or "lines"
(topological disc). (from OGC 19-014r1).

NOTE

In the ER, the definition for “tile is further constrained as a tessellated
representation of geographicdata, often part of a set of such elements, covering a
spatially contiguous extent which can be uniquely defined by a pair of indices for
the column and row along with an identifier for the tile matrix (adapted from OGC
07-057r7 [http://portal.opengeospatial.org/files/?artifact_id=35326])

● GeoPackage

an open, standards-based, platform-independent, portable, self-describing, compact format for
transferring geospatial information [geopackage [http://www.geopackage.org/]]

● dataset

collection of data, published or curated by a single agent, and available for access or download
in one or more formats [OGC 17-069r3 [http://docs.opengeospatial.org/is/17-069r3/17-069r3.html]]

● collection

a set of features from a dataset [OGC 17-069r3 [http://docs.opengeospatial.org/is/17-069r3/17-069r3.html]]

4.1. Abbreviated terms
• CQL Common Query Language

• FE Filter Encoding

• GPKG GeoPackage

• MVT Mapbox Vector Tiles

• OGC Open Geospatial Consortium

• VT Vector Tiles

• WFS Web Feature Service

• WKT Well Known Text

• WMS Web Map Service

12

https://portal.opengeospatial.org/files/?artifact_id=38867&version=2
http://portal.opengeospatial.org/files/?artifact_id=35326
http://portal.opengeospatial.org/files/?artifact_id=35326
http://www.geopackage.org/
http://docs.opengeospatial.org/is/17-069r3/17-069r3.html
http://docs.opengeospatial.org/is/17-069r3/17-069r3.html

Chapter 5. Overview
The introduction provides a quick introduction to the VTP2 objectives.

The previous work section provides a summary of previous work related to tiling and filtering.

The Filter Conceptual Model and VTP2 testing considerations provides an overview of the filtering
expressions and operators, a more in depth analysis of CQL.

The Tiles filtering section provides a list of filters used in the VTP2 tests and implementations, and
the protocol extensions required to advertise queryables and submit filters.

The GeoPackaage filtering section details application of filters against GeoPackages, and support
structures that can be used to speed up tile contents filtering.

The implementations section covers each VTP2 server and client deliverable involved in filtering
tiles. Each component is described in detail, along with implementation difficulties and unique
features.

The results and findings section summarizes the issues found in the development of VTP2
components, findings, as well as future work items.

Annex A contains the full Baukus Naur Form (BNF) of the CQL text encoding.

Annex B contains a copy of they Queryables specification from the Testbed 15 Styles Engineering
report [http://docs.opengeospatial.org/per/19-010r2.html#get_queryables]..

Annex C provides a sample filter capabilities document developed during the STAC and OGC API -
Features and Catalogues Sprint [https://www.opengeospatial.org/projects/initiatives/ogcapi-featu].

13

http://docs.opengeospatial.org/per/19-010r2.html#get_queryables
http://docs.opengeospatial.org/per/19-010r2.html#get_queryables
https://www.opengeospatial.org/projects/initiatives/ogcapi-featu
https://www.opengeospatial.org/projects/initiatives/ogcapi-featu

Chapter 6. Introduction
The goal of the Vector Tiles Pilot Phase 2 filtering activity, as described in this Engineering Report
(ER) and associated component implementations, was to study the filtering and production of tiled
feature data (also known as vector tiles) and GeoPackages, with particular attention to the
following:

• Filtering tiles based on the tile matrix set, range of zoom levels, bounding box and tile matrix
set limits per level.

• Removing layers and attributes that are not desired to be on the client-side.

• Filtering features based on spatial, temporal, as well as alphanumeric aspects.

The ER also focuses on the opportunity for client-side versus server-side filtering, coupled with the
possibility of caching, thereby enhancing overall performance and user experience.

14

Chapter 7. Previous work
This section discusses previous work related to filtering, among existing OGC specifications,
Testbeds and other activities, evaluating its usefulness in the context of filtering vector tiles.

7.1. Filter Encoding
The OpenGIS Filter Encoding 2.0 Encoding Standard [http://docs.opengeospatial.org/is/09-026r2/09-

026r2.html] (FE) describes an Extensible Markup Language (XML) and Key-Value Pair (KVP) encoding
of a system neutral syntax for expressing projections, selection and sorting clauses collectively
called a query expression.

The FE Standard includes both a conceptual filtering model as well as one encoding in Extensible
Markup Language (XML). The FE language supports:

• Literals and value references (attributes)

• Expressions, as basic math, and functions

• Comparison operators for alphanumeric expressions

• Spatial operators for location-based expressions

• Temporal operators for time-based expressions

• Logical operators allowing the combination of all the above

• Value references. In particular, value references can use a a subset of XPath
[http://docs.opengeospatial.org/is/09-026r2/09-026r2.html#111], allowing sophisticated access to objects in
a nested structure. This makes FE a natural fit for application schemas based on complex
features.

The FE detailed conceptual model is distributed across the entire specification document. This ER
contains a simple overview diagram of FE in the conceptual model chapter in this ER.

The FE XML encoding is best suited for use in XML documents sent in HTTP POST requests. Usage in
GET requests, as a query parameter, is also possible, but limited in application by the verboseness
of the language, the URL encoding obfuscating most of its structure, and the practical length limits
of a URL.

7.2. Catalog Services
The HTTP binding of the Catalog Services standard (OGC 12-168r6 [http://docs.opengeospatial.org/is/12-

168r6/12-168r6.html]), also referred to as the Catalogue Services for the Web (CSW) standard (OGC 12-
176r7 [http://docs.opengeospatial.org/is/12-176r7/12-176r7.html]), supports multiple query languages by
means of a CONSTRAINTLANGUAGE parameter in GetRecords requests.

The Catalog Services Standard supports the usage of OGC Filter Encoding, but also defines the
Common Query Language (CQL). CQL is a text based query language with "a syntax similar to the
SQL Where Clause", extended to support both temporal and spatial filters.

CSW advertises CQL as the primary means to filter records. Below is an example used against the

15

http://docs.opengeospatial.org/is/09-026r2/09-026r2.html
http://docs.opengeospatial.org/is/09-026r2/09-026r2.html#111
http://docs.opengeospatial.org/is/12-168r6/12-168r6.html
http://docs.opengeospatial.org/is/12-176r7/12-176r7.html
http://docs.opengeospatial.org/is/12-176r7/12-176r7.html

AnyText property, which in CSW allows for full text searches:

http://host/catalogServer/csw?
service=CSW&
version=2.0.2&
request=GetRecords&
resultType=results&
outputSchema=http%3A%2F%2Fwww.isotc211.org%2F2005%2Fgmd&
NAMESPACE=xmlns(gmd=http%3A%2F%2Fwww.isotc211.org%2F2005%2Fgmd)&
typeNames=gmd:MD_Metadata&
CONSTRAINTLANGUAGE=CQL_TEXT
CONSTRAINT=AnyText%20=%20'air%20temperature'&
CONSTRAINT_LANGUAGE_VERSION=1.1.0&
elementSetName=full

However, the use of CQL as specified in CSW has several limitations:

• The Baukus Naur Form (BNF) is not structurally valid

• The CQL imposes limitations on comparisons that are not present in OGC Filter, e.g., while
attribute = literal is valid, attribute1 > attribute2 is not.

• The standard lacks CQL examples. The same is true of most CSW implementations. On the other
hand, OGC Filter examples can be found in abundance, suggesting a less than widespread
implementation of CQL.

• While geometries can be expressed in Well-Known Text (WKT), there is no support for defining
their Coordinate Reference System CRS.

The implementation of OGC Catalog Services has also pioneered two concepts that are now relevant
to OGC API - Features, queryables and returnables.

Queryable properties [http://docs.opengeospatial.org/is/12-168r6/12-168r6.html#19] are "field-like objects"
that can be used to build filters, and "may differ from the response data elements". In other words,
queryables are property names, but do not necessarily match the names of the returned properties,
and may not appear in the data schema at all (if any schema is present). One example of a
queryable without a direct match with returned data is AnyText, which is defined as a "target for
full-text search of character data types in a catalogue". Another interesting example is "Abstract".
This is a property that can be found among the results, but whose name may vary depending on the
record format. For example, in Dublin Core records "Abstract" is named description, while in ISO
records "Abstract" matches the nested property
/gmd:MD_Metadata/gmd:identificationInfo/gmd:MD_DataI dentification/gmd:abstract.

On the other hand Returnable properties [http://docs.opengeospatial.org/is/12-168r6/12-168r6.html#20] are
property names found in the response. Some of them have a match with a corresponding queryable
(e.g., title), while others do not. If this is the case, those properties cannot be used in filters (e.g,
publisher, contributor).

16

http://docs.opengeospatial.org/is/12-168r6/12-168r6.html#19
http://docs.opengeospatial.org/is/12-168r6/12-168r6.html#20

7.3. CQL adoption and extension in open source
software
The GeoServer [https://www.geoserver.org] open source project was the first reference implementation
of the OGC Web Feature Service [https://www.opengeospatial.org/standards/wfs] (WFS) standard.

Users of the WFS standard reported difficulties in using the OGC Filter Encoding standard for
filtering. This was partly due to the complexity of the language, and partly due to limits in its usage
within HTTP GET requests, in particular:

• The verboseness of the format limited the ability to fit filters in the practical maximum length of
a URL.

• URL encoding of the XML elements both reduced URL legibility and aggravated the verboseness
issues, with many characters represented as a 3 chars escape code.

This limited the ability to share data references as simple links.

The GeoServer project adopted, in 2007, a CQL_FILTER query parameter for both WFS GetFeature and
Web Map Service (WMS) GetMap:

• In WFS GetFeature, the parameter serves as an alternative to FILTER (which uses a different OGC
FE XML encoding according to the WFS version in use).

• In WMS GetMap, the parameter filters the map contents, allowing dynamic selection and
filtering, from the client, without requiring to setup again the whole map style (see also the SLD
and SLD_BODY parameters in OGC 05-078r4 [http://portal.opengeospatial.org/files/?artifact_id=22364]).

The following examples show a WFS 1.1 GetFeature request, returning features where the LAND_KM
property value is between 100000 and 150000. The first uses FE XML, while the second encodes the
filter in CQL instead:

Listing 1. WFS GetFeature with FE XML

http://host/wfs?request=GetFeature&version=1.1.0&typeName=topp:states&FILTER=%3CFilter
%20xmlns=%22http://www.opengis.net/ogc%22%3E%3CPropertyIsBetween%3E%3CPropertyName%3Et
opp:LAND_KM%3C/PropertyName%3E%3CLowerBoundary%3E%3CLiteral%3E100000%3C/Literal%3E%3C/
LowerBoundary%3E%3CUpperBoundary%3E%3CLiteral%3E150000%3C/Literal%3E%3C/UpperBoundary%
3E%3C/PropertyIsBetween%3E%3C/Filter%3E

Listing 2. WFS GetFeature with CQL

http://wfs?request=GetFeature&version=1.1.0&typeName=topp:states&CQL_FILTER=LAND_KM%20
BETWEEN%20100000%20AND%20150000

Eventually some limitations of the first CQL version became apparent, so in 2010 Extended CQL
[http://old.geotools.org/ECQL-Parser-Design_110493908.html] (ECQL) was created by the GeoTools and
GeoServer communities, to bring the language closer to the OGC Filter capabilities. In particular,
ECQL supports, in addition to CQL:

17

https://www.geoserver.org
https://www.opengeospatial.org/standards/wfs
http://portal.opengeospatial.org/files/?artifact_id=22364
http://old.geotools.org/ECQL-Parser-Design_110493908.html

• Free-form comparison expressions in terms of expression OP expression.

• FeatureId filters.

The CQL_FILTER parameter has supported both CQL and ECQL syntaxes since then.

A remaining significant limitation of (E)CQL, in GeoServer, is that it can only be used in a GET
request, and has no support in XML POST requests.

7.4. OGC Testbed 14
Participants in the Testbed 14 [https://www.opengeospatial.org/projects/initiatives/testbed14] Complex
Features Handling thread performed an extensive analysis of filtering languages [1]. Of particular
interest is the ER chapter on API building blocks for queries [https://docs.opengeospatial.org/per/18-

021.html#_api_building_blocks_for_queries].

That chapter contains an analysis of filtering languages following different approaches:

• Languages already available OGC standards, namely, OGC Filter Encoding and CQL.

• Emerging languages used by the Web Community, in particular, GraphQL [https://graphql.org/] and
Falcor [https://netflix.github.io/falcor/].

• Creating a new language that is simple to implement (more about this in the STAC and OGC API
sprint report below).

Notable observations from that work include:

• Due to being encoded in XML, OGC Filter Encoding is not considered a natural fit for JSON-first
services (though it remains a good option for implementations returning GML based application
schemas).

• Falcor is best suited for JSON only services, and needs to be extended to support spatial support
capabilities.

• GraphQL needs extensions to its spatial capabilities. GraphQL also depends on the presence of a
schema, which is not mandatory in OGC API - Features. Like CQL, GraphQL does not support
multi-valued properties.

CQL has been considered suitable for usage in future extensions of the OGC API - Features but, due
to its numerous limitations, but not without further work.

For CQL, the notion of a queryable was first used in combination with a data retrieving service. As
with CSW, a queryable is a property that can be queried, but it is not necessarily tied to the schema
of the dataset. A queryable could indeed be a visible property of the data. A queryable could also be
referring to a nested element via a simple name, or referring to a summary property, such as
AnyText, without the property actually being present in the result. The concept was further explored
in OGC Testbed 15, where a dedicated OGC API - Features extension was proposed.

7.5. OGC Testbed 15
Participants in the OGC Testbed 15 [https://www.opengeospatial.org/projects/initiatives/testbed15] Open

18

https://www.opengeospatial.org/projects/initiatives/testbed14
https://docs.opengeospatial.org/per/18-021.html#_api_building_blocks_for_queries
https://graphql.org/
https://netflix.github.io/falcor/
https://www.opengeospatial.org/projects/initiatives/testbed15

Portrayal thread investigated and prototyped a new Application Programming Interface (API) for
styles publishing, discovery and editing. Results of this activity are documented in the OGC Testbed-
15: Styles API Engineering Report [https://docs.opengeospatial.org/DRAFTS/19-010.html#rc_queryables].

When a client edits styles, knowing which attributes can be used for collection filtering is
important. This was handled by the queryables [https://docs.opengeospatial.org/DRAFTS/19-010.html#

rc_queryables] OGC API - Features extension draft. Queryables are normally a subset of all possible
attributes, and in general, may not even show up among the results of a items query. The returned
attributes are referred to as "presentables" or "returnables", instead.

Quoting the Testbed 15 ER, each collection exposes a list of Queryable objects, each characterized
by:

• id (required) - the property name for use in expressions.

• type (required) - the data type of the property, one of string, uri, enum, number, integer, date,
dateTime, boolean.

• description (optional) - a description of the property.

• required (optional) - indicator whether the property is always present in features.

• mediaTypes (optional) - in general, the representation of the queryables is meant to be
independent of the feature encoding. However, this is not always the case. For example, length
restrictions or namespace prefixes may result in different property identifiers for the same
property. To support this, the definition of a queryable may be restricted to one or more feature
encodings (media types).

• pattern (optional, only for "string" and "uri") - a regular expression to validate the values of the
property.

• values (required, only for "enum") - an array of valid values of the property.

• range (optional, only for "number", "integer", "date" and "dateTime") - the range of valid values
expressed as an array with two items. Open ranges can be expressed using null for the
minimum or maximum value.

As they provide a list of property names the filter can use, queryables are a natural fit for a filtering
extension.

7.6. STAC and OGC API Sprint, OGC API Filtering
extension
In November 2019 OGC organized the STAC and OGC API - Features and Catalogues Sprint
[https://www.opengeospatial.org/projects/initiatives/ogcapi-featu]. The sprint hosted numerous groups, one of
them focused on experimenting a possible "OGC API - Features - Part 3: Common Query Language"
extension.

The CQL language was considered first in conceptual terms, with a definition of the operators and
expressions that could be used in an encoding. Then, three possible encodings were prototyped:

• A text-based language, derived from the original CQL. The language is similar to the GeoServer
Extended CQL, in particular, it removes some of the original CQL limitations, allowing

19

https://docs.opengeospatial.org/DRAFTS/19-010.html#rc_queryables
https://docs.opengeospatial.org/DRAFTS/19-010.html#rc_queryables
https://docs.opengeospatial.org/DRAFTS/19-010.html#rc_queryables
https://www.opengeospatial.org/projects/initiatives/ogcapi-featu

comparisons between expressions.

• A JSON-based hierarchical objects language, meant to be a port to JSON of the OGC Filter
Encoding XML encoding.

• A JSON-based nested array language, that would read like a prefix notation, reminiscent of
Mapbox Styles Expressions [https://docs.mapbox.com/mapbox-gl-js/style-spec/expressions/].

The following table compares the various approaches:

Table 1. Comparison of CQL encodings friendliness

Text Hierarchical JSON Array based JSON

User Trivial to write by hand
and understand

Easier to handle for
those familiar with
OGC filter

Reads "backwards",
easier to handle for
those familiar with
Mapbox Styles
Expressions

Developer Requires writing a text
based parser based on
the BNF

JSON reads directly into
a parse-tree like
structure (based on
nested objects)

JSON reads directly into
a parse-tree like
structure (based on
nested arrays)

The following shows an example of filtering based on properties of a satellite image, and spatial
location, in the three encodings:

Table 2. Encoding examples

Language Example

Text
beamMode='ScanSAR Narrow' AND
swathDirection='ascending' AND
polarization='HH+VV+HV+VH' AND
intersects(geometry,POLYGON((-77.117938 38.936860,-77.040604
39.995648,-76.910536 38.892912,-77.039359 38.791753,-77.047906
38.841462,-77.034183 38.840655,-77.033142 38.857490)))

20

https://docs.mapbox.com/mapbox-gl-js/style-spec/expressions/

Language Example

Hierarchical json
{
 "and": [
 {
 "eq": {
 "property": "beamMode",
 "value": "ScanSAR Narrow"
 }
 },
 {
 "eq": {
 "property": "swathDirection",
 "value": "ascending"
 }
 },
 {
 "eq": {
 "property": "polarization",
 "value": "HH+VV+HV+VH"
 }
 },
 {
 "intersects": {
 "property": "footprint",
 "value": {
 "type": "Polygon",
 "coordinates": [
 [
 [-77.117938, 38.93686],
 [-77.040604, 39.995648],
 [-76.910536, 38.892912],
 [-77.039359, 38.791753],
 [-77.047906, 38.841462],
 [-77.034183, 38.840655],
 [-77.033142, 38.85749],
 [-77.117938, 38.93686]
]
]
 }
 }
 }
]
}

21

Language Example

Array based JSON
[
 "all",
 [
 "==",
 ["get", "beamMode"],
 "ScanSAR Narrow"
],
 [
 "==",
 ["get", "swathDirection"],
 "ascending"
],
 [
 "==",
 ["get", "polarization"],
 "HH+VV+HV+VH"
],
 [
 "intersects",
 ["geometry"],
 {
 "type": "Polygon",
 "coordinates": [
 [
 [-77.117938, 38.93686],
 [-77.040604, 39.995648],
 [-76.910536, 38.892912],
 [-77.039359, 38.791753],
 [-77.047906, 38.841462],
 [-77.034183, 38.840655],
 [-77.033142, 38.85749],
 [-77.117938, 38.93686]
]
]
 }
]
]

In addition to working with the filtering language, the sprint considered the cost of filter language
implementation, from the filtering operators point of view. The CQL model contains a rich set of
comparison, spatial, temporal and logic operators. Implementing the full set can be both expensive,
and depending on the application, perhaps un-necessary.

Based on the OGC Filter Encoding 2.0 specification, and the OGC APIs, two options were considered:

• Conformance classes for filters, identifying them in groups.

22

• Fine grained filter capabilities documents, listing the specific subset chosen by a server

The conformance classes approach allows a compact representation of the supported filters. This
is at the expense of fine grain tuning the supported operator set. Classes can be naturally derived
from the existing operator subdivision, that is, logical, comparison, spatial, and temporal. However,
in practical applications, subsets of operators tend to go across classes. For example, a minimal
subset covering basic filtering needs could include all comparisons and logical operators, along
with bbox and during basic spatial and temporal filtering. The uncommon and advanced operators
can be found within the spatial and temporal categories, but the common ones are found in all
categories.

On the other hand, the capabilities document allows for a tailored operator selection but at the
expense of listing all supported operators. Annex C contains an example of a full queryables
document, as prototyped in GeoServer during the code sprint.

Combining the best aspects of the two approaches above is also possible: declaring a conformance
class when all operators in it are supported, and explicitly enumerating the ones for incomplete
classes.

23

Chapter 8. Filter Conceptual Model and VTP2
testing considerations

8.1. Conceptual model
The following diagram provides a draft of the filter conceptual model, the elements and their
relationship to the other significant elements, available when using a filter in a service or
GeoPackage implementation.

Figure 2. Filter conceptual models

In particular, an implementation of the model refers to:

24

• A hierarchy of filter types and expression concepts, that can be used to compose a filter.

• A filter language, an encoding, typically textual, that expresses the filter.

• A collection or tile set, which is the target of the filtering.

The collection in turn exposes a set of queryables, property names and types that can be used to
build a filter, and to verify its formal correctness.

The filter refers to the common building blocks. In summary:

• Expressions, be they property references, literals, functions and arithmetic combinations
thereof.

• Filters, in particular, spatial ones, temporal, simple comparisons and logic combinations
thereof.

Refer to 09-026r2, OGC® Filter Encoding 2.0 Encoding Standard – With Corrigendum
[http://docs.opengeospatial.org/is/09-026r2/09-026r2.html] for a detailed definition of each expression and
filter.

8.2. The CQL language
The OGC API - Features Standards Working Group (SWG) is currently exploring a filtering extension
and are evaluating a number of possible encodings. Two encodings are currently being considered
for use in the filtering extension:

• An extended version of the OGC Catalogue Common Query Language [http://docs.opengeospatial.org/

is/12-168r6/12-168r6.html#14] (CQL).

• A JSON encoding of the filter conceptual model, based either on a hierarchical structure, similar
to the OGC Filter XML encoding, or an array based structure, similar to the Mapbox GL filter
expressions [https://docs.mapbox.com/help/glossary/filter/].

The JSON encoding is recognized to be most useful to express filters in a larger JSON document,
while the CQL based syntax is considered more useful for direct human entry and usage in URLs.

Within the limits of VTP2, the CQL language was chosen for prototyping purposes, as CQL is
currently better defined, and better supports the target usage within tile resource URLS.

The CQL language is a text-based language that reads like a SQL 'Where' clause expression, as it is
regarded as easy to read and to enter directly, without support by a user interface. On the other
hand, due to the text nature, CQL is more complex to handle software-wise, as a full parser needs to
be written to handle it. By comparison, the two JSON structures mentioned above, can be parsed
using a JSON parser, and would construct an object structure that is similar to a parse tree, ready
for use and evaluation.

Usage of CQL outside of the confines of Catalog Services has been pioneered [https://osgeo-

org.atlassian.net/browse/GEOS-727] by GeoServer [https://docs.geoserver.org/latest/en/user/filter/syntax.html#cql-

ecql] community. GeoServer is an open source project which began using an extended version of the
CQL language in both the WFS and WMS protocols:

25

http://docs.opengeospatial.org/is/09-026r2/09-026r2.html
http://docs.opengeospatial.org/is/12-168r6/12-168r6.html#14
https://docs.mapbox.com/help/glossary/filter/
https://docs.mapbox.com/help/glossary/filter/
https://osgeo-org.atlassian.net/browse/GEOS-727
https://docs.geoserver.org/latest/en/user/filter/syntax.html#cql-ecql

• In WFS, CQL can be used as an alternative to the XML filter encoding in GetFeature requests.

• In WMS, CQL can be used as a way to further filter map contents, in addition to the filtering
already performed by the Styled Layer Descriptor (SLD) styles.

In both cases the user can add a &CQL_FILTER=<filter expression> query parameter in the request,
and get back filtered results.

Compared to the Catalog CQL, the proposed filtering extension of OGC API - Features provided some
improvements:

• Some of the original restrictions have been lifted, making this approach as expressive as OGC
FE, and similar to the version adopted by GeoServer. For example, the original CQL did not
allow comparing two properties, but only a property with a literal.

• The BNF was updated to correctly validate, and can now be parsed by a machine.

A copy of the current BNF version can be found in Annex A [#CQL_BNF].

The following table shows a few examples of text CQL filters:

Filter meaning CQL encoding

Floors greater than 5 floors>5

Owner name contains 'Jones' owner LIKE '% Jones %'

More than 5 floors and a swimming pool floors>5 AND swimming_pool=true

A swimming pool and (more than five floors or
material is brick)

swimming_pool=true AND (floors > 5 OR
material LIKE 'brick%' OR material LIKE
'%brick')`

Updated between 7:30am June 10, 2017 and
10:30am June 11, 2017

updated DURING 2017-06-10T07:30:00 2017-06-
11T10:30:00

Geometry that intersects with geometry
POLYGON((-10.0 -10.0,10.0 -10.0,10.0 10.0,-
10.0 -10.0)) (as expressed in WKT)

INTERSECTS(geometry,POLYGON\((-10.0
-10.0,10.0 -10.0,10.0 10.0,-10.0 -10.0)))

Some considerations:

• The filter is normally human readable and quite similar to SQL.

• Geometries are expressed in the Well Known Text (WKT) syntax.

• Time literals are expressed in ISO format.

26

#CQL_BNF

Chapter 9. Filtering Tiles
This ER Section focuses on filtering tile contents and explains the final decisions and recommended
API changes needed to generate outputs that match the VTP2 objectives.

9.1. Vector Tiles Pilot 2 testing operator subset
The VTP2 implementations exercised the following subset of operators:

Table 3. VTP2 filter operator subset

Class Operators

Spatial BBOX, Contains, Within, Intersects, Disjoint

Temporal During, Before, After, TEquals

Comparison All

Logical All

Expression Property, Literal

The selection of the operators has been driven by the following principles:

• The set is simple enough to be implemented within the time frame of VTP2.

• The set is representative of the overall model filtering abilities.

9.2. Queryables
The list of valid properties, and their type, must be available for clients to build filters.

As indicated in Chapter 6, the Testbed 15 Styles’s Engineering Report extended the OGC API -
Features with a concept of Queryables, a resource enumerating all attributes available for filtering.

The VTP2 participants used the same extension to advertise collection queryables, both in the OGC
API - Features, and in the OGC API - Tiles (for those implementing a stand-alone Tile API, as opposed
to a tiles building block in the Features API).

9.3. Single and multi-layer tile filtering
The VTP2 participants considered two filtering cases:

• Filtering a tile from a single collection

• Filtering a multi-layer collection

The first use case, filtering a single layer tile, is well-supported by the existing work, in particular,
the OGC API - Features CQL extension, as well as the Queryables extension, with the following
workflow:

• The client inspects the queryables

27

• The client helps the user to build a filter reducing the features returned in tiles

• A request for tiles with the filter and filter-lang parameters is sent to the OGC API - Features
tiles extension, or to the stand-alone OGC API - Tiles, retrieving tiles with reduced content.

The second use case presents some extra complexities, in particular:

• Discovery of queryables for all the layers included in the tile must be possible.

• Providing multiple filters, one per collection, to the server must be possible.

Regarding queryables discovery, the issue is easily solved in an OGC API - Features providing
multi-layer tiles at the root level /tiles resource. In this case, the client can list the collections to be
retrieved, and thus, lookup the queryables on a collection by collection basis. A stand-alone Tiles
API poses a challenge, as collections are opaque and can contain anything, including having a single
collection delivering directly multi-layer tiles (see the GeoSolutions implementation in this regard).
The queryables document, as a flat list of attributes, is insufficient for this case, and should be
turned into a list of named layers, each having their own queryables.

The second issue, providing multiple filters, does not have a solution in the existing CQL
language. GeoServer Extended CQL [http://old.geotools.org/ECQL-Parser-Design_110493908.html] supports a
notion of "filter list", used to provide multiple filters in WMS GetMap requests. The grammar uses
the semicolon to separate filters, as the comma is already used in the IN operator.

SequenceOfSearchConditions> ::=
 <search condition>
 | <SequenceOfSearchConditions> ; <search condition>

Another possibility would be to repeat the "filter" and "filter-lang" parameters, one instance per
filtered collection, in the URL.

Regardless of the solution adopted, most base maps use a large number of layers, for example, an
openstreemap.org [https://openstreemap.org] like map typically uses over 20 layers. Trying to filter on
this would require placing over 20 filters in the request, quickly exhausting the practical length of a
URL.

For these reasons, with the exception of the Ecere Tiles API, the VTP2 participants limited filtering
to single layer collections, while filtering multi-layer collections with CQL is left as future exercise.

Ecere implemented support for compact multi-layer filtering expressions based on the selectors
and expressions syntax from the Cascading Map Style Sheets (CMSS) [http://docs.opengeospatial.org/per/

18-025.html#StylingModel] styling language (see Section 11.5).

28

http://old.geotools.org/ECQL-Parser-Design_110493908.html
https://openstreemap.org
http://docs.opengeospatial.org/per/18-025.html#StylingModel

Chapter 10. Filtering GeoPackages with
Vector Tiles
GeoPackage is built on the SQLite relational database. As a relational database, filtering of feature
data is easily done through conventional SQL querying. However, when the feature data is stored in
vector tiles, filtering is more complicated. Both formats used in VTP2 tiles (MVT and GeoJSON)
embed attribute information in the vector tiles. Keeping the attributes embedded in the vector tiles
undermines the capabilities of a GeoPackage-based architecture for the following reasons:

1. Since features may span multiple tiles, having the attribute information duplicated across each
tile containing a particular feature is redundant.

2. Queries against the embedded attributes are not possible without opening a number of
candidate tiles individually, an inefficient process.

3. There is no obvious way to identify the candidate tiles to open, beyond knowledge of the area of
interest of a particular query.

In response to these concerns, the participants proposed some alternatives for managing attributes.
Due to resource constraints, these approaches were only tested in a limited fashion.

10.1. Attributes in Attributes Tables
Through the Vector Tiles Attributes Extension (see the Summary ER), a GeoPackage may contain an
attributes table [https://www.geopackage.org/spec121/#attributes] for each vector tiles layer. Using this
approach provides two benefits:

• Features can be filtered via their attributes using conventional SQL queries.

• The attributes for a feature can be removed from the vector tiles, so that they are only stored in
the GeoPackage once.

Depending on the underlying architecture of the vector tiles server, this approach may impose
significant additional processing during GeoPackage creation. In some architectures, the vector
tiles are created in advance. In naive GeoPackage creation (ignoring filtering considerations), those
vector tiles can simply be copied directly into the GeoPackage. However, in this scenario the vector
tiles would have to be modified to remove the attributes. This would significantly increase the
processing time required to produce the GeoPackage. An architecture where vector tiles are
produced on-the-fly would not be subject to this performance impact.

10.2. Spatial Filtering
The approach described in the previous section provides significant benefits for scenarios where
features need to be filtered by their attributes and spatial extents. However, it is not possible or
practical to isolate which tiles to open to find the geometries for the features that satisfy a
particular query.

An R-tree spatial index, storing the overall extent of whole (untiled) features, can be used in
conjunction with the attributes table to handle arbitrarily large geospatial extents. Such an index

29

https://www.geopackage.org/spec121/#attributes

can speed up queries by focusing on the features present in a specific area, only performing more
costly attributes comparison for those features within the bounding box of a query. That same
stored extent can also be used to easily identify where specific features are located, e.g. to center
the view on a particular feature, potentially after having identified that feature by an attributes-
based query.

The GeoPackage Related Tables Extension [http://www.geopackage.org/guidance/extensions/

related_tables.html] can be used to establish a many-to-many mapping between features and the tiles
containing those features. Once this is done, the query can be performed to identify a result set
(based on feature IDs) and the mapping table can be queried to identify the tile or tiles that contain
the geometries for those features. In some scenarios, this will improve the performance of filtering
operations.

The following examples are practical queries performed on a GeoPackage produced by Ecere of the
Daraa / OpenStreetMap Topographic DataStore for the pilot, with vector data tiled according to the
World Mercator WGS84 Tile Matrix Set, and using the Attributes Table extension, the Tiles/Features
Mapping Table extension, as well as a 32-bit integer R-tree spatial index (storing the extent of
features as decimal degrees multiplied by a factor of 107, maintaining the same precision as
OpenStreetMap).

Querying features and attributes

In this first example query, the client does not care about either the detailed geometry or the tiles of
the features but does care about features within a specific geographic region. The client wishes to
list the GeoPackage feature IDs, as well as the values for four of the attribute fields (UFI, F_CODE,
FCSUBTYPE and ZI005_FNA) matching the following conditions:

• Features from the Daraa transportation lines (roads) layer

• Whose name ZI005_FNA is not No Information

• Which are at least partially located within a geographic bounding box whose lower-left and
upper-right corners are respectively (32.6083233°N, 32.6083233°E) and (32.6097047°N,
36.0987994°E).

An inner join is used between the attributes table and the R-tree spatial index, whose id fields
correspond.

select attributes_TransportationGroundCrv.id, UFI, F_CODE, FCSUBTYPE, ZI005_FNA
 from attributes_TransportationGroundCrv
 inner join rtree_attributes_TransportationGroundCrv_vector_tiles
 on attributes_TransportationGroundCrv.id =
rtree_attributes_TransportationGroundCrv_vector_tiles.id
 where ZI005_FNA != 'No Information' and
 maxLat > 326083233 and maxLon > 360899582 and
 minLat < 326097047 and minLon < 360987994;

Output (list of features):

id UFI F_CODE FCSUBTYPE ZI005_FNA

30

http://www.geopackage.org/guidance/extensions/related_tables.html

1442 36d6beb3-0a35-
4ec3-a2f6-
6b526ea1f659

AP030 100152 ندرألا عراش

3178 204af963-3d18-
402d-8cfe-
ff4195e992c7

AP030 100152 يديزلا عراش

Identifying tiles containing certain features

In this second example query, the client wishes to preserve the above conditions (only roads with
name information, within that same bounding box), but rather than retrieving the attributes
values, all the tiles (specifically of zoom level 16, in this case) containing those features should be
listed. Because this GeoPackage includes a Tiles / Features Mapping table, that table can be joined
with both the Attributes table (through its related_id) as well as with the Tiles table (through its
base_id). Note that the tiles returned by this query cover the entirety of the unclipped features
which happen to intersect the bounding box of interest — not only the tiles which themselves
intersect the bounding box.

select distinct tiles_Daraa2.id, zoom_level, tile_row, tile_column
 from mapping_table_TransportationGroundCrv
 inner join tiles_Daraa2
 on mapping_table_TransportationGroundCrv.base_id = tiles_Daraa2.id
 inner join attributes_TransportationGroundCrv
 on mapping_table_TransportationGroundCrv.related_id =
attributes_TransportationGroundCrv.id
 inner join rtree_attributes_TransportationGroundCrv_vector_tiles
 on attributes_TransportationGroundCrv.id =
rtree_attributes_TransportationGroundCrv_vector_tiles.id
 where ZI005_FNA != 'No Information'
 and maxLat > 326083233 and maxLon > 360899582
 and minLat < 326097047 and minLon < 360987994
 and zoom_level = 16;

Output (list of tiles):

id zoom_level tile_row tile_column

7962 16 26518 39339

8059 16 26519 39338

8060 16 26519 39339

8161 16 26520 39337

8162 16 26520 39338

8163 16 26520 39339

Identifying tiles without a mapping table

31

Even without a Tiles / Features Mapping table, a client could still easily determine a list of tiles from
the extent of the feature(s) as stored in the R-tree spatial index. For a large feature, often only the
tiles in view are of interest, in which case the client could also calculate the intersection of the
feature’s extent with the view’s extent to identify those tiles. It could then proceed to enumerate the
full list (complete box) of tiles within that extent, in a similar way to how the limits of a tile matrix
are calculated for a dataset’s extent. The advantage of the Mapping table is to altogether skip tiles in
which the features of interest may not be present at all, therefore avoiding to decode tiles not
containing these. This would most likely only benefit large features spread non-uniformly across a
vast geospatial extent, and come at the cost of additional storage, which should be taken into
consideration. The benefit would also not apply to scenarios where all tiles within a geographic
area of interest should be decoded anyways (e.g. the simple visualization use case).

In this third example query, it is assumed that a Tiles / Features Mapping table is not available, and
therefore the output of the query is an extent which will be programmatically converted to tile
coordinates.

select min(minLat), min(minLon), max(maxLat), max(maxLon)
 from attributes_TransportationGroundCrv
 inner join rtree_attributes_TransportationGroundCrv_vector_tiles
 on attributes_TransportationGroundCrv.id =
rtree_attributes_TransportationGroundCrv_vector_tiles.id
 where ZI005_FNA != 'No Information'
 and maxLat > 326083233 and maxLon > 360899582
 and minLat < 326097047 and minLon < 360987994;

Output (extent of the unclipped features):

min(minLat) min(minLon) max(maxLat) max(maxLon)

326079262 360884617 326191309 361000583

The extent returned in this case is larger and fully contains the extent of interest in the request.
Converting the geographic extent to WorldMercatorWGS84Quad level 16 tile coordinates gives
(26518, 39337)-(26520, 39339).

Here is the full list of tiles using those bounding tile coordinates, assuming the whole unclipped
features are desired:

select id, zoom_level, tile_row, tile_column
 from tiles_Daraa2
 where zoom_level = 16
 and tile_row >= 26518 and tile_row <= 26520
 and tile_column >= 39337 and tile_row <= 39339;

Output (list of tiles):

id zoom_level tile_row tile_column

32

7960 16 26518 39337

7961 16 26518 39338

7962 16 26518 39339

8058 16 26519 39337

8059 16 26519 39338

8060 16 26519 39339

8161 16 26520 39337

8162 16 26520 39338

8163 16 26520 39339

It can be seen that the Mapping table request in this scenario would save the client from decoding 3
out of 9 tiles (33%), which might be significant.

If the client is instead interested in the clipped portion rather than the unclipped features (i.e. only
the tiles which themselves intersect the bounding box of interest), then the intersection of the
returned extent with the requested extent should be used. This might have justified avoiding the
query altogether and directly converting the area of interest to a list of tiles, depending on the
circumstances. Converting this intersected extent (which here is the same as the original requested
bounding box) to WorldMercatorWGS84Quad level 16 tile coordinates gives (26520, 39337)-(26520,
39339).

The full list of tiles for the portion of the features of interest intersecting the area of interest is:

select id, zoom_level, tile_row, tile_column
 from tiles_Daraa2
 where zoom_level = 16
 and tile_row >= 26520 and tile_row <= 26520
 and tile_column >= 39337 and tile_row <= 39339;

Output (list of tiles):

id zoom_level tile_row tile_column

8161 16 26520 39337

8162 16 26520 39338

8163 16 26520 39339

In this case, only 3 tiles are needed, and a query using the Mapping table does not eliminate any tile
from the full box of tiles covered by the extent, since all tiles of the bounding box contain those
features (no saving).

33

Chapter 11. Implementations
Each component provides filtering abilities, available both on the client and server side. This
chapter includes salient implementation notes, descriptions and demonstrations, as well as
relevant feedback from each deliverable.

11.1. GeoSolutions D100 OGC API - Features
GeoSolutions worked on extending their implementation of the OGC API - Features standard to
match the requirements of the VTP2 initiative. Specifically, the following changes were
implemented to support filtering and tiles:

• Exposed GeoServer (E)CQL filtering capabilities as an implementation of the current OGC API
Features CQL extension [https://github.com/opengeospatial/ogcapi-features/tree/master/extensions/cql]
draft, along with queryables support.

• Implemented the draft OGC API - Tiles building blocks as part of the OGC API - Features, and
added filtering support in the same way as the OGC API - Features extensions.

The CQL filtering support has been added directly into the "gs-ogcapi-features" GeoServer plugin,
while the tiles building block has been implemented as new plugin, "gs-ogciapi-tiled-features",
which can be added on top of the base "gs-ogcapi-features" one.

When the Tiled Features plugin is added, the landing page of the service reports the tile matrix set
endpoint, as well as advertising tiling resources in the API definition. The following figures show
the GeoServer OGC API - Features landing page and API, both extended with new elements from the
OGC API - Tile building blocks.

Figure 3. The landing page of the OGC API - Features allows access to the tile matrix sets.

34

https://github.com/opengeospatial/ogcapi-features/tree/master/extensions/cql
https://github.com/opengeospatial/ogcapi-features/tree/master/extensions/cql

Figure 4. The OGC API - Features advertises tile matrix set and data tile access.

Tiles are provided in any vector format supported by the internal machinery. During VTP2 that
meant MVT, GeoJSON and TopoJSON, new formats can be added as desired through a plug-in
programming interface.

Queryables support has been added in all collections. The following is an excerpt from the
queryables of the syria_vtp:building_s collection (only a few attributes are shown to keep the
example short):

http://vtp2.geo-solutions.it/geoserver/ogc/features/collections/vtp:TransportationGroundCrv/
queryables?f=json

{
 "queryables": [
 {
 "id": "AOO",
 "type": "number"
 },
 {
 "id": "ARA",

35

http://vtp2.geo-solutions.it/geoserver/ogc/features/collections/vtp:TransportationGroundCrv/queryables?f=json
http://vtp2.geo-solutions.it/geoserver/ogc/features/collections/vtp:TransportationGroundCrv/queryables?f=json

 "type": "number"
 },
 {
 "id": "BEN",
 "type": "string"
 },
 {
 "id": "CAA",
 "type": "integer"
 },
 {
 "id": "CCN",
 "type": "string"
 },
 {
 "id": "geom",
 "type": "geometry"
 }
],
 "links": [
 {
 "href": "http://vtp2.geo-
solutions.it/geoserver/ogc/features/collections/vtp%3ATransportationGroundCrv?f=applic
ation%2Fx-yaml",
 "rel": "alternate",
 "type": "application/x-yaml",
 "title": "This document as application/x-yaml"
 },
 {
 "href": "http://vtp2.geo-
solutions.it/geoserver/ogc/features/collections/vtp%3ATransportationGroundCrv?f=applic
ation%2Fjson",
 "rel": "self",
 "type": "application/json",
 "title": "This document"
 },
 {
 "href": "http://vtp2.geo-
solutions.it/geoserver/ogc/features/collections/vtp%3ATransportationGroundCrv?f=text%2
Fhtml",
 "rel": "alternate",
 "type": "text/html",
 "title": "This document as text/html"
 }
]
}

Support for the filter and filter-lang query parameters has been added both to the items and the
tiles resources.

An example of a filtered items request follows:

36

https://vtp2.geo-solutions.it/geoserver/ogc/features/collections/vtp:TransportationGroundCrv/items?
f=json&
filter=(%22RIN_ROI%22%20%3D%20%273%27)%20AND%20(BBOX(geom,36.140,32.595,36.142,32.65
8))&filter-lang=cql-text

The same example above, reformatted and URL decoded for readability, can be split into:

• https://vtp2.geo-solutions.it/geoserver/ogc/features (service base)

• collections/vtp:TransportationGroundCrv/items? (items access)

• f=application/vnd.mapbox-vector-tile (requests to return Mapbox Vector Tile format)

• filter=("RIN_ROI" = '3') AND (BBOX(geom,36.140,32.595,36.142,32.658)) (the filter)

• filter-lang=cql-text (filter language is CQL)

An example of a single collection filtered tiles request follows:

https://vtp2.geo-solutions.it/geoserver/ogc/features/collections/vtp:TransportationGroundCrv/tiles/
WebMercatorQuad/14/6618/9833?f=application/vnd.mapbox-vector-tile&
filter=(%22RIN_ROI%22%20=%20%273%27)&filter-lang=cql-text

The same example above, reformatted and URL decoded for readability, can be split into:

• https://vtp2.geo-solutions.it/geoserver/ogc/features (service base)

• collections/vtp:TransportationGroundCrv/tiles/WebMercatorQuad/14/6618/9833? (tile access)

• f=application/vnd.mapbox-vector-tile (requests to return mapbox vector tiles)

• filter=("RIN_ROI" = '3') (the filter)

• filter-lang=cql-text (filter language is CQL)

Regarding caching, it is worth noting that a layer needs to have a caching configuration in order to
expose tiled access, as tiling is internally managed by GeoWebCache. It is however not required to
make filtered tiles cacheable, if not enabled, then the filtered tiles are computed on-the-fly. If
enabled, internal GeoWebCache is going to treat the filter as a "CQL_FITLER" query parameter, to
make caches reusable across services. Mapbox vector tiles are indeed already provided as part of
the WMTS and WMS services.

In particular, MVT tiles construction is driven by styles, using filters and scale dependencies to
decide which features to include at a given zoom level. As a general rule, anything that needs styles
to be generated is treated as a WMS output format, and is then exposed into WMTS via
GeoWebCache tiling and caching engine.

Various filtering visual examples are available in the GeoSolutions D104 client section.

11.2. Terranodo D100 OGC API - Tiles
The open source tegola [https://tegola.io] software implemented the OGC API - Features CQL extension
draft, along with collection level queryables support.

37

https://vtp2.geo-solutions.it/geoserver/ogc/features/collections/vtp:TransportationGroundCrv/items?f=json&filter=(%22RIN_ROI%22%20%3D%20%273%27)%20AND%20(BBOX(geom,36.140,32.595,36.142,32.658))&filter-lang=cql-text
https://vtp2.geo-solutions.it/geoserver/ogc/features/collections/vtp:TransportationGroundCrv/items?f=json&filter=(%22RIN_ROI%22%20%3D%20%273%27)%20AND%20(BBOX(geom,36.140,32.595,36.142,32.658))&filter-lang=cql-text
https://vtp2.geo-solutions.it/geoserver/ogc/features/collections/vtp:TransportationGroundCrv/items?f=json&filter=(%22RIN_ROI%22%20%3D%20%273%27)%20AND%20(BBOX(geom,36.140,32.595,36.142,32.658))&filter-lang=cql-text
https://vtp2.geo-solutions.it/geoserver/ogc/features/collections/vtp:TransportationGroundCrv/items?f=json&filter=(%22RIN_ROI%22%20%3D%20%273%27)%20AND%20(BBOX(geom,36.140,32.595,36.142,32.658))&filter-lang=cql-text
https://vtp2.geo-solutions.it/geoserver/ogc/features/collections/vtp:TransportationGroundCrv/tiles/WebMercatorQuad/14/6618/9833?f=application/vnd.mapbox-vector-tile&filter=(%22RIN_ROI%22%20=%20%273%27)&filter-lang=cql-text
https://vtp2.geo-solutions.it/geoserver/ogc/features/collections/vtp:TransportationGroundCrv/tiles/WebMercatorQuad/14/6618/9833?f=application/vnd.mapbox-vector-tile&filter=(%22RIN_ROI%22%20=%20%273%27)&filter-lang=cql-text
https://vtp2.geo-solutions.it/geoserver/ogc/features/collections/vtp:TransportationGroundCrv/tiles/WebMercatorQuad/14/6618/9833?f=application/vnd.mapbox-vector-tile&filter=(%22RIN_ROI%22%20=%20%273%27)&filter-lang=cql-text
https://tegola.io

11.2.1. CQL

CQL was implemented in tegola with the following functionality:

• CQL filters supported via the filter= parameter.

• CQL text support was added. CQL JSON was planned for a future implementation.

11.2.2. Sample Requests

Spatial Predicates example requests, CQL filter first, followed by a full URL-encoded API request:

INTERSECTS(geometry,POLYGON((36.0710334777832 32.59845703812064, 36.13574981689453
32.59845703812064, 36.13574981689453 32.633592568907005, 36.0710334777832
32.633592568907005, 36.0710334777832 32.59845703812064)))`

https://ogc-vtp.gospatial.org/maps/WebMercatorQuad/transport_lines/13/4917/3309.pbf?
filter=(INTERSECTS(geometry%2CPOLYGON36.0710334777832%2032.59845703812064%2C%2036.13
574981689453%2032.59845703812064%2C%2036.13574981689453%2032.633592568907005%2C%20
36.0710334777832%2032.633592568907005%2C%2036.0710334777832%2032.59845703812064))&filt
er-lang=cql-text

WITHIN(geometry,POLYGON((36.0710334777832 32.59845703812064, 36.13574981689453
32.59845703812064, 36.13574981689453 32.633592568907005, 36.0710334777832
32.633592568907005, 36.0710334777832 32.59845703812064)))

https://ogc-vtp.gospatial.org/maps/WebMercatorQuad/transport_lines/13/4917/3309.pbf?
filter=(WITHIN(geometry%2CPOLYGON36.0710334777832%2032.59845703812064%2C%2036.135749
81689453%2032.59845703812064%2C%2036.13574981689453%2032.633592568907005%2C%2036.07
10334777832%2032.633592568907005%2C%2036.0710334777832%2032.59845703812064))&filter-
lang=cql-text

DISJOINT(geometry,POLYGON((34.73876953125 34.53823752729575, 37.825927734375
31.835565983656224, 38.72680664062501 34.06631196472105, 34.73876953125
34.53823752729575)))

https://ogc-vtp.gospatial.org/maps/WebMercatorQuad/transport_lines/7/78/50.pbf?
filter=(DISJOINT(geometry%2CPOLYGON34.73876953125%2034.53823752729575%2C%2037.8259277
34375%2031.835565983656224%2C%2038.72680664062501%2034.06631196472105%2C%2034.73876
953125%2034.53823752729575))&filter-lang=cql-text

Non spatial predicates examples, CQL filter first, followed by a full URL-encoded API request:

38

https://ogc-vtp.gospatial.org/maps/WebMercatorQuad/transport_lines/13/4917/3309.pbf?filter=(INTERSECTS(geometry%2CPOLYGON
https://ogc-vtp.gospatial.org/maps/WebMercatorQuad/transport_lines/13/4917/3309.pbf?filter=(INTERSECTS(geometry%2CPOLYGON
https://ogc-vtp.gospatial.org/maps/WebMercatorQuad/transport_lines/13/4917/3309.pbf?filter=(WITHIN(geometry%2CPOLYGON
https://ogc-vtp.gospatial.org/maps/WebMercatorQuad/transport_lines/13/4917/3309.pbf?filter=(WITHIN(geometry%2CPOLYGON
https://ogc-vtp.gospatial.org/maps/WebMercatorQuad/transport_lines/7/78/50.pbf?filter=(DISJOINT(geometry%2CPOLYGON
https://ogc-vtp.gospatial.org/maps/WebMercatorQuad/transport_lines/7/78/50.pbf?filter=(DISJOINT(geometry%2CPOLYGON

class=’landuse’

https://ogc-vtp.gospatial.org/maps/WebMercatorQuad/landuse_areas/13/4914/3309.pbf?filter=
class%3D%27landuse%27&filter-lang=cql-text

class like '%land%T'

https://ogc-vtp.gospatial.org/maps/WebMercatorQuad/landuse_areas/13/4914/3310.pbf?filter=
class%20LIKE%20%27%25land%25%27&filter-lang=cql-text

Temporal predicates examples:

BEFORE 2020-03-03`

https://ogc-vtp.gospatial.org/maps/WebMercatorQuad/syria_acled/12/2461/1655.pbf?
filter=event_date%20BEFORE%202020-03-03

AFTER 2016-03-03

https://ogc-vtp.gospatial.org/maps/WebMercatorQuad/syria_acled/12/2461/1655.pbf?
filter=event_date%20AFTER%202016-03-03

Logical Operators examples:

INTERSECTS(geometry,POLYGON((35.9 32.7,36 32.7,36 32.8,35.9 32.8,35.9 32.7))) AND
class='swamp'

https://ogc-vtp.gospatial.org/maps/WebMercatorQuad/landuse_areas/12/2457/1654.pbf?
filter=INTERSECTS(geometry%2CPOLYGON35.9%2032.7%2C36%2032.7%2C36%2.8%2C35.9%2032.7)
%20AND%20class%3D%27swamp%27

INTERSECTS(geometry,POLYGON((35.9 32.7,36 32.7,36 32.8,35.9 32.8,35.9 32.7))) OR
class='swamp'

https://ogc-vtp.gospatial.org/maps/WebMercatorQuad/landuse_areas/12/2457/1654.pbf?
filter=INTERSECTS(geometry%2CPOLYGON35.9%2032.7%2C36%2032.7%2C36%2.8%2C35.9%2032.7)
%20OR%20class%3D%27swamp%27

39

https://ogc-vtp.gospatial.org/maps/WebMercatorQuad/landuse_areas/13/4914/3309.pbf?filter=
https://ogc-vtp.gospatial.org/maps/WebMercatorQuad/landuse_areas/13/4914/3310.pbf?filter=
https://ogc-vtp.gospatial.org/maps/WebMercatorQuad/syria_acled/12/2461/1655.pbf?filter=event_date%20BEFORE%202020-03-03
https://ogc-vtp.gospatial.org/maps/WebMercatorQuad/syria_acled/12/2461/1655.pbf?filter=event_date%20BEFORE%202020-03-03
https://ogc-vtp.gospatial.org/maps/WebMercatorQuad/syria_acled/12/2461/1655.pbf?filter=event_date%20AFTER%202016-03-03
https://ogc-vtp.gospatial.org/maps/WebMercatorQuad/syria_acled/12/2461/1655.pbf?filter=event_date%20AFTER%202016-03-03
https://ogc-vtp.gospatial.org/maps/WebMercatorQuad/landuse_areas/12/2457/1654.pbf?filter=INTERSECTS(geometry%2CPOLYGON
https://ogc-vtp.gospatial.org/maps/WebMercatorQuad/landuse_areas/12/2457/1654.pbf?filter=INTERSECTS(geometry%2CPOLYGON
https://ogc-vtp.gospatial.org/maps/WebMercatorQuad/landuse_areas/12/2457/1654.pbf?filter=INTERSECTS(geometry%2CPOLYGON
https://ogc-vtp.gospatial.org/maps/WebMercatorQuad/landuse_areas/12/2457/1654.pbf?filter=INTERSECTS(geometry%2CPOLYGON

11.2.3. Queryables

The following resource encodes queryables as a JSON document:

https://ogc-vtp.gospatial.org/ogc-api-tiles/collections/syria_acled/queryables

{
 "queryables": [
 {
 "id": "wkb_geometry",
 "type": "geometry"
 },
 {
 "id": "event_id_no_cnty",
 "type": "string"
 },
 {
 "id": "event_date",
 "type": "date"
 },
 {
 "id": "sub_event_type",
 "type": "string"
 },
 {
 "id": "actor2",
 "type": "string"
 },
 {
 "id": "ogc_fid",
 "type": ""
 },
 {
 "id": "data_id",
 "type": "string"
 },
 {
 "id": "event_type",
 "type": "string"
 },
 {
 "id": "region",
 "type": "string"
 },
 {
 "id": "notes",
 "type": "string"
 },
 {
 "id": "interaction",
 "type": "string"

40

https://ogc-vtp.gospatial.org/ogc-api-tiles/collections/syria_acled/queryables

 },
 {
 "id": "source",
 "type": "string"
 },
 {
 "id": "admin3",
 "type": "string"
 },
 {
 "id": "location",
 "type": "string"
 },
 {
 "id": "event_id_cnty",
 "type": "string"
 },
 {
 "id": "actor1",
 "type": "string"
 },
 {
 "id": "country",
 "type": "string"
 },
 {
 "id": "admin1",
 "type": "string"
 },
 {
 "id": "admin2",
 "type": "string"
 }
]
}

11.3. interactive instruments D101 Features, Tiles and
Styles API

11.3.1. The starting point

At the beginning of the OGC Vector Tiles Pilot Phase 2 initiative, the open-source tool ldproxy
[https://github.com/interactive-instruments/ldproxy] implemented the following capabilities that were the
basis for the work in the pilot:

• OGC API - Features - Part 1: Core: The following conformance classes were used in the pilot:
Core, HTML, GeoJSON, OpenAPI 3.0. ldproxy was the first OGC Reference Implementation for
the standard.

41

https://github.com/interactive-instruments/ldproxy

• OGC API - Features - Part 2: Coordinate Reference Systems by Reference: The latest draft (the
public review started during the pilot).

• OGC API - Tiles: The following conformance classes of the latest draft were used in the pilot:
Core, Tile Matrix Set, Tiles from more than one collection. Mapbox Vector Tiles and GeoJSON
tiles were supported.

• OGC API - Styles: The following conformance classes of the latest draft were used in the pilot:
Core, Resources, HTML, Mapbox Styles, Style Info, Queryables.

• A query parameter "properties" on all tile and feature resources to return only the selected
properties in the response.

For the demonstration server, a test dataset with data from OpenStreetMap from the region of
Daraa, Syria, converted to the Topographic Data Store (TDS) schema of NGA was used.

The following screenshots of the HTML view of the API resources illustrate the starting point for the
work in the pilot. The HTML view is a rendering of the JSON content that was also available for
each resource.

Figure 5. interactive instruments - the landing page of the API

42

Figure 6. interactive instruments - the collections (feature types) in the dataset

For filtering, knowledge about the available properties for use in filter predicates is important.
These were published as a separate resource for each collection, in the following screenshot for the
Transportation (Ground) features with a line string geometry.

Figure 7. interactive instruments - queryable properties for the Transportation (Ground) features with line
string geometry

To illustrate the data, here is a screenshot of a road feature:

43

Figure 8. interactive instruments - a road feature

The following code snippet is the same feature in GeoJSON (coordinates have been truncated):

44

Listing 3. interactive instruments - a road feature in GeoJSON

{
 "type":"Feature",
 "links":[
 {
 "href":"https://services.interactive-
instruments.de/t15/daraa/collections/TransportationGroundCrv/items/34?f=json",
 "rel":"self",
 "type":"application/geo+json",
 "title":"This document"
 },
 {
 "href":"https://services.interactive-
instruments.de/t15/daraa/collections/TransportationGroundCrv/items/34?f=html",
 "rel":"alternate",
 "type":"text/html",
 "title":"This document as HTML"
 },
 {
 "href":"https://services.interactive-
instruments.de/t15/daraa/collections/TransportationGroundCrv?f=json",
 "rel":"collection",
 "type":"application/json",
 "title":"The collection the feature belongs to"
 }
],
 "id":"34",
 "geometry":{
 "type":"MultiLineString",
 "coordinates":[...]
 },
 "properties":{
 "F_CODE":"AP030",
 "ZI001_SDV":"2014-09-13T18:57:11Z",
 "ZI005_FNA":"No Information",
 "RTY":2,
 "RIN_ROI":3,
 "UFI":"86c0f5fe-4abd-4e0e-970a-feaf7e0ab314",
 "FCSUBTYPE":100152,
 "ZI006_MEM":"No Information",
 "ZI001_SDP":"No Information",
 "ZI016_WTC":1,
 "RIN_RTN":"No Information",
 "RLE":-999999,
 "LOC":-999999
 }
}

All features were also available as vector tiles, both for each individual collection and a single

45

multi-layer tile set. The screenshot below shows the vector tiles of the Transportation (Ground)
features in an OpenLayers map.

Figure 9. interactive instruments - Mapbox Vector Tiles for the Transportation (Ground) features in
OpenLayers

11.3.2. Support for filters

Support for CQL filters was implemented in ldproxy and support for the query parameters filter
and filter-lang was added to the following resources:

• /collections/{collectionId}/items - to filter the features resources

• /collections/{collectionId}/tiles - to filter the features in the vector tiles of a collection

• /tiles - to filter the features in the multi-collection vector tiles

Both representations of CQL expressions were supported (cql-text for text, cql-json for
hierarchical JSON).

Most of the CQL grammar was implemented, with a few limitations:

• only the temporal operators specified in Filtering Tiles;

• no existence operators, since their semantics is not well-defined (see Chapter 12);

• no arithmetic expressions (add, subtract, multiply, divide).

Some examples for filters:

Fetch the agricultural area that contains a point

CQL:
CONTAINS(geometry,POINT(36.3544 32.4675))`

46

Features: Request Link [https://services.interactive-instruments.de/t15/daraa/collections/AgricultureSrf/

items?filter=CONTAINS(geometry%2CPOINT(36.3544%2032.4675))]

Fetch all other agricultural areas (not containing the point)

CQL:
DISJOINT(geometry,POINT(36.3544 32.4675))`

Features: Request Link [https://services.interactive-instruments.de/t15/daraa/collections/AgricultureSrf/

items?filter=DISJOINT(geometry%2CPOINT(36.3544%2032.4675))]

Fetch the agricultural areas in a polygon/bbox

CQL:
INTERSECTS(geometry,POLYGON((35.9 32.7,36 32.7,36 32.8,35.9 32.8,35.9
32.7)))`

47

https://services.interactive-instruments.de/t15/daraa/collections/AgricultureSrf/items?filter=CONTAINS(geometry%2CPOINT(36.3544%2032.4675))
https://services.interactive-instruments.de/t15/daraa/collections/AgricultureSrf/items?filter=DISJOINT(geometry%2CPOINT(36.3544%2032.4675))

Features: link:https://services.interactive-
instruments.de/t15/daraa/collections/AgricultureSrf/items?limit=100&filter=INTERS
ECTS(geometry%2CPOLYGON35.9%2032.7%2C36%2032.7%2C36%2032.8%2C35.9%2
032.8%2C35.9%2032.7)[Request Link]

48

Tile: link:https://services.interactive-
instruments.de/t15/daraa/collections/AgricultureSrf/tiles/WebMercatorQuad/10/413/
614?f=mvt&filter=INTERSECTS(geometry%2CPOLYGON35.9%2032.7%2C36%2032.7%
2C36%2032.8%2C35.9%2032.8%2C35.9%2032.7)[Request Link]

Fetch all the other agricultural areas

CQL:
DISJOINT(geometry,POLYGON((35.9 32.7,36 32.7,36 32.8,35.9 32.8,35.9
32.7)))`

49

Tile: link:https://services.interactive-
instruments.de/t15/daraa/collections/AgricultureSrf/tiles/WebMercatorQuad/10/413/
614?f=mvt&filter=DISJOINT(geometry%2CPOLYGON35.9%2032.7%2C36%2032.7%2C
36%2032.8%2C35.9%2032.8%2C35.9%2032.7)[Request Link]

Fetch the major roads in the eastern part of the city that were updated since 2013; only
return selected attributes

CQL:
INTERSECTS(geometry,POLYGON((36.1 32.6,36.15 32.6,36.15 32.65,36.1
32.65,36.1 32.6))) AND F_CODE='AP030' AND RIN_ROI<4 AND ZI001_SDV AFTER
2013-01-01

50

Features: link:https://services.interactive-
instruments.de/t15/daraa/collections/TransportationGroundCrv/items?limit=100&pr
operties=ZI005_FNA,ZI001_SDV,RIN_ROI,RTY&filter=INTERSECTS(geometry%2CPOL
YGON36.1%2032.6%2C36.15%2032.6%2C36.15%2032.65%2C36.1%2032.65%2C36.1%
2032.6)%20AND%20F_CODE%3D%27AP030%27%20AND%20RIN_ROI%3C4%20AND
%20ZI001_SDV%20AFTER%202013-01-01[Request Link]

51

Tile: link:https://services.interactive-
instruments.de/t15/daraa/collections/TransportationGroundCrv/tiles/WebMercatorQ
uad/11/827/1229?f=mvt&properties=ZI005_FNA,ZI001_SDV,RIN_ROI,RTY&filter=INTE
RSECTS(geometry%2CPOLYGON36.1%2032.6%2C36.15%2032.6%2C36.15%2032.65%2
C36.1%2032.65%2C36.1%2032.6)%20AND%20F_CODE%3D%27AP030%27%20AND%
20RIN_ROI%3C4%20AND%20ZI001_SDV%20AFTER%202013-01-01[Request Link]

Fetch the local roads in the eastern part of the city that were updated during 2011 or 2012;
only return selected attributes

CQL:
INTERSECTS(geometry,POLYGON((36.1 32.6,36.15 32.6,36.15 32.65,36.1
32.65,36.1 32.6))) AND F_CODE='AP030' AND RIN_ROI<4 AND ZI001_SDV AFTER
2013-01-01

Features: link:https://services.interactive-
instruments.de/t15/daraa/collections/TransportationGroundCrv/items?limit=200&pr
operties=ZI005_FNA,ZI001_SDV,RIN_ROI,RTY&filter=INTERSECTS(geometry%2CPOL
YGON36.1%2032.6%2C36.15%2032.6%2C36.15%2032.65%2C36.1%2032.65%2C36.1%
2032.6)%20AND%20F_CODE%3D%27AP030%27%20AND%20RIN_ROI%3D5%20AND
%20ZI001_SDV%20DURING%202011-01-01/2013-01-01[Request Link]

52

Tile: link:https://services.interactive-
instruments.de/t15/daraa/collections/TransportationGroundCrv/tiles/WebMercatorQ
uad/11/827/1229?f=mvt&properties=ZI005_FNA,ZI001_SDV,RIN_ROI,RTY&filter=INTE
RSECTS(geometry%2CPOLYGON36.1%2032.6%2C36.15%2032.6%2C36.15%2032.65%2
C36.1%2032.65%2C36.1%2032.6)%20AND%20F_CODE%3D%27AP030%27%20AND%
20RIN_ROI%3D5%20AND%20ZI001_SDV%20DURING%202011-01-01/2013-01-
01[Request Link]

Fetch the ground transportation features last updated on 12/31/2011 at 11:45:18 UTC

CQL:
ZI001_SDV TEQUALS 2011-12-31T11:45:18Z

53

Features: Request Link [https://services.interactive-instruments.de/t15/daraa/collections/

TransportationGroundCrv/items?filter=ZI001_SDV+TEQUALS+2011-12-31T11:45:18Z]

In a filter on a multi-layer vector tile ldproxy applied the filter on each collection. This implied that
the list of collections in the tile has to be restricted to a small set with shared queryables. Otherwise
an error was returned since the predicate could not be evaluated for all layers/collections. This is
discussed in more detail in Chapter 12.

Fetch a multi-layer tile with Transportation (Ground) curves and Agricultural surfaces
updated since 06/05/2012

CQL:
ZI001_SDV AFTER 2012-06-05

54

https://services.interactive-instruments.de/t15/daraa/collections/TransportationGroundCrv/items?filter=ZI001_SDV+TEQUALS+2011-12-31T11:45:18Z

Tile: Request Link [https://services.interactive-instruments.de/t15/daraa/tiles/WebMercatorQuad/13/
3310/4918?f=mvt&filter=ZI001_SDV+AFTER+2012-06-05&

collections=TransportationGroundCrv,AgricultureSrf]

All the examples above used CQL in the Text variant. The following is a JSON example:

Fetch all Transportation (Ground) curves and Agricultural surfaces updated since 06/05/2012

CQL:
{"after":{"property":"ZI001_SDV","value":"2015-09-01"}}`

55

https://services.interactive-instruments.de/t15/daraa/tiles/WebMercatorQuad/13/3310/4918?f=mvt&filter=ZI001_SDV+AFTER+2012-06-05&collections=TransportationGroundCrv,AgricultureSrf

Features: Request Link [https://services.interactive-instruments.de/t15/daraa/collections/
TransportationGroundCrv/items?filter-lang=cql-json&
filter=%7B%22after%22%3A%7B%22property%22%3A%22ZI001_SDV%22%2C%22value%22%3A%

222015-09-01%22%7D%7D]

The API was also tested with the GeoSolutions client, where various filters were applied on the
vector tiles of the Transportation (Ground) curves. The following are two screenshots of sample
filters:

Figure 10. Filtering Transportation (Ground) curves using the GeoSolutions client (example 1)

56

https://services.interactive-instruments.de/t15/daraa/collections/TransportationGroundCrv/items?filter-lang=cql-json&filter=%7B%22after%22%3A%7B%22property%22%3A%22ZI001_SDV%22%2C%22value%22%3A%222015-09-01%22%7D%7D

Figure 11. Filtering Transportation (Ground) curves using the GeoSolutions client (example 2)

11.4. GeoSolutions D102 OGC API - Tiles
GeoSolutions worked on a filtering extension for the existing GeoServer OGC API - Tiles. During the
VTP2 activity, the implementations of OGC API - Tiles have been extended to advertise queryables
for vector collections, as shown in the following screenshot.

Figure 12. API has been extended with Queryables concept. The collectionId parameter lists only the names
of collections actually exposing queryables.

57

Figure 13. HTML representation for single layer vector collection, with links to the queryables, as well as
map and data tiles.

Figure 14. HTML representation for the above layer queryeables (excerpt, the layer in question has 73
queryables).

Then, the "data tiles" endpoint has been extended to allow filtering by means of the filter and
filter-lang parameters (the map tiles resource has been extended as well, but it’s out of scope for
VTP2).

At the time of writing, the only allowed value for filter-lang is cql-text.

58

Figure 15. HTML representation for the above layer queryeables (excerpt, the layer in question has 73
queryables).

The implementation of cql-text is based on GeoServer Extended CQL [https://github.com/geotools/

geotools/blob/master/modules/library/cql/ECQL.md], providing a full set of filtering operators, as well as a
comprehensive list of filter [https://docs.geoserver.org/stable/en/user/filter/function_reference.html] functions
covering basic math, string and date handling, as well as geometry manipulation.

A sample filtered tile request follows, reformatted and URL decoded for readability:

• https://vtp2.geo-solutions.it/geoserver/ogc/tiles/ (service base)

• collections/vtp:TransportationGroundCrv/tiles/WebMercatorQuad/14/6618/9833? (single tile
access)

• filter=(RIN_ROI = '3') (the filter)

• filter-lang=cql-text (filter language is CQL)

Various tile filtering visual examples are available in the GeoSolutions D104 client section.

59

https://github.com/geotools/geotools/blob/master/modules/library/cql/ECQL.md
https://docs.geoserver.org/stable/en/user/filter/function_reference.html

11.5. Ecere D103 Features & OGC API - Tiles
Ecere developed capabilities for server-side filtering in its GNOSIS Map Server, and exposed it in
both the OGC API - Features and OGC API - Tiles implementations. The implementation included
support for comparison of attribute values, geometry intersection with a bounding box, as well as
logical and arithmetic operations. The current implementation supports expressions as defined in
CMSS, the native styling language of GNOSIS tools. Support is planned for the CQL filtering
language, but a parser for it could not be implemented during the pilot. Filtering CMSS was made
available instead.

The CMSS styling language was first proposed as an encoding for a styling conceptual model in OGC
Testbed 14, and documented in the Portrayal, and CityGML and Augmented Reality
(http://docs.opengeospatial.org/per/18-025.html#_expressions) Engineering Reports. CMSS
expressions serve both for selectors, deciding whether to apply symbology rules, and for styling
property values within symbolizers. Just like with selectors, the expressions used for filtering
resolve to a single boolean value, if the value is true then the feature is included in the results.

The syntax for CMSS expressions is mostly compatible with the eC programming language [http://ec-

lang.org], a superset of the C language adding support for object orientation, as well as with ECON
[http://ec-lang.org] (eC Object Notation). Like the bitwise C operator, the symbol | represents an OR
logical operation, while & represents AND. However, textual 'or' and 'and' are also supported.
Negation is represented by the ! operator, and inequality by !=.

11.5.1. Examples of filtering expressions used with the OGC API - Features

From Natural Earth countries, return only features whose name property is either Canada or United
States:

CMSS Expression: name = 'Canada' | name = 'United States'

Encoded filtered request URL:

https://maps.ecere.com/geoapi/collections/NaturalEarth/cultural/ne_10m_admin_0_countries/items?
filter-lang=cmss&filter=name=%27Canada%27|name=%27United%20States%27

60

http://docs.opengeospatial.org/per/18-025.html#_expressions
http://ec-lang.org
http://ec-lang.org
https://maps.ecere.com/geoapi/collections/NaturalEarth/cultural/ne_10m_admin_0_countries/items?filter-lang=cmss&filter=name=%27Canada%27|name=%27United%20States%27
https://maps.ecere.com/geoapi/collections/NaturalEarth/cultural/ne_10m_admin_0_countries/items?filter-lang=cmss&filter=name=%27Canada%27|name=%27United%20States%27

Figure 16. Filtering country features by name

From Daraa OpenStreetMap / Topographic Data Store’s ground transportation linear features,
return only those whose name property (ZI005_FNA) is not No Information:

CMSS Expression: ZI005_FNA != 'No Information'

Encoded filtered request URL:

https://maps.ecere.com/geoapi/collections/vtp/Daraa2/TransportationGroundCrv/items?filter-
lang=cmss&filter=ZI005_FNA!=%27No%20Information%27

61

https://maps.ecere.com/geoapi/collections/vtp/Daraa2/TransportationGroundCrv/items?filter-lang=cmss&filter=ZI005_FNA!=%27No%20Information%27
https://maps.ecere.com/geoapi/collections/vtp/Daraa2/TransportationGroundCrv/items?filter-lang=cmss&filter=ZI005_FNA!=%27No%20Information%27

Figure 17. Filtering out road features with name set to 'No Information'

CMSS currently does not feature full regular expressions, but supports the text comparison
operators: Contains (~), Begins with (^) and Ends with ($).

From Natural Earth countries, return only features whose name property contains ain:

CMSS Expression: name ~ 'ain'

Encoded filtered request URL:

https://maps.ecere.com/geoapi/collections/NaturalEarth/cultural/ne_10m_admin_0_countries/items?
filter-lang=cmss&filter=name~%27ain%27

62

https://maps.ecere.com/geoapi/collections/NaturalEarth/cultural/ne_10m_admin_0_countries/items?filter-lang=cmss&filter=name~%27ain%27
https://maps.ecere.com/geoapi/collections/NaturalEarth/cultural/ne_10m_admin_0_countries/items?filter-lang=cmss&filter=name~%27ain%27

Figure 18. Filtering country features whose names contain a sub-string

From Natural Earth countries, return only features whose estimated population (pop_est) property
is greater than 50 million:

CMSS Expression: pop_est > 50M

Encoded filtered request URL:

https://maps.ecere.com/geoapi/collections/NaturalEarth/cultural/ne_10m_admin_0_countries/items?
filter-lang=cmss&filter=pop_est%3E50M

63

https://maps.ecere.com/geoapi/collections/NaturalEarth/cultural/ne_10m_admin_0_countries/items?filter-lang=cmss&filter=pop_est%3E50M
https://maps.ecere.com/geoapi/collections/NaturalEarth/cultural/ne_10m_admin_0_countries/items?filter-lang=cmss&filter=pop_est%3E50M

Figure 19. Filtering out country features below a population threshold

The 'intersects' function was implemented to check intersection with geometry.

Currently, only support for checking intersection between a record’s geometry and a bounding box
(specified as { { south latitude, west longitude }, { north latitude, east longitude } }) has
been implemented.

From Natural Earth countries, return only features whose continent property is Anctarctica, or
whose geometry intersects with a bounding box around 45°N, 75°W:

CMSS Expression: continent = 'Antarctica' | intersects(rec.geom, { { 45, -75 }, { 45.01,
-74.99 } })

Encoded filtered request URL:

https://maps.ecere.com/geoapi/collections/NaturalEarth/cultural/ne_10m_admin_0_countries/items?
filter-lang=cmss&filter=continent=%27Antarctica%27|intersects%28rec.geom,{{45,-75},{45.01,-
74.99}}%29

64

https://maps.ecere.com/geoapi/collections/NaturalEarth/cultural/ne_10m_admin_0_countries/items?filter-lang=cmss&filter=continent=%27Antarctica%27|intersects%28rec.geom,{{45,-75},{45.01,-74.99}}%29
https://maps.ecere.com/geoapi/collections/NaturalEarth/cultural/ne_10m_admin_0_countries/items?filter-lang=cmss&filter=continent=%27Antarctica%27|intersects%28rec.geom,{{45,-75},{45.01,-74.99}}%29
https://maps.ecere.com/geoapi/collections/NaturalEarth/cultural/ne_10m_admin_0_countries/items?filter-lang=cmss&filter=continent=%27Antarctica%27|intersects%28rec.geom,{{45,-75},{45.01,-74.99}}%29

Figure 20. Filtering out features whose geometry lies outside of a bounding box

Support for lyr.geom to test whether any of the layers geometries intersect with each other, is also
planned, as this might be useful for complex styling scenarios with special rules for overlapping
geometry.

11.5.2. Use of filtering for vector tiles

Allowing clients requesting vector tiles to specify custom filters can reduce bandwidth and
processing requirements, providing a flexible mechanism to make the same data suitable for
different purposes and styles. Spatial operations may be less useful in conjunction with tiles, which
already limit the response to a specific spatial extent, but are still available in the OGC API - Tiles
for consistency.

Examples of filtering expressions used with the OGC API - Tiles

From Natural Earth countries, return a MapBox vector tile containing only features whose name
property is either Canada or United States. Use the WebMercatorQuad tile matrix set, zoom level 0,
row 0, column 0.

CMSS Expression: name = 'Canada' | name = 'United States'

Encoded filtered request URL:

https://maps.ecere.com/geoapi/collections/NaturalEarth/cultural/ne_10m_admin_0_countries/tiles/
WebMercatorQuad/0/0/0.mvt?filter-lang=cmss&
filter=name=%27Canada%27|name=%27United%20States%27

65

https://maps.ecere.com/geoapi/collections/NaturalEarth/cultural/ne_10m_admin_0_countries/tiles/WebMercatorQuad/0/0/0.mvt?filter-lang=cmss&filter=name=%27Canada%27|name=%27United%20States%27
https://maps.ecere.com/geoapi/collections/NaturalEarth/cultural/ne_10m_admin_0_countries/tiles/WebMercatorQuad/0/0/0.mvt?filter-lang=cmss&filter=name=%27Canada%27|name=%27United%20States%27
https://maps.ecere.com/geoapi/collections/NaturalEarth/cultural/ne_10m_admin_0_countries/tiles/WebMercatorQuad/0/0/0.mvt?filter-lang=cmss&filter=name=%27Canada%27|name=%27United%20States%27

Figure 21. Filtering country features by name from a tile request

From Daraa OpenStreetMap / Topographic Data Store’s ground transportation linear features,
return only those whose name property ZI005_FNA is not No Information. Use the WebMercatorQuad
tile matrix set, zoom level 9, row 206, column 307.

CMSS Expression: ZI005_FNA != 'No Information'

Encoded filtered request URL:

http://maps.ecere.com/geoapi/collections/vtp/Daraa2/TransportationGroundCrv/tiles/
WebMercatorQuad/9/206/307.mvt?filter-lang=cmss&filter=ZI005_FNA!=%27No%20Information%27

66

http://maps.ecere.com/geoapi/collections/vtp/Daraa2/TransportationGroundCrv/tiles/WebMercatorQuad/9/206/307.mvt?filter-lang=cmss&filter=ZI005_FNA!=%27No%20Information%27
http://maps.ecere.com/geoapi/collections/vtp/Daraa2/TransportationGroundCrv/tiles/WebMercatorQuad/9/206/307.mvt?filter-lang=cmss&filter=ZI005_FNA!=%27No%20Information%27

Figure 22. Filtering out road features with name set to 'No Information' from a tile request

11.5.3. Multi-layer and scale-based filtering (OGC API - Tiles)

The ability to select which layers to include inside multi-layer tiles also helps to reduce the size of
produced tiles. CMSS already supported simple expressions as enclosed in a single selector within
square brackets or being assigned to a property In addition, the syntax has been extended to
include one or more selectors enclosed within square brackets, as well as a layer identifier selector
prefixed by the # symbol. This syntax mirrors the full CMSS syntax as used for styling, but excludes
the symbolizer and nested rules enclosed in curly braces which normally follow these selectors.
Alternatively, the pre-defined lyr.id expression can be compared with a string literal, and used in
conjunction with an or operation to match multiple layers. Additional selectors can be combined
with and operations, with operands contained within parentheses.

Multi-layer filtering is particularly useful in conjunction with a scale-based selector, making it
possible to re-use the same tiles template for all zoom levels.

CMSS pre-defines the viz.sd expression to refer to the scale denominator. In the context of the OGC
API - Tiles filtering, it represents the scale denominator associated with a specific zoom level (tile
matrix) being requested. The scale denominators associated with each zoom level of a tile matrix
set are well-defined by the OGC Tile Matrix Standard, and tile matrix sets defined following this
specification, according to a standard 0.28 mm/pixel equivalence. Referencing a scale denominator
rather than a zoom level ensures that a filter or style is re-usable between different tile matrix sets
where zoom levels correspond to different scales.

Examples of multi-layer and scale-based filtering

This section contains a number of examples, each one composed of:

• A statement explaining the desired filtering

• The equivalent URL retrieving the vector tiles matching the filter

67

• A figure showing the result, visually.

From Daraa OpenStreetMap / Topographic Data Store, retrieve all features of the agriculture
polygons layer (AgricultureSrf) and of the settlement polygons layer (SettlementSrf). Use the
WebMercatorQuad tile matrix set, zoom level 8, row 103, column 153.

CMSS Expression (using selectors syntax): #AgricultureSrf#SettlementSrf

Encoded filtered request URL:

https://maps.ecere.com/geoapi/collections/vtp/Daraa2/tiles/WebMercatorQuad/8/103/153.mvt?filter-
lang=cmss&filter=%23AgricultureSrf%23SettlementSrf

Figure 23. Multi-layer filter to only include specific layers

From Daraa OpenStreetMap / Topographic Data Store, retrieve:

• All features of the agriculture polygons layer (AgricultureSrf).

• All features of the settlement polygons layer (SettlementSrf).

• All features of the ground transportation linear features whose name property ZI005_FNA is not
No Information.

• All features of the culture points layer (CulturePnt), but only for zoom levels more detailed than
1:2,000,000 scale.

Use the WebMercatorQuad tile matrix set, zoom level '0', row 206, column 307.

CMSS Expression (using selectors syntax):

68

https://maps.ecere.com/geoapi/collections/vtp/Daraa2/tiles/WebMercatorQuad/8/103/153.mvt?filter-lang=cmss&filter=%23AgricultureSrf%23SettlementSrf
https://maps.ecere.com/geoapi/collections/vtp/Daraa2/tiles/WebMercatorQuad/8/103/153.mvt?filter-lang=cmss&filter=%23AgricultureSrf%23SettlementSrf

#AgricultureSrf #SettlementSrf #TransportationGroundCrv[ZI005_FNA != 'No Information']
#CulturePnt[viz.sd < 2M]`

Encoded filtered request URL:

https://maps.ecere.com/geoapi/collections/vtp/Daraa2/tiles/WebMercatorQuad/9/206/307.mvt?filter-
lang=cmss&
filter=%23AgricultureSrf%23SettlementSrf%23TransportationGroundCrv%5BZI005_FNA!=%27No%
20Information%27%5D%23CulturePnt%5Bviz.sd%3C2M%5D

Figure 24. Complex multi-layer filter combining layer selection, name attribute condition and scale-based
filtering

If the same filter is used for WebMercatorQuad zoom level 8 (scale is 1:2,183,915), the culture
points, which were included at level 9, will be omitted:

https://maps.ecere.com/geoapi/collections/vtp/Daraa2/tiles/WebMercatorQuad/8/103/153.mvt?filter-
lang=cmss&
filter=%23AgricultureSrf%23SettlementSrf%23TransportationGroundCrv%5BZI005_FNA!=%27No%
20Information%27%5D%23CulturePnt%5Bviz.sd%3C2M%5D

69

https://maps.ecere.com/geoapi/collections/vtp/Daraa2/tiles/WebMercatorQuad/9/206/307.mvt?filter-lang=cmss&filter=%23AgricultureSrf%23SettlementSrf%23TransportationGroundCrv%5BZI005_FNA!=%27No%20Information%27%5D%23CulturePnt%5Bviz.sd%3C2M%5D
https://maps.ecere.com/geoapi/collections/vtp/Daraa2/tiles/WebMercatorQuad/9/206/307.mvt?filter-lang=cmss&filter=%23AgricultureSrf%23SettlementSrf%23TransportationGroundCrv%5BZI005_FNA!=%27No%20Information%27%5D%23CulturePnt%5Bviz.sd%3C2M%5D
https://maps.ecere.com/geoapi/collections/vtp/Daraa2/tiles/WebMercatorQuad/9/206/307.mvt?filter-lang=cmss&filter=%23AgricultureSrf%23SettlementSrf%23TransportationGroundCrv%5BZI005_FNA!=%27No%20Information%27%5D%23CulturePnt%5Bviz.sd%3C2M%5D
https://maps.ecere.com/geoapi/collections/vtp/Daraa2/tiles/WebMercatorQuad/9/206/307.mvt?filter-lang=cmss&filter=%23AgricultureSrf%23SettlementSrf%23TransportationGroundCrv%5BZI005_FNA!=%27No%20Information%27%5D%23CulturePnt%5Bviz.sd%3C2M%5D
https://maps.ecere.com/geoapi/collections/vtp/Daraa2/tiles/WebMercatorQuad/8/103/153.mvt?filter-lang=cmss&filter=%23AgricultureSrf%23SettlementSrf%23TransportationGroundCrv%5BZI005_FNA!=%27No%20Information%27%5D%23CulturePnt%5Bviz.sd%3C2M%5D
https://maps.ecere.com/geoapi/collections/vtp/Daraa2/tiles/WebMercatorQuad/8/103/153.mvt?filter-lang=cmss&filter=%23AgricultureSrf%23SettlementSrf%23TransportationGroundCrv%5BZI005_FNA!=%27No%20Information%27%5D%23CulturePnt%5Bviz.sd%3C2M%5D
https://maps.ecere.com/geoapi/collections/vtp/Daraa2/tiles/WebMercatorQuad/8/103/153.mvt?filter-lang=cmss&filter=%23AgricultureSrf%23SettlementSrf%23TransportationGroundCrv%5BZI005_FNA!=%27No%20Information%27%5D%23CulturePnt%5Bviz.sd%3C2M%5D
https://maps.ecere.com/geoapi/collections/vtp/Daraa2/tiles/WebMercatorQuad/8/103/153.mvt?filter-lang=cmss&filter=%23AgricultureSrf%23SettlementSrf%23TransportationGroundCrv%5BZI005_FNA!=%27No%20Information%27%5D%23CulturePnt%5Bviz.sd%3C2M%5D

Figure 25. Identical multi-layer filter used at a different zoom level, showing the culture point features
omitted

An equivalent expression not using the selectors syntax could be written as:

CMSS Expression (not using selectors):

(lyr.id = 'AgricultureSrf' or lyr.id = 'SettlementSrf' or (lyr.id =
'TransportationGroundCrv' and ZI005_FNA != 'No Information') or (lyr.id = 'CulturePnt'
and viz.sd < 2M))`

Encoded filtered request URL:

http://maps.ecere.com/geoapi/collections/vtp/Daraa2/tiles/WebMercatorQuad/9/206/307.mvt?filter-
lang=cmss&
filter=%28lyr.id=%27AgricultureSrf%27%20or%20lyr.id=%27SettlementSrf%27%20or%20%28lyr.id
=%27TransportationGroundCrv%27%20and%20ZI005_FNA!=%27No%20Information%27%29%20or
%20%28lyr.id=%27CulturePnt%27%20and%20viz.sd%3C2M%29%29

From the OpenStreetMap dataset of Washington, D.C., return all features from natural, waterways,
railways, landuse, other areas, other lines, boundaries, roads, buildings and amenities layers. Use
the WorldMercatorWGS84Quad tile matrix set, zoom level 10, row 392, column 293.

CMSS Expression:

#natural #waterways #railways #landuse #otherAreas #otherLines #boundaries #roads
#buildings #amenities

70

http://maps.ecere.com/geoapi/collections/vtp/Daraa2/tiles/WebMercatorQuad/9/206/307.mvt?filter-lang=cmss&filter=%28lyr.id=%27AgricultureSrf%27%20or%20lyr.id=%27SettlementSrf%27%20or%20%28lyr.id=%27TransportationGroundCrv%27%20and%20ZI005_FNA!=%27No%20Information%27%29%20or%20%28lyr.id=%27CulturePnt%27%20and%20viz.sd%3C2M%29%29
http://maps.ecere.com/geoapi/collections/vtp/Daraa2/tiles/WebMercatorQuad/9/206/307.mvt?filter-lang=cmss&filter=%28lyr.id=%27AgricultureSrf%27%20or%20lyr.id=%27SettlementSrf%27%20or%20%28lyr.id=%27TransportationGroundCrv%27%20and%20ZI005_FNA!=%27No%20Information%27%29%20or%20%28lyr.id=%27CulturePnt%27%20and%20viz.sd%3C2M%29%29
http://maps.ecere.com/geoapi/collections/vtp/Daraa2/tiles/WebMercatorQuad/9/206/307.mvt?filter-lang=cmss&filter=%28lyr.id=%27AgricultureSrf%27%20or%20lyr.id=%27SettlementSrf%27%20or%20%28lyr.id=%27TransportationGroundCrv%27%20and%20ZI005_FNA!=%27No%20Information%27%29%20or%20%28lyr.id=%27CulturePnt%27%20and%20viz.sd%3C2M%29%29
http://maps.ecere.com/geoapi/collections/vtp/Daraa2/tiles/WebMercatorQuad/9/206/307.mvt?filter-lang=cmss&filter=%28lyr.id=%27AgricultureSrf%27%20or%20lyr.id=%27SettlementSrf%27%20or%20%28lyr.id=%27TransportationGroundCrv%27%20and%20ZI005_FNA!=%27No%20Information%27%29%20or%20%28lyr.id=%27CulturePnt%27%20and%20viz.sd%3C2M%29%29
http://maps.ecere.com/geoapi/collections/vtp/Daraa2/tiles/WebMercatorQuad/9/206/307.mvt?filter-lang=cmss&filter=%28lyr.id=%27AgricultureSrf%27%20or%20lyr.id=%27SettlementSrf%27%20or%20%28lyr.id=%27TransportationGroundCrv%27%20and%20ZI005_FNA!=%27No%20Information%27%29%20or%20%28lyr.id=%27CulturePnt%27%20and%20viz.sd%3C2M%29%29

Encoded filtered request URL:

https://maps.ecere.com/geoapi/collections/osm/dc/tiles/WorldMercatorWGS84Quad/10/392/293.mvt?
filter-lang-cmss&
filter=%23natural%23waterways%23railways%23landuse%23otherAreas%23otherLines%23bound
aries%23roads%23buildings%23amenities

Figure 26. An OpenStreetMap tile requested with a filter to omit layers with large number of points

As a comparison, the same tile without a filter would include an extra 7000 points for the house
numbers layer and 3000 for other points, each point containing attribute information, resulting in a
particularly big tile for that scale:

https://maps.ecere.com/geoapi/collections/osm/dc/tiles/WorldMercatorWGS84Quad/10/392/293.mvt

71

https://maps.ecere.com/geoapi/collections/osm/dc/tiles/WorldMercatorWGS84Quad/10/392/293.mvt?filter-lang-cmss&filter=%23natural%23waterways%23railways%23landuse%23otherAreas%23otherLines%23boundaries%23roads%23buildings%23amenities
https://maps.ecere.com/geoapi/collections/osm/dc/tiles/WorldMercatorWGS84Quad/10/392/293.mvt?filter-lang-cmss&filter=%23natural%23waterways%23railways%23landuse%23otherAreas%23otherLines%23boundaries%23roads%23buildings%23amenities
https://maps.ecere.com/geoapi/collections/osm/dc/tiles/WorldMercatorWGS84Quad/10/392/293.mvt?filter-lang-cmss&filter=%23natural%23waterways%23railways%23landuse%23otherAreas%23otherLines%23boundaries%23roads%23buildings%23amenities
https://maps.ecere.com/geoapi/collections/osm/dc/tiles/WorldMercatorWGS84Quad/10/392/293.mvt?filter-lang-cmss&filter=%23natural%23waterways%23railways%23landuse%23otherAreas%23otherLines%23boundaries%23roads%23buildings%23amenities
https://maps.ecere.com/geoapi/collections/osm/dc/tiles/WorldMercatorWGS84Quad/10/392/293.mvt

Figure 27. The same OpenStreetMap tile requested without the filter, showing the large number of points

11.5.4. POST requests to the OGC API - Tiles

A client would often make numerous requests for tiles using the same filter, especially when using
multi-layer tiles and scale-based filtering. These filters may also be complex, which might pose
problems to encode them entirely as a URL query parameter. As an alternative, Ecere considered
using a POST request to an OGC API - Tiles end-point, whose content would be the filter expression.
The response to this request would be a templated URL corresponding to the filter, which would
not be a public resource, but potentially only available to a client having made that request. This
would allow the server to only parse and process the filtering expression once, and may facilitate
the configuration and/or caching of the tiles. A URL template returned this way might expire after a
certain time of no tile request coming in, at which point the client would need to re-submit the
template again to obtain a new valid template. Such a POST request could also be used with the
OGC API - Tiles to specify complex multi-layer input data layers, styles, and even daisy-chained
processing workflows. This approach was discussed and presented at the January 2020 OGC
Coverage & Analytics Code Sprint.

As an example, a client could potentially submit a POST request to this URL (or an alternative
version including a more complex filter in the payload):

http://maps.ecere.com/geoapi/collections/vtp/Daraa2/tiles?filter-lang=cmss&
filter=%23TransportationGroundCrv%5BZI005_FNA!=%20No%20Information'%5D%23AgricultureS
rf%23SettlementSrf%23CulturePnt%5Bviz.sd%3C2M%5D

and the server would return a templated link which may look like:

http://maps.ecere.com/geoapi/collections/vtp/Daraa2/tiles/{tileMatrixSet}/{tileMatrix}/{tileRow}/
{tileCol}?savedConfig=a123b456c890ad123

When a client accesses a tile using that template, the requested filter would be included in the tile

72

http://maps.ecere.com/geoapi/collections/vtp/Daraa2/tiles?filter-lang=cmss&filter=%23TransportationGroundCrv%5BZI005_FNA!=%20No%20Information'%5D%23AgricultureSrf%23SettlementSrf%23CulturePnt%5Bviz.sd%3C2M%5D
http://maps.ecere.com/geoapi/collections/vtp/Daraa2/tiles?filter-lang=cmss&filter=%23TransportationGroundCrv%5BZI005_FNA!=%20No%20Information'%5D%23AgricultureSrf%23SettlementSrf%23CulturePnt%5Bviz.sd%3C2M%5D
http://maps.ecere.com/geoapi/collections/vtp/Daraa2/tiles?filter-lang=cmss&filter=%23TransportationGroundCrv%5BZI005_FNA!=%20No%20Information'%5D%23AgricultureSrf%23SettlementSrf%23CulturePnt%5Bviz.sd%3C2M%5D
http://maps.ecere.com/geoapi/collections/vtp/Daraa2/tiles/{tileMatrixSet}/{tileMatrix}/{tileRow}/{tileCol}?savedConfig=a123b456c890ad123
http://maps.ecere.com/geoapi/collections/vtp/Daraa2/tiles/{tileMatrixSet}/{tileMatrix}/{tileRow}/{tileCol}?savedConfig=a123b456c890ad123

result calculation.

11.5.5. Filtering driven by styles

For visualization use cases, filters may be tightly coupled with the styles displaying the data. Thus,
the server could automatically determine the proper filter from the referenced style (from an
associated Styles API), or by the client posting a complete style (e.g. encoded as CMSS, SLD/SE or
Mapbox GL). In order to turn an encoded style into a filter, the service would filter out any
geometry not being drawn. For example, in the case of CMSS (where everything is drawn by
default, even without a style), the decision would be based on properties such as visibility, opacity,
and label/marker. The server could also, optionally, omit any attribute information not useful for
that style.

11.5.6. Retrieving attributes separately from geometry

In the GNOSIS Map Tiles encoding of vector tiles, attributes are not included in the result (in the
GNOSIS Data Store, they are stored separately in a SQLite file, along with a spatial index). Currently,
when the GNOSIS Client requests tiles as GNOSIS Map Tiles from the GNOSIS Map Server, the
attributes are requested on demand separately, for the specific properties and features required.
The request uses the query parameters featureid to specify which features to include, and
properties to specify which properties to include.

In addition to being useful for vector tiles encodings formats not defining attribute, requesting the
attributes separately can greatly reduce the size of the data to transmit, especially for large detailed
features, spread across multiple tiles, having numerous associated attributes.

11.5.7. CMSS Expressions Syntax

A summary of the CMSS expression syntax is presented here. See the CityGML and Augmented
Reality Engineering Report [http://docs.opengeospatial.org/per/18-025.html#_expressions] for a more
detailed overview of CMSS as a styling language.

Types of expressions

type example

identifier FEATCODE

text 'Parking'

integer 10

real 3.14159

object { hour = 16, minutes = 30 }
Circle { radius = 5 }

member viz.sd

list [1, 2, 3]

operation viz.sd > 10M

variable @colorScheme

73

http://docs.opengeospatial.org/per/18-025.html#_expressions
http://docs.opengeospatial.org/per/18-025.html#_expressions

Types of identifiers

id or example description

F_CODE Example of a data attribute

null Unset value

true Example of an enumeration value

lyr The data layer (collection)

lyr.id Identifier for the layer

lyr.fc Feature class (e.g. vector, coverage, imagery)

lyr.vt Vector type (e.g. points, lines, polygons)

lyr.geom Layer geometry

viz Visualization attributes

viz.sd Scale denominator

viz.time Visualization time

viz.date Visualization date

viz.timeOfDay Visualization time of day

rec The record

rec.id Record id

rec.geom Record geometry

records List of all records in the layer

Operators

Logical AND (&), OR (|), NOT (!)

Comparison Equal (=), Not equal (!=), Greater (>), Lesser than
(<), Greater or Equal (>=), Lesser or Equal (\<\=)

Text Comparison Contains (~), Starts with (^), Ends with ($), does
not contain (!~), does not start with (!^), does not
end with (!$)

Arithmetic Addition (+), Subtraction (-), Multiplication (*),
Division (/), Integer division (div), Remainder
(%)

Priority parentheses () for prioritizing

Conditional if ? then : else

in 'in' to check if left-side expression is within a list

Function call ()

74

Functions

Text manipulation strlwr, strupr, format, subst implemented

Geometry operation area, length, centroid not yet implemented

Spatial operations intersects, contains, within,
withinRadius…

only intersects(rec.geom, bbox)
implemented

Iteration to iterate within a list as part of
an expression — 
thought of as an exercise for
rules based on overlapping
features
e.g. [featcode = 'bay' &
iterate(or, records, it.featcode =
'ocean' & intersects(it,
rec.geom))]

not yet implemented

For temporal support, time attributes can be compared against either visualization attributes (e.g.
viz.time) or fixed time values.

11.6. Ecere D105 Client
Ecere provided a client able to visualize tiled vector features served by OGC API - Tiles, based on its
GNOSIS Cartographer application. The client can apply styles, whether loaded locally, created using
the visual style editing interface, or accessed via the Styles API. Features were automatically filtered
based on the style in use, however filtering was still applied on the client side. As discussed in the
server section, a filter can automatically be determined from a style, by considering its selectors
and visualization properties such as opacity and visibility. The client could either reference a style,
or POST a style to the service to specifically ask for pre-filtered geometry and attributes based on
that style. Alternatively, the client could itself have determined a filter suitable for the style in use,
and submit such filter in its service requests. That capability was planned but was not yet
implemented during the pilot. A disadvantage of requesting pre-filtered tiles, rather than doing the
filtering on the client side, is that the client would need to discard tiles and retrieve a different
version when changing between styles.

75

Figure 28. A screenshot of GNOSIS Cartographer showcasing the styling rules which could be used to
automatically determine a filter

11.7. Ecere D107 GeoPackage producer & client
Ecere produced a number of GeoPackages for the pilot, as well as a client capable of visualizing
GeoPackages produced by other participants. These GeoPackages produced using Ecere’s GNOSIS
Cartographer tool made use of the "Attributes Tables" extension, which is also supported by the
visualization client. This extension is useful for performing filtering when the client accesses the
tile data (e.g. accessing fewer encoded tile blobs based on SQL queries). This optimization was not
yet implemented in the client during the pilot. The attributes table extension also greatly reduced
the size of GeoPackages compared to embedding attributes within the tiles themselves, and
provided fast access to querying or updating the attribute information for a given feature. A filter
could also be applied when generating a GeoPackage to minimize its size, but this capability has not
yet been implemented either. See the GeoPackage section for more details, and an explanation of
the SQL queries pictured below.

76

Figure 29. SQL queries performed at an SQLite prompt inside a multi-layer WorldMercator GeoPackage
produced by Ecere, which could be used for filtering

11.8. Skymantics D104 Client
Skymantics selected Unity to develop a map client with augmented reality capabilities. This
software was combined with Mapbox SDK and Mapbox Studio to provide a framework for map
utilization.

11.8.1. Challenges Encountered

The implementation of filters within these software applications presented the following
challenges:

• Unity allows the creation of C# scripts that could be used to command filtering and styling over
maps generated on Unity. When generating maps with Mapbox SDK and Mapbox Studio, the
actual rendering of the map is encapsulated by Mapbox SDK and therefore the Unity C# scripts
have no power over the maps.

• Mapbox SDK does not allow Unity to interact with the filtering and styling tools found on
Mapbox Studio. All those tools must be used manually in the Mapbox Studio application.

• Vector tile data can only be uploaded to Mapbox Studio as a dataset or a tile set, therefore
discarding any possibility of CQL filtering in Mapbox Studio.

• Since the tile sets were fetched from the tile servers before being stored in files and afterwards
loaded into Mapbox Studio, a CQL filter could have indeed been added to the GET requests. This
approach would have been impractical for end users because it was impossible to command
from Unity the automatic fetch of tile sets, the upload of those tile sets into Mapbox Studio and
the render in Unity of the updated filtered map.

77

11.8.2. Filtering Within Unity and Mapbox Studio

In order to provide filtering support, Skymantics loaded, styled and filtered tilesets in Mapbox
Studio, and finally made those styled and filtered tilesets available in Unity.

Mapbox provides their own filtering tools within the Mapbox Studio environment. In the Mapbox
Style Specification, a filter is a property at the layer level that determines which features should be
rendered in a style layer. Filters are written as expressions, which give you fine-grained control
over which features to include: the style layer only displays the features that match the filter
condition that you define.

Mapbox Studio allows users to create styles by adding multiple features to them. Entire tile sets,
comprising one or several layers, can be added to a style, therefore creating a Mapbox style made
up of a single or multiple layers. As shown on Figure 30, an Agriculture tile set and a Hydrography
tile set were loaded into a single style as two separate layers; Agriculture was defined by the color
green and Hydrography as dark blue.

Mapbpox Studio features a variety of filtering and styling tools. Once the layers have been added to
a style, these tools can be applied to the style. In Figure 30, a filter based on values is being applied
to a style in Mapbox Studio.

The final step of the process is to load the style into Unity. Mapbox Studio makes the styles created
by the user available through a URL that is called by the Mapbox SDK in Unity. As seen in Figure 32,
the URL is loaded into Unity and the style is automatically rendered, as previously visualized in
Mapbox Studio. When compiled and executed as a mobile application, the map is rendered exactly
as visualized in Unity.

78

Figure 30. Style created in Mapbox Studio comprising two layers.

79

Figure 31. Filter being applied to a style in Mapbox Studio.

Figure 32. Style URL loaded and map rendered in Unity.

11.8.3. Future Work

The filtering approach implemented in this Pilot had the disadvantage of providing a static solution
to filtering because, since the tilesets had to be pre-styled and pre-filtered in Mapbox Studio before

80

making them available in Unity, an end user would not be able to dynamically apply filters or styles
while using the mobile application.

This approach could be further expanded by anticipating in advance a large number of
combinations of layers, styles, and filters that an end user would be requiring, and making them
easily available in the augmented reality mobile application. One Mapbox style per each
combination would be created in Mapbox Studio, and made available in Unity by means of
individual scenes the end user would select in the mobile app. Each Unity scene would access a
specific Mapbox style URL previously created.

In order to provide end users with full filtering capabilities while using the augmented-reality
mobile application, maps should be entirely generated in Unity without utilizing Mapbox SDK nor
Mapbox Studio. A custom slippy map would need to be created in Unity, and control buttons would
command C# scripts that effectively filter and style the map being rendered. This approach was
indeed considered, but the workload involved would not fit the time limits of the Pilot.

11.9. GeoSolutions D104 Client
The deliverable implemented for the vector tile client was a web application built with MapStore
[https://mapstore.geo-solutions.it/], an open source web-based Geographic Information System (GIS)
framework.

• live demo [http://demo.vtp2.geo-solutions.it/mapstore/index.html#/]

• repository [https://github.com/geosolutions-it/ogc-vector-tiles-vtp/tree/master/vtp2]

The following components show a complete filtering workflow:

• Layers panel to list all the layers added to the map and also to provide layer related tools

• filter builder panel to apply attribute, temporal or spatial filters to a selected layer (it was
available only after selecting a layer in the list).

• Map to render and support OGC vector tiles layers.

• Catalog panel to display all layers available on an OGC API service where each card represents a
collection that could be displayed on map.

81

https://mapstore.geo-solutions.it/
http://demo.vtp2.geo-solutions.it/mapstore/index.html#/
https://github.com/geosolutions-it/ogc-vector-tiles-vtp/tree/master/vtp2

Figure 33. MapStore client with steps to activate the filter builder: add collection from an OGC API - Tiles
server (right box), select collection and enable filter panel (top left box) and interact with the filter builder
(bottom left box)

The filter created by the Filter Builder component was a CQL filter directly included in the tiles
request, as query parameter. The client thus expected to get server-side filtered tiles.

The Transportation Ground Curve layer was used to test TIEs.

Figure 34. Transportation Ground Curve layer without filters and highlighted the polygon used in the
spatial filter

Below are some screenshots of filters applied to different services using the same layers.

82

11.9.1. Attribute filter

CQL Filter:

(RIN_ROI = '3')

Result:

Figure 35. MapStore client with attribute filter applied to Transportation Ground Curve layer from different
services: GeoSolutions (left), Interactive Instruments (top right) and Terranodo (bottom right)

11.9.2. Spatial filter

CQL Filter:

(WITHIN(geometry,POLYGON((36.08639717102051 32.605362330628395, 36.116266250610344
32.605362330628395, 36.116266250610344 32.625532858348336, 36.08639717102051
32.625532858348336, 36.08639717102051 32.605362330628395))))

Result:

83

Figure 36. MapStore client with WITHIN spatial filter applied to Transportation Ground Curve layer from
different services: GeoSolutions (left), Interactive Instruments (top right) and Terranodo (bottom right)

CQL Filter:

(DISJOINT(geometry,POLYGON((36.08639717102051 32.605362330628395, 36.116266250610344
32.605362330628395, 36.116266250610344 32.625532858348336, 36.08639717102051
32.625532858348336, 36.08639717102051 32.605362330628395))))

Result:

Figure 37. MapStore client with DISJOINT spatial filter applied to Transportation Ground Curve layer from
different services: GeoSolutions (left), Interactive Instruments (top right) and Terranodo (bottom right)

11.9.3. Temporal filter

CQL Filter:

84

(ZI001_SDV AFTER 2014-01-01T00:00:00.000Z)

Result:

Figure 38. MapStore client with AFTER temporal filter applied to Transportation Ground Curve layer from
different services: GeoSolutions (top) and Interactive Instruments (bottom)

11.9.4. Mixed filters

CQL Filter:

(RIN_ROI = '3') AND (WITHIN(geom,POLYGON((36.06425285339356 32.59450435638428,
36.122875213623054 32.59450435638428, 36.122875213623054 32.65407085418701,
36.06425285339356 32.65407085418701, 36.06425285339356 32.59450435638428))))

Result:

85

Figure 39. MapStore client with attribute and spatial filters applied to Transportation Ground Curve layer
from different services: GeoSolutions (left), Interactive Instruments (top right) and Terranodo (bottom
right)

NOTE
Terranodo server used a different dataset so the attribute filter applied was
(type='trunk' OR type='primary') instead of (RIN_ROI = '3')

86

Chapter 12. Results and findings

12.1. Issues Encountered

12.1.1. CQL language issues

During the development and tests of CQL parsers the following issues were raised.

12.1.2. Quoted identifiers

In the original CQL it’s possible to double quote an identifier to avoid conflicts with reserved words
and issues with special characters being part of the names.

The current draft OGC API - Features CQL extension BNF does not contain such support, it was
suggested [https://github.com/opengeospatial/ogcapi-features/issues/332] to add it back.

12.1.3. ENVELOPE constructor

An issue [https://github.com/opengeospatial/ogcapi-features/issues/334] was found with the ENVELOPE
construct, used to express rectangular geometries and used in spatial filters. In particular, the axis
order in the BNF uses a west, east, north, south convention, not used in other OGC protocols.

Discussion is ongoing about possibly replacing the ENVELOPE construct with a simpler BBOX spatial
filter operator.

12.1.4. EXISTS operator

The catalog specification is not clear [https://github.com/opengeospatial/ogcapi-features/issues/335] about the
meaning of the EXISTS operator, in particular, on whether the property being checked has a value,
or not, or whether it is present in the schema of the data itself. For schemaless datasets, it may not
even be possible to tell apart the two situations.

12.2. Findings
This section collects the findings of the Pilot activity.

12.2.1. Client-side versus Server-side filtering

A recurring topic in the Pilot was the component executing the filters. Two sides are considered:

• Server-side, during the production of the tiles or the GeoPackage.

• Client-side, while using the tiles.

It is to be noted that it makes sense to speak of a "filtering language" in the context of an API
request, while working client-side the filtering will depend on the data delivered and the tools used
to read it. A few examples follow:

87

https://github.com/opengeospatial/ogcapi-features/issues/332
https://github.com/opengeospatial/ogcapi-features/issues/332
https://github.com/opengeospatial/ogcapi-features/issues/334
https://github.com/opengeospatial/ogcapi-features/issues/335

• In the case of a Mapbox Vector Tiles or GeoJSON file, the client-side library will often provide
programmatic filtering abilities in the language of choice (e.g., JavaScript)

• In the case of a GeoPackage, the client will perform filtering either directly in SQL, if attributes
are available, or programmatically, after parsing the vector tiles, if the attributes are still
encoded as part of the tile body.

The side where filtering is applied has significant consequences, with dual benefits/drawbacks:

• When filtering server-side, tiles size can be reduced significantly, an important factor when
delivering large, multi-scale datasets like, for example, OpenStreetMap (global coverage is
currently over 50GB when delivered as a PBF, and for reference, over 300GB when imported in
PostgreSQL). Conversely, providing filters from the client reduces the server ability to cache
tiles, and disallows implementation of static tile servers.

• When filtering client-side, server-side tiles are built once and cached.

A possible compromise could be to have server-side filtering as a base, intended to serve the
majority of clients and offering tiles that are small enough for general use, while allowing client
specified filters on top of it, to further reduce the size of the tiles. Among the implementations in
this pilot at least one, GeoSolutions’s GeoServer, works using this approach.

12.2.2. Client-side control of contents and default filtering

The typical vector tiles delivery mechanisms available today assume that all filtering has to be done
on the server-side in advance, taking into account multiple factors:

• Data density, avoiding layers that would have too dense data for the current zoom level.

• Common styling needs, removing attributes that are typically not used in client-side styles, and
that are not often needed for "info" displays.

• Data generalization based on the zoom level, considering multiple approaches, such as
geometry simplification, union, selection based on importance.

This helps keep the vector tiles small compared to a server-side rendered equivalent, while still
allowing the client to have some latitude in rendering and eventual client-side filtering.

Allowing the client to provide filters and projections to the server-side allows for other avenues.

For multi-layer base maps, a complex configuration is needed server-side, reporting for each layer:

• The range of visibility, removing the layer at certain zoom levels, be it because it is spatially too
dense, or not enough.

• The desired filtering on a zoom level by zoom level basis (e.g., including only highways at low
zoom levels, while providing the entire data set at higher ones).

• Switching between different data sources depending on the zoom level (to leverage previous
generalization work that might have simplified geometries, collapsed them, or simple pre-
filtered them for performance reasons)

• The desired set of attributes, which will vary depending on the intended application.

88

This kind of configuration is better performed server-side and would be the driver for an eventual
advance seeding of the tiles. Trying to apply it on the client-side would require either:

• A large configuration document to be sent along each request.

• The creation of a stateful configuration, similar in principle to Stored Queries, that the client
would then refer to by id, in subsequent tile requests.

Overlay layers can instead use a more dynamic filtering, provided the client as a query parameter
in tile requests, depending on the current needs.

12.2.3. Filter capabilities and desired minimum filtering operator set

Regardless of the specific filter language encoding, filtering languages include a rich set of
operators. This rich set helps expressiveness, but can hinder the implementation of the parser and
filter engine.

It is thus desirable to advertise the capabilities of the filtering engine, allowing the implementation
of a sub-set of filters.

Within the confines of VTP2 no capabilities mechanism has been mandated, instead, a minimum
set of filters has been agreed upon among implementors, thereby providing a suitable balance
between filter expressiveness and ease of implementation.

12.3. Recommendations

12.3.1. CQL CRS geometry support

CQL currently supports geometry literals without any specification of their coordinate reference
system. The VTP2 participants recommend adding explicit support for it, either in the CQL own
syntax, or as a separate request parameter.

The syntax embedding would allow for a freer form expression of filters, with a potential to have
multiple spatial filters using different coordinate reference system literals.

The separate request parameter would instead imply that all literals in the filter are expressed in
the same CRS. It would be however simpler to implement, and more in line with the bbox-crs
request parameter already suggested in the OGC API - Features CRS extension.

12.3.2. Filter capabilities support

A mechanism to advertise the set of supported filtering operators is needed, in order to avoid un-
necessary implementation efforts of servers-side, while allowing clients to determine which subset
of filters is supported.

Ideally, this should be part of the OGC API - Features filtering extension.

12.3.3. Support for complex filtering

The current support for filters as query parameters in GET requests is simple, well suited for link

89

sharing, and generally well understood.

However, there are evident situations where it would stop working due to practical URL length
limits:

• Spatial filters with long, elaborate geometries

• Complex filters combining many conditions

• Filters including manually chosen/removed features, by identifier

• Multi-layer filters scenarios, where more than one filter needs to be specified.

A mechanism to support these use cases should be developed, e.g., stateless POST requests in form-
urlencoded format using the same parameters, or stateful POST requests creating of stored queries
that may be referred to using a filter identifier.

12.4. Future work

12.4.1. Selection of returned attributes

While the filtering allows to reduce the number of returned items, it does not support reducing the
number of attributes returned along with each item.

Developing such support would require:

• Advertising a list of "returnable" properties, structurally similar to the queryables, but with a
different purpose.

• Adding request parameters to support the property selection.

Similarly to filters, the selection of properties could lead to excessively long URLs, requiring usage
of the POST method to carry the request.

In this context, a full-fledged JSON based filtering and property selection (querying) support could
be developed too.

12.4.2. JSON based filtering languages

While VTP2 experimented with CQL-text, there is an evident desire for a JSON based filtering
language. The language can be functionally equivalent, while the JSON structure would remove the
need for a full-fledged text parser.

The encoding would find its natural position in larger JSON documents, while also being useful in
allowing quicker implementation of servers, and on the client-side as well, when filters are built
programmatically through graphical user interfaces, rather than directly entered into a text box.

12.4.3. Explore multi-layer tile filtering and querying support

As noted in the Single and multi-layer filtering section, and with the exception of the Ecere Tiles API
implementation (see Section 11.5), this pilot focused on filtering single-layer tiles.

90

Multi-layer tiles filtering has been marked as a future-work item. In particular, in order to support
multi-layer tiles filtering the following topics need to be researched in greater depth:

• Expressing a short list of filters in GET requests, eventually as a cql-text grammar extension.

• Expressing list of filters not fitting the practical length of a URL as a POST request (possibly in
combination with multi-collection download extension for the OGC Features API)

• Advertising queryables of a multi-layer vector tiles dataset outside of the OGC API - Features tile
building blocks applications, for example, in a standalone OGC API - Tile implementation.

91

Appendix A: CQL BNF
The BNF describes the syntax of the CQL text language, in its full form (not limited to the subset of
operators showcased in the Vector Tiles Pilot 2).

#
MODULE: cql.bnf
PURPOSE: A BNF grammar for the Common Query Language (CQL).
HISTORY:
DATE EMAIL DESCRIPTION
13-SEP-2019 pvretano[at]cubewerx.com Initial creation
28-OCT-2019 pvretano[at]cubewerx.com Initial checkin into github.
#

#===#
A CQL filter is a logically connected expression of one or more predicates.
#===#
cqlFilter = booleanValueExpression;

booleanValueExpression = booleanTerm | booleanValueExpression "OR" booleanTerm;

booleanTerm = booleanFactor | booleanTerm "AND" booleanFactor;

booleanFactor = ["NOT"] booleanPrimary;

booleanPrimary = predicate
| leftParen cqlFilter rightParen;

#===#
CQL supports scalar, spatial, temporal and existence predicates.
#===#
predicate = comparisonPredicate
 | spatialPredicate
 | temporalPredicate
 | existencePredicate
 | inPredicate;

#===#
A comparison predicate evaluates if two scalar expression statisfy the
specified comparison operator. The comparion operators include an operator
to evaluate regular expressions (LIKE), a range evaluation operator and
an operator to test if a scalar expression is NULL or not.
#===#
comparisonPredicate = binaryComparisonPredicate
 | propertyIsLikePredicate
 | propertyIsBetweenPredicate
 | propertyIsNullPredicate;

binaryComparisonPredicate = scalarExpression comparisonOperator scalarExpression;

92

propertyIsLikePredicate = scalarExpression "LIKE" regularExpression;

propertyIsBetweenPredicate = scalarExpression "BETWEEN"
scalarExpression "AND" scalarExpression;

propertyIsNullPredicate = scalarExpression "IS" ["NOT"] "NULL";

#
A scalar expression is the property name, a chracter literal, a numeric
literal or a function/method invocation that returns a scalar value.
#
scalarExpression = propertyName
| characterLiteral
| numericLiteral
| function
| arithmeticExpression;

NOTE: This is just a place holder for a regular expression
We want to be able to say stuff like "<prop> LIKE 'Toronto%'" where
the '%' character means "match zero or more characters".
regularExpression = characterLiteral;

comparisonOperator = eq | neq | lt | gt | lteq | gteq;

neq = lt gt;

gteq = gt eq;

lteq = lt eq;

#===#
A spatial predicate evaluates if two spatial expressions satisfy the
specified spatial operator.
#===#
spatialPredicate = spatialOperator leftParen geomExpression comma geomExpression
rightParen;

NOTE: The buffer operators (DWITHIN and BEYOND) are not included because
these are outside the scope of a "simple" core for CQL. These
can be added as extensions.
#
spatialOperator = "EQUALS" | "DISJOINT" | "TOUCHES" | "WITHIN" | "OVERLAPS"
| "CROSSES" | "INTERSECTS" | "CONTAINS";

A geometric expression is a property name of a geometry-valued property,
a geometric literal (expressed as WKT) or a function that returns a
geometric value.
#
geomExpression = propertyName
| geomLiteral
| function;

93

#===#
A temporal predicate evaluates if two temporal expressions satisfy the
specified temporal operator.
#===#
temporalPredicate = temporalExpression temporalOperator
temporalExpression [temporalExpression];

temporalExpression = propertyName
| temporalLiteral
| function;

temporalOperator = "AFTER" | "BEFORE" | "BEGINS" | "BEGUNBY" | "TCONTAINS"
| "DURING" | "ENDEDBY" | "ENDS" | "TEQUALS" | "MEETS"
| "METBY" | "TOVERLAPS" | "OVERLAPPEDBY" | "ANYINTERACTS"
| "INTERSECTS";

#===#
The existence predicate evalues whether the specified property exists
in the current context. This predicate was added to accomodate the fact
that OAPIF feature collections (and likely other specification) are
heterogeneous with respect to schema.
#===#
existencePredicate = propertyName "EXISTS"
 | propertyName "DOES" "NOT" "EXIST";

#===#
The IN predicate
#===#
inPredicate = propertyName "IN" leftParen { characterLiteral |
 numericLiteral |
 geomLiteral |
 temporalLiteral |
 function } rightParen;

#===#
Definition of a FUNCTION
NOTE: How do we advertise which functions an implementation offer?
In the OpenAPI document I suppose!
#===#
function = identifier {argumentList};

argumentList = leftParen [positionalArgument] rightParen;

positionalArgument = argument [{ comma argument }];

argument = characterLiteral
| numericLiteral
| geomLiteral
| propertyName
| arithmeticExpression;

94

#===#
An arithemtic expression is an expression composed of an arithmetic
operand (a property name, a number or a function that returns a number),
an arithmetic operators (+,-,*,/) and another arithmetic operand.
#===#
arithmeticExpression = arithmeticOperand arithmeticOperator arithmeticOperand;

arithmeticOperator = plusSign | minusSign | asterisk | solidus;

arithmeticOperand = propertyName
| numericLiteral
| function;

#===#
Definition of NUMERIC literals
#===#
numericLiteral = unsignedNumericLiteral | signedNumericLiteral;

unsignedNumericLiteral = exactNumericLiteral | approximateNumericLiteral;

signedNumericLiteral = [sign] exactNumericLiteral | approximateNumericLiteral;

exactNumericLiteral = unsignedInteger [period [unsignedInteger]]
| period unsignedInteger;

approximateNumericLiteral = mantissa "E" exponent;

mantissa = exactNumericLiteral;

exponent = signedInteger;

signedInteger = [sign] unsignedInteger;

unsignedInteger = {digit};

sign = plusSign | minusSign;

#===#
Definition of CHARACTER literals
#===#
characterLiteral = characterStringLiteral
 | bitStringLiteral
 | hexStringLiteral;

characterStringLiteral = quote [{character}] quote;

bitStringLiteral = "B" quote [{bit}] quote;

hexStringLiteral = "X" quote [{hexit}] quote;

95

propertyName = identifier;

identifier = identifierStart [{identifierPart}];

identifierStart = alpha [{octothorp|dollar|underscore|alpha|digit}];

identifierPart = alpha | digit;

character = alpha | digit | specialCharacter | quoteQuote;

quoteQuote = quote quote;

NOTE: This production is supposed to be any alphabetic character from
the character set.
#
I use the A-Z, a-z range here as placeholders because:
(a) I have no idea how to indicate that alpha can be
any alphabetic UTF-8 character
(b) the validators I am using can only handle ASCII chars
#
alpha = "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" | "I" | "J" | "K" |
 "L" | "M" | "N" | "O" | "P" | "Q" | "R" | "S" | "T" | "U" | "V" |
 "W" | "X" | "Y" | "Z" |
 "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" | "i" | "j" | "k" |
 "l" | "m" | "n" | "o" | "p" | "q" | "r" | "s" | "t" | "u" | "v" |
 "w" | "x" | "y" | "z";

digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9";

specialCharacter = percent | ampersand | leftParen | rightParen | asterisk
| plusSign | comma | minusSign | period | solidus | colon
| semicolon | lt | gt | eq | questionMark | underscore
| verticalBar | doubleQuote ;

octothorp = "#";

dollar = "$";

underscore = "_";

doubleQuote = "\"";

percent = "%";

ampersand = "&";

quote = "'";

leftParen = "(";

rightParen = ")";

96

asterisk = "*";

plusSign = "+";

comma = ",";

minusSign = "-";

period = ".";

solidus = "/";

colon = ":";

semicolon = ";";

lt = "<";

eq = "=";

gt = ">";

questionMark = "?";

verticalBar = "|";

bit = "0" | "1";

hexit = digit | "A" | "B" | "C" | "D" | "E" | "F" | "a" | "b" | "c" | "d" | "e" | "f";

#===#
Definition of TEMPORAL literals
#
NOTE: Is the fact the time zones are supported too complicated for a
simple CQL? Perhaps the "core" of CQL should just support UTC.
#===#
temporalLiteral = fullDate | fullDate "T" utcTime;

fullDate = dateYear "-" dateMonth "-" dateDay;

dateYear = digit digit digit digit;

dateMonth = digit digit;

dateDay = digit digit;

utcTime = timeHour ":" timeMinute ":" timeSecond [timeZoneOffset];

timeZoneOffset = "Z" | sign timeHour;

97

timeHour = digit digit;

timeMinute = digit digit;

timeSecond = digit digit [period digit {digit}];

#===#
Definition of GEOMETRIC literals
#
NOTE: This is basically BNF that define WKT encoding; it would be nice
to instead reference some normative BNF for WKT.
#===#
geomLiteral = pointTaggedText
 | linestringTaggedText
 | polygonTaggedText
 | multipointTaggedText
 | multilinestringTaggedText
 | multipolygonTaggedText
 | geometryCollectionTaggedText
 | envelopeTaggedText;

pointTaggedText = "POINT" pointText;

linestringTaggedText = "LINESTRING" lineStringText;

polygonTaggedText = "POLYGON" polygonText;

multipointTaggedText = "MULTIPOINT" multiPointText;

multilinestringTaggedText = "MULTILINESTRING" multiLineStringText;

multipolygonTaggedText = "MULTIPOLYGON" multiPolygonText;

geometryCollectionTaggedText = "GEOMETRYCOLLECTION" geometryCollectionText;

pointText = leftParen point rightParen;

point = xCoord yCoord [zCoord];

xCoord = signedNumericLiteral;

yCoord = signedNumericLiteral;

zCoord = signedNumericLiteral;

lineStringText = leftParen point {comma point} rightParen;

polygonText = leftParen lineStringText {comma lineStringText} rightParen;

multiPointText = leftParen pointText {comma pointText} rightParen;

98

multiLineStringText = leftParen lineStringText {comma lineStringText} rightParen;

multiPolygonText = leftParen polygonText {comma polygonText} rightParen;

geometryCollectionText = leftParen geomLiteral {comma geomLiteral} rightParen;

envelopeTaggedText = "ENVELOPE" envelopeText;

envelopeText = leftParen westBoundLon comma eastBoundLon comma northBoundLat comma
southBoundLat [comma minElev comma maxElev] rightParen;

westBoundLon = signedNumericLiteral;

eastBoundLon = signedNumericLiteral;

northBoundLat = signedNumericLiteral;

southBoundLat = signedNumericLiteral;

minElev = signedNumericLiteral;

maxElev = signedNumericLiteral;

99

Appendix B: Queryables
The following is an extract from [2], including only the description of the Queryables extension for
styling [http://docs.opengeospatial.org/per/19-010r2.html#get_queryables], used in VTP2 to expose the list of
properties available for filtering.

A similar document is foreseen to be part of the OGC API - Features filtering extension, once it is
ready.

B.1. Requirement Class "Queryables"

Requirements Class

http://www.opengis.net/t15/opf-styles-1/{m_n}/req/queryables

Target type Web API

Dependency OGC API - Features - Part 1: Core, conformance class "Core"
[http://docs.opengeospatial.org/is/17-069r3/17-069r3.html#rc_core]

B.1.1. Fetch the queryable properties of the features in a collection

This operation returns the list of queryable properties that can be used to filter features in a
collection and supports clients in constructing expressions for selection criteria in queries on
features in the collection.

The response is an object with a member queryables, which contains an array with a description of
the queryable properties of the feature collection. "Queryable" means that the property may be
used in query expressions, such as in a query extension to OGC API - Features or as part of a
selection criteria in an OGC SLD/SE or Mapbox styling rule.

Often the list of queryables for a collection will be a subset of all available properties in the features
and be restricted to those properties that are, for example, indexed in the backend datastore to
support performant queries.

For each queryable property the following information is or may be provided:

• id (required) - the property name for use in expressions.

• type (required) - the data type of the property, one of

◦ string

◦ uri

◦ enum

◦ number

◦ integer

◦ date

◦ dateTime

100

http://docs.opengeospatial.org/per/19-010r2.html#get_queryables
http://docs.opengeospatial.org/per/19-010r2.html#get_queryables
http://www.opengis.net/t15/opf-styles-1/{m_n}/req/queryables
http://docs.opengeospatial.org/is/17-069r3/17-069r3.html#rc_core

◦ boolean

• description (optional) - a description of the property.

• required (optional) - indicator whether the property is always present in features.

• mediaTypes (optional) - in general, the representation of the queryables is meant to be
independent of the feature encoding. However, this is not always the case. For example, length
restrictions or namespace prefixes may result in different property identifiers for the same
property. To support this, the definition of a queryable may be restricted to one or more feature
encodings (media types).

• pattern (optional, only for "string" and "uri") - a regular expression to validate the values of the
property.

• values (required, only for "enum") - an array of valid values of the property.

• range (optional, only for "number", "integer", "date" and "dateTime") - the range of valid values
expressed as an array with two items. Open ranges can be expressed using null for the
minimum or maximum value.

Note that this is not about providing a schema for the features in the collection. A schema provides
a complete syntactic definition of a specific feature encoding, typically for validation purposes.
Schema languages like XML Schema or JSON Schema are much richer and support more complex
syntactic rules, but are also more complex to parse.

Requirement 3 /req/queryables/op

A The server SHALL support the HTTP GET operation at the path
/collection/{collectionId}/queryables for each collection.

Requirement 4 /req/queryables/success

A A successful execution of the operation SHALL be reported as a
response with a HTTP status code 200.

101

B The content of that response SHALL be based upon the OpenAPI
3.0 schema component "queryables", if the itemType of the
collection is feature:

Listing 4. queryables

type: object
required:
 - queryables
properties:
 queryables:
 type: array
 nullable: true
 items:
 oneOf:
 - $ref: 'queryable-string'
 - $ref: 'queryable-enum'
 - $ref: 'queryable-number'
 - $ref: 'queryable-boolean'
 - $ref: 'queryable-date'
 - $ref: 'queryable-dateTime'

Listing 5. queryable

type: object
nullable: true
required:
 - id
 - type
properties:
 id:
 type: string
 nullable: true
 description: |-
 the property name for use in expressions
 title:
 type: string
 nullable: true
 description: |-
 the title of the property for presentation to a
 human user
 description:
 type: string
 nullable: true
 description: |-
 a description of the property
 required:
 type: boolean
 nullable: true
 default: false
 description: |-
 indicator whether the property is always present
 in features102

 mediaTypes:
 type: array
 nullable: true
 description: |-
 In cases where a property is available only in a
 subset of the supported feature encodings, the
 list of the media types of the encodings can be
 specified.

 This capabilitiy is also needed for cases where
 the names of properties may differ between
 feature encodings. For example, identifiers in an
 XML/GML encoding may include a namespace,
 in GeoJSON or MVT this is not the case.

 There are other reasons, too. For example, the
 property identifier in a Shapefile may be
different
 because of length restrictions.
 items:
 type: string
 type:
 type: string
 nullable: true
 description: |-
 the data type of the property
 enum:
 - string
 - uri
 - enum
 - number
 - integer
 - date
 - dateTime
 - boolean
discriminator:
 propertyName: type
 mapping:
 string: queryable-string
 enum: queryable-enum
 uri: queryable-string
 number: queryable-number
 integer: queryable-number
 date: queryable-date
 dateTime: queryable-dateTie
 boolean: queryable-boolean

C The id member of each queryable SHALL be unique.

Note that this requirements class does not specify any requirements on collections that are not
feature collections.

103

Listing 6. queryable-string

allOf:
- $ref: 'queryable'
- type: object
 nullable: true
 properties:
 pattern:
 type: string
 nullable: true
 description: |-
 a regular expression to validate the values
 of the property

Listing 7. queryable-enum

allOf:
- $ref: 'queryable'
- type: object
 nullable: true
 required:
 - values
 properties:
 values:
 type: array
 nullable: true
 description: |-
 the list of values of the property
 items:
 type: string

Listing 8. queryable-number

allOf:
- $ref: 'queryable'
- type: object
 nullable: true
 properties:
 range:
 type: array
 nullable: true
 minItems: 2
 maxItems: 2
 items:
 type: number
 nullable: true
 description: |-
 a range of valid values; open range can be
 expressed using `null`

Example 1. JSON encoding of queryables

{
 "queryables": [
 {
 "id": "name",
 "description": "the name of the vegetation area",
 "required": true,
 "type": "string",
 "example": "[A-Z0-9]{5}"
 },
 {
 "id": "type",
 "description": "the dominant characteristic of the vegetation area",
 "type": "enum",
 "values": [
 "grassland",
 "forest",
 "farmland"
]
 },
 {
 "id": "count",
 "description": "the number of cattle",
 "type": "integer",
 "range": [
 0,
 null
]
 },
 {
 "id": "fenced",
 "description": "indicator whether the area is walled or fenced",
 "type": "boolean"
 },
 {
 "id": "inspectionDate",
 "description": "the date of the last inspection",
 "type": "date",
 "range": [
 "2010-01-01",
 null
]
 },
 {
 "id": "lastUpdate",
 "description": "the date of the last update of the feature",
 "type": "dateTime",
 "range": [
 "2018-01-01T00:00:00Z",

104

Listing 9. queryable-boolean

allOf:
- $ref: '#/components/schemas/queryable'

Listing 10. queryable-date

allOf:
- $ref: 'queryable'
- type: object
 nullable: true
 properties:
 range:
 type: array
 nullable: true
 minItems: 2
 maxItems: 2
 items:
 type: string
 format: date
 nullable: true
 description: |-
 a range of valid values; open range can be
 expressed using `null`

Listing 11. queryable-dateTime

queryable-dateTime:
 allOf:
 - $ref: 'queryable'
 - type: object
 nullable: true
 properties:
 range:
 type: array
 nullable: true
 minItems: 2
 maxItems: 2
 items:
 type: string
 format: date-time
 nullable: true
 description: |-
 a range of valid values; open range can be
 expressed using `null`

 null
]
 }
]
}

105

Appendix C: Filter capabilities
A filter capabilities document allows a server to enumerate the supported filter operators, as well
as documenting the filter functions included for extensibility.

The following document is an excerpt from a GeoServer 2.17.x filter capabilities, as implemented
during the STAC and OGC API - Features and Catalogues Sprint [https://www.opengeospatial.org/projects/

initiatives/ogcapi-featu].

The list of functions has been truncated to keep the example short, more information about
GeoServer supported functions can be found in the filter functions reference
[https://docs.geoserver.org/stable/en/user/filter/function_reference.html].

{
 "conformanceClasses": [
 "http://www.opengis.net/spec/cql/1.0/conf/core",
 "http://www.opengis.net/spec/cql/1.0/conf/spatial",
 "http://www.opengis.net/spec/cql/1.0/conf/temporal"
],
 "capabilities": [
 {
 "name": "logical",
 "operators": ["and", "or", "not"]
 },
 {
 "name": "comparison",
 "operators": ["lt", "lte", "gt", "gte", "gt", "neq", "like", "between", "in"]
 },
 {
 "name": "spatial",
 "operators": [
 "equals",
 "disjoint",
 "touches",
 "within",
 "overlaps",
 "crosses",
 "intersects",
 "contains"
]
 },
 {
 "name": "temporal",
 "operators": [
 "after",
 "before",
 "begins",
 "begunby",
 "tcontains",

106

https://www.opengeospatial.org/projects/initiatives/ogcapi-featu
https://docs.geoserver.org/stable/en/user/filter/function_reference.html

 "during",
 "endedby",
 "ends",
 "tequals",
 "meets",
 "metby",
 "toverlaps",
 "overlappedby",
 "anyinteracts",
 "intersects"
]
 },
 {
 "name": "arithmetic",
 "operators": ["+", "-", "*", "/"]
 }
],
 "functions": [
 {
 "name": "Area",
 "returns": {
 "name": "area",
 "type": "number"
 },
 "arguments": [{ "name": "geometry", "type": "geometry" }]
 },
 {
 "name": "Concatenate",
 "returns": {
 "name": "result",
 "type": "string"
 },
 "arguments": [{ "name": "text", "type": "string" }]
 },
 {
 "name": "IEEEremainder",
 "returns": {
 "name": "remainder",
 "type": "number"
 },
 "arguments": [
 {
 "name": "dividend",
 "type": "integer"
 },
 {
 "name": "divisor",
 "type": "integer"
 }
]
 },

107

 {
 "name": "PolyLabeller",
 "returns": {
 "name": "result",
 "type": "geometry"
 },
 "arguments": [
 {
 "name": "polygon",
 "type": "geometry"
 },
 {
 "name": "precision",
 "type": "number"
 }
]
 },
 {
 "name": "abs",
 "returns": {
 "name": "abs",
 "type": "integer"
 },
 "arguments": [{ "name": "int", "type": "integer" }]
 },
 {
 "name": "acos",
 "returns": {
 "name": "arc cosine",
 "type": "number"
 },
 "arguments": [{ "name": "value", "type": "number" }]
 },
 {
 "name": "all",
 "returns": {
 "name": "return",
 "type": "string"
 },
 "arguments": []
 },
 {
 "name": "any",
 "returns": {
 "name": "return",
 "type": "string"
 },
 "arguments": []
 }
]
}

108

Appendix D: Revision History
Table 4. Revision History

Date Editor Release Primary
clauses
modified

Descriptions

November 11,
2019

G. Hobona .1 all initial version

November 20,
2019

A. Aime .2 1 added document
number

December 10,
2019

A. Aime .3 all references,
bibliography,
chapter
structure and
UML model

January 7, 2020 A. Aime .4 all more work on
document
structure

January 21, 2020 A. Aime .5 all updated UML
model, update
findings based
on latest
meetings

February 7, 2020 A. Aime .6 all improved filter
descriptions,
added CQL
examples

February 18,
2020

A. Aime .7 6 expanding
previous work
section

February 26,
2020

A. Aime .8 10 GeoSolutions
server and client
implementation
s described

February 26,
2020

C. Portele .9 10 interactive
instruments
server
implementation
described

109

Date Editor Release Primary
clauses
modified

Descriptions

March 19, 2020 G. Hobona .10 various updated
bibliograpy and
updated
contributors list,
fixed figure
identifiers

March 24, 2020 G. Hobona and
A. Aime

.10 various applied G.
Hobona review
feedback,
expanded on
reccomendation
s and future
work

March 25, 2020 C. Reed and A.
Aime

.11 various applied C. Reese
review feedback

March 28, 2020 C. Portele .12 implementation
s

Remove
contents shared
with the
summary ER

March 30, 2020 A. Aime .13 various Refine
GeoSolutions
implementation
entries, merge
findings and
results

April 14, 2020 A. Aime .13 various Refine
GeoSolutions
implementation
entries, merge
findings and
results

April 8, 2020 J. Yutzler .14 GeoPackage
filtering

First draft of the
GeoPackage
filtering section

April 10, 2020 J. Jacovella-St-
Louis

.15 GeoPackage
filtering,
Implementation
s

Ecere
components
description

April 11, 2020 J. Johnson .16 Implementation
s

Terranodo
components
description

110

Date Editor Release Primary
clauses
modified

Descriptions

April 14, 2020 S. Taleisnik .16 Implementation
s

Skymantics
components
description

April 29, 2020 T. Idol and
Andrea Aime

.17 various applied T. Idol
review feedback

April 29, 2020 J. Harrison and
Andrea Aime

.17 various added target use
case

May 4th, 2020 G. Hobona and
Andrea Aime

.17 various applied G.
Hobona review
feedback

111

Appendix E: Bibliography
[1] Portele, C.: OGC Testbed-14 Next Generation APIs: Complex Feature Handling Engineering
Report. OGC 18-021,Open Geospatial Consortium, https://docs.opengeospatial.org/per/18-021.html
(2019).

[2] Portele, C.: OGC Testbed-15: Styles API Engineering Report. OGC 19-010r2,Open Geospatial
Consortium, http://docs.opengeospatial.org/per/19-010r2.html (2019).

112

https://docs.opengeospatial.org/per/18-021.html
http://docs.opengeospatial.org/per/19-010r2.html

	{title}
	Table of Contents
	Chapter 1. Subject
	1.1. Target Scenario

	Chapter 2. Executive Summary
	2.1. Document contributor contact points
	2.2. Foreword

	Chapter 3. References
	Chapter 4. Terms and definitions
	4.1. Abbreviated terms

	Chapter 5. Overview
	Chapter 6. Introduction
	Chapter 7. Previous work
	7.1. Filter Encoding
	7.2. Catalog Services
	7.3. CQL adoption and extension in open source software
	7.4. OGC Testbed 14
	7.5. OGC Testbed 15
	7.6. STAC and OGC API Sprint, OGC API Filtering extension

	Chapter 8. Filter Conceptual Model and VTP2 testing considerations
	8.1. Conceptual model
	8.2. The CQL language

	Chapter 9. Filtering Tiles
	9.1. Vector Tiles Pilot 2 testing operator subset
	9.2. Queryables
	9.3. Single and multi-layer tile filtering

	Chapter 10. Filtering GeoPackages with Vector Tiles
	10.1. Attributes in Attributes Tables
	10.2. Spatial Filtering

	Chapter 11. Implementations
	11.1. GeoSolutions D100 OGC API - Features
	11.2. Terranodo D100 OGC API - Tiles
	11.2.1. CQL
	11.2.2. Sample Requests
	11.2.3. Queryables

	11.3. interactive instruments D101 Features, Tiles and Styles API
	11.3.1. The starting point
	11.3.2. Support for filters

	11.4. GeoSolutions D102 OGC API - Tiles
	11.5. Ecere D103 Features & OGC API - Tiles
	11.5.1. Examples of filtering expressions used with the OGC API - Features
	11.5.2. Use of filtering for vector tiles
	11.5.3. Multi-layer and scale-based filtering (OGC API - Tiles)
	11.5.4. POST requests to the OGC API - Tiles
	11.5.5. Filtering driven by styles
	11.5.6. Retrieving attributes separately from geometry
	11.5.7. CMSS Expressions Syntax

	11.6. Ecere D105 Client
	11.7. Ecere D107 GeoPackage producer & client
	11.8. Skymantics D104 Client
	11.8.1. Challenges Encountered
	11.8.2. Filtering Within Unity and Mapbox Studio
	11.8.3. Future Work

	11.9. GeoSolutions D104 Client
	11.9.1. Attribute filter
	11.9.2. Spatial filter
	11.9.3. Temporal filter
	11.9.4. Mixed filters

	Chapter 12. Results and findings
	12.1. Issues Encountered
	12.1.1. CQL language issues
	12.1.2. Quoted identifiers
	12.1.3. ENVELOPE constructor
	12.1.4. EXISTS operator

	12.2. Findings
	12.2.1. Client-side versus Server-side filtering
	12.2.2. Client-side control of contents and default filtering
	12.2.3. Filter capabilities and desired minimum filtering operator set

	12.3. Recommendations
	12.3.1. CQL CRS geometry support
	12.3.2. Filter capabilities support
	12.3.3. Support for complex filtering

	12.4. Future work
	12.4.1. Selection of returned attributes
	12.4.2. JSON based filtering languages
	12.4.3. Explore multi-layer tile filtering and querying support

	Appendix A: CQL BNF
	Appendix B: Queryables
	B.1. Requirement Class "Queryables"
	B.1.1. Fetch the queryable properties of the features in a collection

	Appendix C: Filter capabilities
	Appendix D: Revision History
	Appendix E: Bibliography

