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LICENSE AGREEMENT

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of charge and subject to the
terms set forth below, to any person obtaining a copy of this Intellectual Property and any associated
documentation, to deal in the Intellectual Property without restriction (except as set forth below), including without
limitation the rights to implement, use, copy, modify, merge, publish, distribute, and/or sublicense copies of the
Intellectual Property, and to permit persons to whom the Intellectual Property is furnished to do so, provided that
all copyright notices on the intellectual property are retained intact and that each person to whom the Intellectual
Property is furnished agrees to the terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include, in addition to
the above copyright notice, a notice that the Intellectual Property includes modifications that have not been
approved or adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY PATENTS THAT
MAY BE IN FORCE ANYWHERE IN THE WORLD. THE INTELLECTUAL PROPERTY IS PROVIDED "AS IS", WITHOUT
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE DO NOT WARRANT THAT THE FUNCTIONS
CONTAINED IN THE INTELLECTUAL PROPERTY WILL MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF
THE INTELLECTUAL PROPERTY WILL BE UNINTERRUPTED OR ERROR FREE. ANY USE OF THE INTELLECTUAL
PROPERTY SHALL BE MADE ENTIRELY AT THE USER’S OWN RISK. IN NO EVENT SHALL THE COPYRIGHT HOLDER
OR ANY CONTRIBUTOR OF INTELLECTUAL PROPERTY RIGHTS TO THE INTELLECTUAL PROPERTY BE LIABLE FOR
ANY CLAIM, OR ANY DIRECT, SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
WHATSOEVER RESULTING FROM ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF
OR IN CONNECTION WITH THE IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF THIS
INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the Intellectual Property
together with all copies in any form. The license will also terminate if you fail to comply with any term or condition
of this Agreement. Except as provided in the following sentence, no such termination of this license shall require the
termination of any third party end-user sublicense to the Intellectual Property which is in force as of the date of
notice of such termination. In addition, should the Intellectual Property, or the operation of the Intellectual Property,
infringe, or in LICENSOR’s sole opinion be likely to infringe, any patent, copyright, trademark or other right of a
third party, you agree that LICENSOR, in its sole discretion, may terminate this license without any compensation or
liability to you, your licensees or any other party. You agree upon termination of any kind to destroy or cause to be
destroyed the Intellectual Property together with all copies in any form, whether held by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all or part of the
Intellectual Property shall not be used in advertising or otherwise to promote the sale, use or other dealings in this
Intellectual Property without prior written authorization of LICENSOR or such copyright holder. LICENSOR is and
shall at all times be the sole entity that may authorize you or any third party to use certification marks, trademarks
or other special designations to indicate compliance with any LICENSOR standards or specifications.

This Agreement is governed by the laws of the Commonwealth of Massachusetts. The application to this Agreement
of the United Nations Convention on Contracts for the International Sale of Goods is hereby expressly excluded. In
the event any provision of this Agreement shall be deemed unenforceable, void or invalid, such provision shall be
modified so as to make it valid and enforceable, and as so modified the entire Agreement shall remain in full force
and effect. No decision, action or inaction by LICENSOR shall be construed to be a waiver of any rights or remedies
available to it.

None of the Intellectual Property or underlying information or technology may be downloaded or otherwise
exported or reexported in violation of U.S. export laws and regulations. In addition, you are responsible for
complying with any local laws in your jurisdiction which may impact your right to import, export or use the
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Intellectual Property, and you represent that you have complied with any regulations or registration procedures
required by applicable law to make this license enforceable.
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Chapter 1. Subject
Recent years have seen a significant increase in the use of three-dimensional (3D) data in the
Internet of Things (IoT). The goal of the 3D IoT Platform for Smart Cities Pilot was to advance the
use of open standards for integrating environmental, building, and IoT data in Smart Cities. Under
this initiative a proof of concept (PoC) has been conducted to better understand the capabilities to
be supported by a 3D IoT Smart City Platform under the following standards: CityGML, IndoorGML,
SensorThings API, 3D Portrayal Service, and 3D Tiles.

1.1. Executive Summary
An OGC Pilot was carried out to bring together city models (indoor or outdoor) and sensor
observations so that observable properties could be defined and visualized for both individual and
aggregate components of buildings and larger city units. Dynamic sensor observations were
provided for measuring Particulate Matter (PM) - the mixture of solid particles and liquid droplets
in the air. The observations measured both PM2.5 air quality (fine particulate matter of a mass per
cubic meter of air of particles with a size generally less than 2.5 micrometres) and building room
occupancy. The PM2.5 air quality was measured and synthesized for outdoor point locations and
building room occupancy was synthesized for single room locations. Observations were made
available through services that implemented the OGC SensorThings API standard. Features
represented using the OGC IndoorGML building model and 3D-Tiles / glTF city model features were
provisioned through implementations of the OGC API – Features – Part 1:Core standard. IndoorGML
is a profile of the OGC Geography Markup Language (GML) standard. Various clients deployed in
the pilot fetched both features and observations keyed to them by a GML identifier (GML ID),
written as ‘gmlid’ in markup, so as to allow users to interact with city feature rendered according to
their dynamically observed properties. Clients included stand-alone dashboard applications,
applications based on 3DPS (3D Portrayal Service), and AR (Augmented Reality) visualization tools.

Web Processing Service (WPS) and OGC API - Processes implementations were deployed to
aggregate and/or interpolate observations from multiple locations in order to estimate the
observable properties of larger city features such as building floor interiors and the air masses
above city streets or blocks. These derived observations could either be visualized directly in client
applications or posted to implementations of the SensorThings API as new data.

The pilot demonstrated a viable standards-based distributed architecture for connecting dynamic
sensor observations with modeled city features. It also demonstrated the importance of aligning
feature / sensor identifiers and other infrastructure data in order to sustain robust Smart City 3D-
IoT capabilities.

Smart cities are communities where information technology and data are used to address social,
economic, and environmental challenges. Smart Cities solutions are both popular for improving
city livability, and necessary for responding to trends such as climate change and increasing
urbanization.

The pilot recommends the following future work:

• There is a need to look into optimization of real-time access to geospatial data for indoor maps
and navigation. Development of an indoor viewer plugin that can stream data from a server.
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• Vuforia SDK is only specific to Microsoft Windows and Apple MacOS. Exploring ARCore and
ARkit to handle markerless Augmented Reality (similar to the Pokemon Go game) would be
worth investigating as they run on Linux.

• Future development should include a mobile application that retrieves IndoorGML from an
OGC API - Features server to display indoor maps in Augmented Reality.

• There is a need to consider improvements for serving representations of buildings, based on
zoom level, via an implementation of the draft OGC API – Tiles specification.

1.2. Document contributor contact points
All questions regarding this document should be directed to the editor or the contributors:

Contacts

Name Organization Role

Charles Chen Skymantics Contributor

ChenYu Hao GISFCU Contributor

Hyemi Jeong Gaia3D Contributor

Josh Lieberman OGC Contributor

Ki-Joune Li Pusan National
University

Contributor

Logan Stark Skymantics Contributor

Ravi Nishesh Cyient Contributor

Steve Liang SensorUp Contributor

Theo Braun Helyx Contributor

Thunyathep
Santhanavanich

HFT Stuttgart, Steinbeis Contributor

Volker Coors HFT Stuttgart, Steinbeis Editor

1.3. Foreword
Attention is drawn to the possibility that some of the elements of this document may be the subject
of patent rights. The Open Geospatial Consortium shall not be held responsible for identifying any
or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any
relevant patent claims or other intellectual property rights of which they may be aware that might
be infringed by any implementation of the standard set forth in this document, and to provide
supporting documentation.
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Chapter 3. Terms and definitions
For the purposes of this report, the definitions specified in Clause 4 of the OWS Common
Implementation Standard OGC 06-121r9 [https://portal.opengeospatial.org/files/?artifact_id=38867&version=2]
shall apply. In addition, the following terms and definitions apply.

● feature

A feature is an abstraction of real world phenomena (source: OGC 08-126)

● WFS model server

A server component that delivers a representation of a feature such as a building. The interface
of the model server is OGC API - Features in this Pilot.

● particulate matter

The mixture of solid particles and liquid droplets in the air (source: UK DEFRA)

● Sensor

An entity capable of observing a phenomenon and returning an observed value. Type of
observation procedure that provides the estimated value of an observed property at its output.
[OGC 12-000]

Further terms and definitions used in the Pilot are specified in detail the Conceptual Model in
section 5 .

3.1. Abbreviated terms
• FoI Feature of Interest

• GL Graphics Library

• glTF GL Transmission Format

• GML Geography Markup Language

• I3S Indexed 3D scenes

• IDW Inverse distance weighting

• IoT Internet of Things

• JSON JavaScript Object Notation

• LOD Level of Detail

• STAPI SensorThings API

• UML Unified Modeling Language

• WFS Web Feature Service

• WPS Web Processing Service
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Chapter 4. Overview

4.1. Background
Smart cities are communities where information technology and data are used to address social,
economic, and environmental challenges. Smart City solutions are both popular for improving city
livability, and necessary for responding to trends such as climate change and increasing
urbanization.

Sejong City, founded in 2007, is the new administrative city of South Korea. The Sejong 5-1 District is
the site of a wide-ranging Smart City Initiative, led by the Korea Land and Housing (LH)
Corporation. Projects under this initiative include the following:

• AR/VR Service (Smart City Experience Zone)

• Smart Street

• Smart Park

• Smart Facilities

A video of the Sejong City Smart City Initiative is available on YouTube: https://www.youtube.com/
watch?v=beSEhFawY_I&feature=youtu.be.

Figure 1. visionary smart city

The Korea Land and Housing (LH) Corporation sponsored this OGC Pilot that complements the
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work being advanced in the Sejong Smart City Initiative.

4.2. Overview the ER
This ER is organized as follows:

Section 5 introduces the concept of a 3D IoT Smart City Platform and its main components, 1)
outdoor 3D City Model (CityGML), Indoor 3D model (IndoorGML), Geo-IoT (SensorThings API). It
describes the core concept of the integration of implementations of the SensorThings API and 3D
Building model, representing both Indoor and Outdoor environments.

Section 6 analyses the use cases in more detail and develops a software architecture to implement a
3D IoT Smart City Platform. It provides recommendations on preferred strategies.

The concept of the 3D IoT Smart City Platform described in section 6 has been implemented by the
participants of this Pilot. The result is not one unified system but the implementation of the two
main use cases on outdoor air quality and indoor occupancy. Some components have been used in
both use cases, others are specific for one use case only. The Technology Integration Experiment
(TIE) tables give a good overview of the components and how they are used in the different
prototypes.

The WFS model server, with an OGC API - Features interface, is used in both use cases as well as in
data preparation as documented in section 7.1.

Section 7.2 documents the implementation of the first use case on the Outdoor 3D City Model and
outdoor air quality sensors, esp. real-time monitoring on micro-dust.

Section 7.3 focuses on the Indoor Building Model and indoor sensors such as real-time monitoring
on indoor occupancy.

Section 8 provides a summary of the main findings and discusses links to other tasks such as
deployments of implementations of OGC API - Features, WPS, and 3DPS.

Appendix A provides the API definition of the WPS to get access to the spatial interpolation of the
air quality measurements as developed in this pilot
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Chapter 5. Concept of 3D IoT Smart City
Platform

5.1. Goal
The goal of the pilot was to advance the use of open standards for integrating environmental,
building, and internet of things (IoT) data in Smart Cities. Under this initiative a proof of concept
(PoC) was conducted to better understand the capabilities to be supported by a 3D IoT Smart City
Platform under the following standards:

• Fully textured building models represented in CityGML LOD (Level of Detail) 2

• IndoorGML Model of Building interior

• An implementation of OGC API – Features deployed and configured to deliver 3D Building
Models including Building interior (referred to as WFS model server in this engineering report)

• 3D Portrayal Service to stream 3D content for Web-based visualization using glTF and the OGC
community standard 3D-Tiles

• SensorThings API to serve the sensor data

• WPS to provide a spatial distribution model of measured data

The scenarios selected to demonstrate this concept include:

• Real-time monitoring on indoor occupancy of a building

• Real-time monitoring on micro-dust concentration in an urban district

The test area of this Pilot was Sejong City. The district Sejong 5-1 is the site of a wide-ranging Smart
City Initiative, led by the Korea Land and Housing (LH) Corporation. A CityGML model of the
district has been made available. However, the CityGML model was to be processed on a server
hosted in South Korea. For the 3D GeoPortal, the CityGML model was provided as a glTF model via
an implementation of OGC API - Features. In addition, a 3D-Tiles data set was made available as a
secondary data store derived from the CityGML model. One building in the district was made
available as an IndoorGML model. In this pilot, outdoor air quality measurements had been
connected with the 3D building model to visualize the air quality of the district in real time. From a
technical point of view, it required a way to integrate the measurements and the 3D building model
either on the client or on the server. The measured data was provided via a SensorThings API. In
this pilot, both measured and synthetic observations have been used for test purposes. In the
second use case, the occupancies of rooms and floors of a building interior have been connected
with an IndoorGML model. The occupancy data was provided again via a SensorThings API. In this
pilot, only synthetic data of occupancy was used.

5.2. Conceptual Model
One key question of this pilot was how to integrate observations such as air quality measurements
with 3D models of the built environment. This is a fundamental concept in Smart Cities, as almost
all use cases require the integration of environmental and internet of things (IoT) data with City
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Objects such as buildings. The concept used here is explained in detail to ensure that there is a
common understanding of the different elements as well as the used terms.

The objects in the real-world can be defined as a set of phenomenon space A — {a1, a2 , …, an} and a
set B — {b1, b2 , …, bm} which can be derived through observation from the phenomenon space A.

• f: A → B

• b = f(a), a ∈ A, b ∈ B

An example is the case of the sensor systems are installed in one building observing the number of
people and Carbon Dioxide (CO2) concentration in room 1. In this case, the phenomenon space is a
room, and A is a set of rooms. A function f0: A → B0 maps the number of people to a room. B0 is the
set of natural numbers ℕ. A second function f1: A → ℝ maps the CO2 concentration of a room in ppm.

• A — Set of rooms (a1, a2 , …, an)

• f0 — The number of people [people]

• f0: A → ℕ

• f1 — The CO2 concentration [ppm]

• f1: A → ℝ

• b0
1 = f0(a1) — The number of the people in room 1

• b1
1 = f1(a1) — The CO2 concentration in room 1

5.2.1. Model with a time space

To include time depended measurements into the model, the functions are depending on the time
space which can be described as follows:

• f: A x T → B

• b = f (a,t) example

• bm
n,tp = fm(an,tp) — the property m in area n at time p

5.2.2. Sensor view

In the view of sensors in the real-world, they are observing the properties(f) of phenomenon space
(A) at a time(t). For example, the sensors observing the number of people and CO2 concentration in
room 1 at time p can be described as follows:

• f: A x T → B

• b0
1,tp = f0(a1,tp) — the number of the people in room a1 at time tp

• b1
1,t0 = f1(a1,tp) — the CO2 concentration in room a1 at time tp

5.2.3. Feature view

A feature is an abstraction of real world phenomena (OGC 08-126). Within the context of this pilot, a
feature or object can further be considered to be an element of the phenomenon space which is
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described by several properties. These properties can be either time dependent or time
independent.

• F: (A, f0(a,t), f1(a,t),…, fn-1(a,t), g0(a),…gm-1(a))

• f — time-dependent properties

• g — time-independent properties

• n — number of time-dependent properties

• m — number of time-independent properties

5.2.4. Relation to the SensorThings

In SensorThings, there are two links to features in the world. Thing entities refer to those physical
objects or systems in the real-world directly occupied and monitored by sensors (corresponding to
Platform entities in the Observations and Measurements formalism). SensorThings observations
are also connected to FeatureOfInterest (FoI) entities that have one or more properties or attributes
whose values can be estimated as a result of a sensor or IoT device observation. These attributes
are listed and described in the ObservedProperties entity. The sensors and IoT devices are listed and
described in the Sensors entity. The distinction between Thing and FeatureOfInterest is critical for
remote sensing situations, however, for the in-situ sensors utilized in this Pilot, it is not necessary to
distinguish Things and FeatureOfInterest entities. For Pilot purposes, information about the real-
world entity being observed was largely maintained in the Thing entity.

The SensorThings API provides an open and unified way to interconnect IoT devices over the Web
as well as interfaces to interact with and analyze their observations. The foundations of the
SensorThings API are the relational connections between entities in the system and the way they
are used to model systems in the real world. The entities have a natural relationship which enables
any IoT sensing device from any vertical industry to be modelled in the system. An IoT device or
system is modeled as a Thing. A Thing has a Location with one or more Datastreams. Each
Datastream observes one ObservedProperty with one Sensor and has many Observations from the
Sensor. Each Observation read by the Sensor estimates the value of an observed / observable
property for one particular FeatureOfInterest. Together, these relationships provide a flexible
standard way to describe and model any sensing system (OGC 15-078r6).

According to the conceptual model, as we want to integrate the building data and IoT data together,
the Thing entity (or equally FoI) refers to a set of objects or physical systems (A — {a1, a2, …, an})
which are systems of buildings or building parts such as room, wall, roof etc. Each Thing contains a
link referring to their associated building objects in the CityGML models containing all the building
information. The time-independent results (g0..n(a0..m)) can be stored as properties of the Thing / FoI
while the time-dependent results (f0..n(a0..m,t0..p)) are stored in the Datastream entity collecting the
raw time-series sensor data. For example, a CO2 sensor system installed in room A measuring the
CO2 concentration can be modeled in a SensorThings UML diagram as in Figure 2.

14



Figure 2. Example modeled SensorThings UML

If the sensor Observations data is post-processed by a process tool resulting in a new set of
computed Observations, then the SensorThings entities have to be updated as follows. The Sensors
resource is updated to describe the process tool. The ObservedProperty resource can either remain
the same or be updated. The Thing and FeatureOfInterest resource are updated to collect the
process tool information with association links to the 3D city model and the original sensor system.
For example, if the WPS tool is used to compute the air quality index (AQI) or CO2 concentration of
floor B based on data from all rooms in floor B. This system can be modeled in a SensorThings UML
diagram as in Figure 3.

Figure 3. Example modeled SensorThings UML with post-processed data
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5.2.4.1. Deriving Higher-Level Observations

SensorThings API also enables the continuous processing of Observations from multiple
Datastreams to generate a higher-level Observation. Conceptually it can be described as follows:

• B0 — Set of observations from the phenomenon space A0

• B1 — Set of observations from the phenomenon space A1

• B2 — Set of higher-level observations describing the phenomenon space A2, and derived from
other observations

• f: B0 x B1 x T → B2

• b2 = f(b0, b1, t), b2 ∈ B2

For example, dew point temperature can be calculated with observed air temperature and relative
humidity.

• B0 — Set of air temperature observations

• B1 — Set of relative humidity observations

• B2 — Set of dew point temperature observations

• b2 = f(b0, b1, t) — dew point temperature can be approximated by using the following formula:
dew point temperature = air temperature - ((100 - relative humidity)/5)

In many cases, a higher-level Observation is derived from one set of Observation, i.e., from the same
Datastream. For example, the speed of a moving feature can be derived from the moving feature’s
location_observation1 in t1 and location_observation2 in t2.

In practice, higher-level Observations can be derived through the chaining of multiple SensorThings
API implementations through the publish/subscribe-based MQTT protocol. The following diagram
Figure 4 describes the concept.

Figure 4. Higher-level observations derived from multiple SensorThings Datastreams

5.2.5. Summary

In the pilot, the measured data was provided as raw data in both use cases without chaining of
multiple SensorThings API services. In the case of air quality measurement, the data was either
visualized as a diagram in the 3D GeoPortal as measured, or an interpolation was calculated using
all measurements in a given area by means of a WPS. One example of chaining SensorThings API
implementations could be the aggregation of air quality measurements over time, e.g. to provide an
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hourly average of the air quality measurement. In the case of the occupancy sensor, the data is not
based on real observations, but synthetic ones by an algorithm. In a real-world application, sensing
the number of people in a given area typically requires chaining implementations of the
SensorThings API that process several sensors such as camera systems and interpretation of the
imagery. Since the focus of the pilot was on the integration and validation of the interfaces, a
simplified synthetic occupancy sensor approach was chosen.

In both Pilot use cases, given the in-situ nature of the sensors, FeatureOfInterest, and the Things
could be considered to refer to the same physical entity. One way to link the Thing and Observation
with the feature and its properties would be by way of the CityGML Dynamizer extension that will
be part of CityGML 3.0. It extends the CityObject in CityGML and introduces links to the relevant
SensorThings API. An alternative approach adds the unique identifier of the CityObject to the Thing
in the SensorThings API and maps the Observation to the attributes of the CityObject. This approach
does not require an extension of CityGML. As the CityGML model was not accessible outside South
Korea, this extension of the CityGML was more or less not doable. The integration of SensorThings
API and the 3D City model has been implemented by linking the Thing to the CityObject via a unique
identifier. It is important to notice that this approach requires a stable identifier in case of an
update of the model.
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Chapter 6. Architecture of the 3D IoT Smart
City Platform
The software architecture adopted to implement a 3D IoT Smart City Platform is described in this
chapter.

6.1. Use Cases and Activity diagrams

6.1.1. Use Case 1: air quality

The aim of this use case is the 3D visualization of a 3D city model together with outdoor air quality
measurements. It includes two stakeholders:

• the facility manager who has an interest in monitoring the outside air quality, and

• the administrator of the 3D Geo-Portal

Other stakeholders such as citizens are represented by the facility manager use case in this 3D IoT
pilot. The facility manager is also responsible for the maintenance of the sensors. However, in this
pilot it is assumed that the sensors do not need maintenance.

Figure 5. Use Case diagram

6.1.1.1. Use Case 1-1: Monitor the outside air quality using the 3D Geo-Portal

The facility manager uses a web-based system to monitor the current air quality. The air quality is
measured by a number of sensors distributed in the Sejong area, for example in the lamp posts
along the main streets. The measurements are visualized in real time in a 3D environment together
with a 3D city model to get a better understanding of the air quality in along the streets and the
built environment. In the pilot, only fine dust PM2.5 is taken into account as an indicator of air
quality for reasons of simplicity. As air quality is a continuous phenomenon, the sensor
measurement is interpolated in real time to get a distribution of the air quality in space. The air
quality distribution is simplified by using an Inverse Distance Weighted (IDW) interpolation. The
facility manager can get access to the current and historic measurements of every single sensor.
The historic measurements are then shown as a line chart diagram in the 3D viewer.

18



6.1.1.2. Use Case 1-2: Administration of 3D Geo-Portal

The administrator of the web-based service - the 3D GeoPortal - has to prepare the 3D model for
web-based 3D visualization. In addition, the sensors have to be registered and integrated into the
3D model to ensure that the sensor readings are visualized in the correct 3D location.

6.1.1.3. Activity Diagrams Use Case 1-1

6.1.1.3.1. Visualizing a 3D scene with real time outdoor air quality using 3D Portrayal Service

The activity diagram in Figure 6 shows a general approach to get a 3D scene including a 3D building
model and air quality data based on sensor measurements. The client selects a region of interest
defined by a rectangular area. The 3D building model is retrieved via a 3D Portrayal Service for the
specified area. The data delivery format can be specified in the request. In general, for larger 3D
scenes, the data delivery format has to support streaming of a tiled data set such as those
conforming to the OGC community standards Indexed 3D scenes (I3S) or 3D-Tiles. In this 3D IoT
pilot, 3D-Tiles was used in all implementations. In this Activity Diagram, the terrain model of the 3D
globe is used. No additional terrain data is provided. The client may need to project the 3D building
model to the terrain model of the globe just to avoid a visual mismatch of the building geometry,
and the terrain model that might appear due to different source and resolution of the building
model and terrain ("flying buildings").

In a second request, the air quality sensors within the specified area are selected from a
SensorThings server. Each Sensor supports multiple data streams of different measures of
phenomena. In this Use Case, each sensor provides one data stream on fine dust PM2.5. Time
resolution may differ from sensor to sensor.

The client visualizes the data streams of the air quality sensors. Each data stream can be visualized
as a line chart to show the exact sensor readings over time. In addition, the measured data of all
sensors at a given point in time can be interpolated to show the spatial distribution of the air
quality. Within the scope of the 3D IoT Pilot, an IDW interpolation is sufficient for this purpose.

To summarize the flow of information:

1. select a region of interest by using a 3D Portrayal Service

2. fetch data streams of all air quality sensors within this region

3. interpolate and visualize air quality measures in real time at client
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Figure 6. visualize 3D scene with real time outdoor air quality using 3D Portrayal Service

6.1.1.3.2. Visualizing 3D scene with real time outdoor air quality using predefined area

Th Activity Diagram in Figure 7 is similar to the above one. The only difference is that it loads a
predefined area - Sejong - by a URL instead of using the 3D Portrayal Service API to query a region
from the 3D GeoPortal. All participants worked with the same 3D model of the Sejong area and used
3D Tiles for content delivery in this pilot. In this case it is sufficient to provide a predefined 3D
Tileset for web-based visualization.

The main difference is the request to fetch the 3D building geometry:

The 3D Portrayal Service retrieves the 3D Buildings of the area of Sejong (with CRS:84 bounding box
coordinates of 127.238631,36.478551,127.260261,36.492008) through a request that looks like:
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http://193.196.37.89:8092/service/v1?service=3DPS&acceptversions=1.0&request=GetScene&
layers=building&format=application/json&boundingbox=127.238631,36.478551,127.260261,36
.492008

The request returns the JavaScript Object Notation (JSON) key pair value with the URL to the
tileset.json.

http://193.196.37.89:8092/Assets_3diot/sejong/tileset.json

This tileset can be retrieved directly if it is generated in a batch process and persistently stored on
the 3D GeoPortal using the same URL: "http://193.196.37.89:8092/Assets_3diot/sejong/tileset.json"

To summarize the flow of information:

1. get predefined 3D scene (Sejong area) by URL

2. fetch data streams of all air quality sensors within this region

3. interpolate and visualize air quality measures in real time at client
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Figure 7. visualize 3D scene with real time outdoor air quality using predefined region

6.1.1.3.3. Using a web processing service to interpolate air quality data

Instead of doing the interpolation of the air quality measurements at the client, it can be done using
a WPS at the back end. This will shift computational load from the client to the server and may
allow more complex interpolation methods later.

To summarize the flow of information:

1. get predefined 3D scene (Sejong area) by URL

2. fetch data streams of all air quality sensors within this region

3. WPS receives air quality sensor data from Sensor Things API
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4. WPS interpolates sensor data and sends a coverage / map to the client

5. client visualizes air quality "map" in real time

Figure 8. Activity Diagram using a WPS to interpolate air quality data

6.1.1.4. Activity Diagrams Use Case 1-2

6.1.1.4.1. Registration of Air Quality Sensors

The air quality data shall be measured by sensors. However, to set up a test environment, it is
helpful to generate synthetic air quality measurements by a "property estimator" process. It should
be taken into account that measurements of different sensors usually do not have the same time
stamp nor the same time interval. In addition, it is most likely that different sensors from different
manufacturers are used in a real-world scenario. Due to the lack of standards, these sensors usually
use different data formats for the sensor readings. The SensorThings API collects and stores all
these different sensor datasets. The Sensor Things API enables a unified access to all the sensor
readings, in this case PM2.5 fine dust measurements. Besides the data stream, the sensors need to be
registered with a fixed 3D location and a unique identifier. In this pilot, the location of a sensor is
referenced to the World Geodetic System 1984 (WGS 84) datum, but with height above ground.
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Figure 9. Activity Diagram using both synthetic air quality data as well as measured one

6.1.1.4.2. Preparation of the 3D model

Under the assumption that the 3D city model is available in some kind of 3D data store, the region
of interest is retrieved from the data store by a region query. The resulting city model, in this case a
3D building model only, is stored as a CityGML document. This CityGML document is then
converted to a tile-based format to support streaming within the format as well as a non-tiled
format. In this case, the client needs to come up with a streaming strategy by itself.

In this Pilot, all implementations are based on the Cesium globe. The CityGML building models will
be converted to 3D Tiles and to glTF. The entire process is straight forward, different tools can be
used to convert the CityGML document to 3D Tiles and to glTF. The resulting glTF models, and
tileset.json together with the hierarchical tile set will be stored at the 3D GeoPortal with a unique
URI. The Activity diagram in Figure 10 shows the generation of the tiled data set. The generation of
the glTF model follows the same process.
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Figure 10. Activity Diagram Preparation of 3D model

6.1.2. Use Case 2: IndoorGML and Occupancy

The second use case is similar to Use Case 1, but with a focus on building interior and the
observation of the occupancy of an interior space. The aim of this use case is the 3D visualization of
a 3D building model including an indoor model together with occupancy observation. It includes
two stakeholders:

• the facility manager who has an interest in monitoring the occupancy of an interior space such
as a shop, and

• the administrator of the 3D Geo-Portal

Other stakeholders such as citizens are represented by the facility manager use case in this 3D IoT
pilot. The facility manager is also responsible for the maintenance of the sensors. However, in this
pilot it is assumed that the sensors do not need maintenance.
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Figure 11. Use Case diagram 3D GeoPortal to Monitor Occupancy of an Indoor Space

6.1.2.1. Use Case 2-1: Monitor occupancy of an interior space

The facility manager uses a web-based system to monitor the occupancy of interior spaces. On an
abstract level, this use case is similar to Use Case 1-1. However, the interactive visualization of the
building interior is an additional challenge. Location based Augmented Reality shall be used in
addition to a virtual reality 3D globe. Another challenge is the use of sensors to observe the
occupancy of an interior space. A virtual sensor gives the number of people in a given space.
However, this is the result of a cascading sensor system, for instance one sensor measures the CO2

in ppm and a set of camera sensors observe the space. Based on an algorithm, the number of people
can be derived from these measurements. In this pilot, the virtual sensor generated synthetic data.
Consequently, the architecture took the cascading sensor system into account, as it is an interesting
use case for the use of the SensorThings API.

6.1.2.2. Use Case 2-2: administration of 3D Geo-Portal

The administrator of the web-based service - the 3D GeoPortal - has to prepare the 3D model for
web-based 3D visualization. In addition, the sensors have to be registered and integrated into the
3D model to ensure that the sensor readings are visualized in the correct 3D space. The occupancy
is measured not at a 3D location, but in a space such as a room. The observed space in represented
with a 3D geometry in IndoorGML. The sensor and the observed space have to be linked in this use
case.

6.1.2.3. Activity Diagrams Use Case 2-1

6.1.2.3.1. Visualizing a 3D scene with real time occupancy of an interior space

The activity diagram in Figure 12 shows a general approach to get a 3D building model including
building interior in IndoorGML and occupancy data based on sensor measurements. In this Activity
Diagram, the terrain model of the 3D globe is used. No additional terrain data will be provided. The
client may need to project the 3D building model to the terrain model of the globe just avoid a
visual mismatch of the building geometry and the terrain model that might appear due to different
source and resolution of building model and terrain.

In a second request, the occupancy sensors within the specified part of the building will be selected
from a SensorThings server. Time resolution may differ from sensor to sensor.

The client visualizes the data streams of the occupancy sensors. One occupancy sensor counts the
number of people in a room or a predefined cell of the building Each data stream can be visualized
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as a line chart or a color encoding to show the exact sensor readings over time.

To summarize the flow of information:

1. select the building of interest by using OGC API - Features interface of a WFS model server /
IndoorGML

2. fetch data streams of all occupancy sensors within this building

3. visualization of occupancy of each room and/or cell in real time

Figure 12. visualize 3D scene with real time occupancy using a predefined building model
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6.1.2.4. Activity Diagrams Use Case 2-2

6.1.2.4.1. Registration of Occupancy Sensors

The occupancy of a given space - let it be a single room, or a large open space divided into a set of
cells - is monitored by a virtual sensor. This virtual sensor is based on a cascading sensor system
that observes the space. An algorithm calculates the resulting occupancy based on these
observations. The virtual sensor can be accessed via the SensorThings API. It has to be linked to a
representation of the same space in IndoorGML by the administrator of the 3D GeoPortal.

6.1.2.4.2. Preparation of the 3D model

Under the assumption that the 3D building model is available in some kind of 3D data store, the
region of interest is retrieved from the data store by a region query. The resulting 3D building
model is stored as an IndoorGML document. This IndoorGML document is then converted to glTF as
a non-tiled compressed data format for 3D visualization.

Figure 13. Activity Diagram Preparation of 3D model
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6.2. Overall Architecture
Based on the Use Cases and activity diagrams, three components of the overall architecture have
been identified. The Data layer includes the data sources such as the 3D City Model in CityGML and
3D Tiles, the 3D Building model in IndoorGML, and Sensor data. The data can either be stored in a
database or a file-based resource. On top of the data layer, services grant access to the data. These
services can be data delivery services or processing services. A very simple API just grants access to
a file resource such as direct access to a 3D tiles resource. The server component can be seen as the
backend of a 3D GeoPortal. The client in this pilot is a web-based client in all use cases.

Figure 14. Overall architecture

Three alternatives have been discussed in the pilot within this architecture. In the SensorThings
service content enrichment approach, an “Agent” invokes the Property Estimator (Web Processing
Service) with sensor readings and relevant city / building objects and the results are posted back to
SensorThings as derived observations on identified Thing / Features of Interest

In the second approach City / Building model enrichment, the “Agent” invokes the Property
Estimator (WPS) with sensor readings and relevant city / building objects and the results are posted
back to the WFS model server as observed (dynamic) properties of city / building objects

The third alternative Geo-Portal enrichment is Geo-Portal centric. The Geo-Portal fetches and
visualizes both building / city objects and relevant sensor observations, and invokes the Property
Estimator on this content (or references) and re-renders building / city objects according to the
results

Most of the implementations follow the Geo-Portal enrichment approach in this pilot. In this pilot,
several Geo-Portals have been implemented to test variants in the workflow as well as the relevant
OGC APIs. The following sub-chapters give a short overview of the different approaches. Details on
the implementation are documented in the next chapter.

6.2.1. Overview GeoPortal Cyient
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Figure 15. Workflow of things and GML

6.2.1.1. Air Quality Index and Indoor Occupancy

Air quality index data getting from the OGC SensorThings API, which include all components which
will affect AQI like Carbon Monoxide (CO), Sulphur Dioxide (SO2), Ozone (O3) … etc, along with
location details (latitude, longitude, height). In the same way occupancy data also works.

6.2.1.2. IndoorGML & CityGML

IndoorGML was converted into tileset data which is supported by FME (feature manipulation
engine) or Cesium Command-line interface (CLI). In IndoorGML, all layers were separated
depending upon data, like roof surface, floor surfaces, wall surface …etc. Then on and off layers
also possible. CityGML was also converted into tileset data through FME, and visualized on a portal
as well, with minor adjustments like terrain, offset.

6.2.1.3. 3D-GeoPortal

In the portal tilesets of IndoorGML and CityGML were visualized. On the top of tileset data
serialized as CityGML AQI data, other data obtained from the SensorThings API was displayed, with
devices color-coded based upon thresholds of individual parameters and AQI as well. Inside the
tileset serialized as IndoorGML, occupancy sensor data was displayed. On and off control of
IndoorGML layers was controlled through the portal.

6.2.2. Overview GeoPortal Gaia3D
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Figure 16. Workflow of GML and Sensor data, Indoor occupancy.

6.2.2.1. GML

The steps illustrated in Figure 16 are explained as follows and indicated through parenthesis. The
IndoorGML model was parsed for the geometry and the attribute of the CellSpace of IndoorGML
was saved at the local(1). After parsing, the indoor geometry was visualized using Gaia3D – a globe
platform based on 3D WebGL (2). With parsed data, we calculate the middle point of the CellSpace
geometry to use the point as the position for visualizing indoor occupancy data(5) later.

6.2.2.2. Sensor data visualization

A query was sent to the SensorThings API with the following API path (3) to get the location of the
sensors, the phenomenon time of the observation and the result value of the observation to track
the progress history of the sensor’s value.

/Locations/Datastream/Observation

Per every 10 seconds the query was sent to refresh the data of the sensor. With the location data
and the result value of sensor’s observation, the sensor’s position and value on the globe was
visualized (4). The User can then review the history of the sensor data from the graph.

6.2.2.3. Indoor occupancy data visualization

At (1) is IndoorGML’s data was parsed into two parts: the geometry and the data of CellSpace.
Through GML ID of CellSpace, the Indoor occupancy data was requested from WPS server (5).
Indoor occupancy data is then presented at the position that was calculated at (1). Pre-processed
data in JSON was used for visualization(6) and statistical analysis. The workflow is similar to that of
sensor data visualization.
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6.2.2.4. 3D GeoPortal

At the 3D GeoPortal, the geometry of the IndoorGML including the network and the location of the
occupancy is visualized. For intuitive sight, each room of the building is colored to represent the
value of the occupancy. Visualization of the occupancy value history graph is supported on the
portal.

6.2.3. Overview WPS Helyx

6.2.3.1. Overview of OGC API-Processes (WPS) Property Estimator Implementation

The position of the Property Estimator API within the architecture of the pilot is potentially a
complex one. The API could be designed to support a range of implementations and use cases to
supplement the SensorThings API readings.

For the purposes of this Pilot, the Property Estimator API can be considered an "aggregation model"
sensor to support four identified use cases. The functionality of these four use cases ranges from
standard request-response client-server interactions to purely server-to-server interactions. These
are listed below from simple to complex.

• The Request-Response Client-Server process: This use case is the most traditional approach. The
Client requests an aggregation from the Property Estimator API for a location or feature, which
in turn fetches the relevant information from the Source SensorThings API (STAPI) services,
calculates an aggregation and returns this to the client.

• The Pre-Calculated process: This use case is similar to the first, with the Property Estimator API
subscribing to the Source STAPI services. However, once the data is retrieved the readings are
incorporated into a more complex persisted space-time aggregation model. This runs as a
separate process to the dissemination of the aggregation results. Client applications can then
send a request to the Property Estimator API for an aggregation and the process can draw upon
the persisted model to provide a result. This use case also requires a defined configuration from
which the Property Estimator API can build the model.

• The Event-driven process: This use case treats the Property Estimator API as an ETL (Extract
Transform Load) tool which sits between the Source STAPI services and the aggregation STAPI
service. The API retrieves inputs from the Source STAPI services by subscribing to their MQTT
endpoints. This can be considered the Export component of the API. The API then transforms
the retrieved readings to a spatiotemporal aggregate. The API can then POST this aggregate to
the STAPI aggregation service. This is can be considered the Load component of the event
driven workflow. This use case requires a defined set of STAPI Features of Interest for the API to
subscribe to.

• The "agent" driven circular STAPI process: This use case is an alternate event-driven process
managed by an agent. The agent retrieves the defined STAPI Features of Interest from the
aggregate STAPI service and then uses this to trigger the same process as use case two. The
nature of this "agent" is at present abstract. It could be fulfilled by the client or by another
scheduled or smart process within the Property Estimator API.

The technical implementation for this pilot covered the first two of these approaches, with the
technical architecture in place to satisfy the third approach. In order to do so the implementation
was flexible, light weight and only focused on the necessities. This prioritized the end utilization
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rather than the need to produce a full production ready implementation. Hopefully given the
results of this implementation a number of decisions can then be made regarding which is the most
appropriate use case(s) to support going forward.

The Property Estimator API component can be broken down into 3 parts:

• The API exposed to the client and the STAPIs. This includes how the API should be structured
and what standards it should follow.

• The property estimation. This includes how the estimations are calculated, for both occupancy
and air quality, and how the input data is incorporated.

• The output process. The nature in which the data is returned to the requester, potentially
accounting for whether the requester is a service or client.

The API structure took inspiration from the Routing Pilot work conducted in 2019, which extended
the draft OGC API – Processes standard. This is the most recent implementation of an OpenAPI
inspired processing service, and is the closest the pilot participants had to a proto-standard
processing service, along-side the draft OGC API - Common specification and OGC API - Features
standard. That said, the scope of this pilot may not allow for a full HATEOAS (Hypermedia as the
Engine of Application State) implementation given the flexibility required to support all of the other
components. The API components exposed to the client should be sufficient to support the first two
use cases. From the client perspective this is fairly straight forward. Only a few endpoints need be
exposed to allow for the client to request an aggregation. This satisfied the client aspects of
approaches 1 and 2, and the same endpoints could be used for approach 3.

The request JSON payload structure depended on the type of estimation required, either air quality
or occupancy. The proposed example structure for air quality is below, for location estimate.
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{
  "name": "airReadingRequest1",
  "air readings": [
    {
      "aggregation type": "on-the-fly",
      "default sensor type": [
        "PM2.5"
      ],
      "default radius": 100000,
      "default start time": "2019-11-28T04:28:58.704Z",
      "default end time": "2019-11-28T04:41:49.838Z",
      "default sensorThing API": "SensorUp",
      "centroids": [
        {
          "type": "Feature",
          "geometry": {
            "type": "Point",
            "coordinates": [
              127.3005228, 36.6296889
            ]
          }
        }
      ]
    }
  ]
}

The proposed example structure for air quality is below, for GMLID Feature estimate.
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{
  "name": "string",
  "air readings": [
    {
      "aggregation type": "on-the-fly",
      "default sensor type": [
        "PM2.5"
      ],
      "default radius": 100000,
      "default start time": "2019-11-28T04:28:58.704Z",
      "default end time": "2019-11-28T04:41:49.838Z",
      "default sensorThing API": "SensorUp",
      "GMLIDs": [
        {
          "ID": "UUID_4552ad98-c383-48c2-a36b-fc517b2c3ffa"
        }
      ]
    }
  ]
}

The proposed example structure for occupancy is below.

{
  "name": "string",
  "occupancy readings": [
    {
      "default radius": 100000,
      "default start time": "2019-11-28T04:28:58.704Z",
      "default end time": "2019-11-28T04:41:49.838Z",
      "default sensorThing API": "SensorUp",
      "GMLIDs": [
        {
          "ID": "UUID_4552ad98-c383-48c2-a36b-fc517b2c3ffa",
          "start time": "2019-05-21T18:25:43-05:00",
          "end time": "2019-05-21T18:25:43-05:00"
        }
      ]
    }
  ]
}

Two methods for property estimation were required:

(1) Simple property estimation: This provided an estimation for a single point given the input
parameters in the request payload. This single point was either chosen by the user or derived from
the users chosen GMLID. The air quality estimation used the centroid x,y,z, the radius from
centroid, start and stop times and a sensor type defining the particulate. This information was then
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used to take an average through time, retrieving information from all of the sensors that fall within
the chosen 3D spherical radius. For the occupancy estimation all of the ID elements within the
chosen GML ID element were checked to see which elements have associated sensors. These
sensors were then used to take an average number of people in the chosen element. This satisfied
the simple asynchronous processing component.

(2) Persisted property estimation: This estimation created a persisted spatiotemporal model. The
model was represented by raster data sets, each representing an area and height range (or bin) for
a specific day. In order to create these raster datasets the persisted model accepted a configuration
POSTed to the 'administer' endpoint of the API. This configuration provides information required
by the model, including the chosen STAPI from which to build the model, the sensor type to base the
model on and the minimum and maximum bounding box coordinates for the model extent. Once
this configuration is received, the process checked that there were sensors for the chosen sensor
type, on the chosen STAPI in the chosen area. If this is confirmed an MQTT client connection was
made between the Processes API and the chosen SensorThings API, to observe all FeatureOfInterest
updates. When an observation is received the process checked that the response matched the
configuration criteria and if so added the data to the appropriate point dataset. Every time a data
set was updated and had more than 3 point values, the IDW Interpolation was run to create the
interpolated raster for that specific point dataset. Once the model had been running for a while
successfully retrieving regular MQTT updates from the chosen STAPI, a catalog of raster datasets
was generated. When an estimate request is made by the user specifying the "aggregation type" as
"persisted" the user receives a link to a resource on the estimate endpoint. This JSON resource
contains a list of links to the raster data sets that satisfy their estimate request. The user can then
choose to download all or a subset of these raster data sets to display or interrogate on the client
side. This satisfied the persisted model processing component and such a model could be drawn
upon by any of the above approaches. Due to the scope of this pilot, this estimation process was
constrained to just air quality.

These estimation processes relied on the SensorThings API storing a GML ID within either the
FeatureOfInterest elements or Thing elements to associate sensors with parts of buildings. The
result of the estimation request was stored as a resource at the estimation endpoint of the API, with
the client being given the location of this resource in the 'Location' header of the POST response.

The implementation of the above approach is outlined in section 7.

6.2.4. Overview SensorThings API SensorUp

SensorUp’s role in the pilot was to provide two SensorThings API services with simulated
observations. One SensorThings API implementation offered simulated indoor occupancy data and
the other offered simulated PM2.5 data. Figure 17 describes the components that SensorUp
developed to create the simulated data.
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Figure 17. Architecture of the SensorUp PM2.5 and Indoor Occupancy Simulator

6.2.5. Air Quality Simulator

SensorUp provided synthetic fine dust PM2.5 observations for the five selected air quality stations.
Four steps have been used to create the simulator:

• Selecting the location of five air quality stations;

• Considering 26 air quality stations around real stations;

• Appling Random Walk method to estimate synthetic observations for 26 air quality stations;

• Calculating the synthetic observation for each real station utilizing IDW interpolation and
pushing calculated observations to the STAPI;

Step 1: Five air quality stations were selected. The criteria for selecting these five stations was that
they were the closest stations to the area of study in this pilot provided by aqicn.org [http://aqicn.org/

city/korea/sejong/bugang-myeon]. The five air quality stations were called “US” because their synthetic
PM2.5 observations are unknown and should be calculated by the simulator. Their names and
locations are summarized in the following Table.

Table 1. Selected Air Quality Stations

Station name Location STA link to the Thing

Osong-eup (127.3005228, 36.6296889) link [https://ogc-3d-iot-
pilot.sensorup.com/v1.0/

Things(33978)]

Hansol-dong (127.252529, 36.474172) link [https://ogc-3d-iot-
pilot.sensorup.com/v1.0/

Things(33971)]

Areum-dong (127.249653, 36.5177469) link [https://ogc-3d-iot-
pilot.sensorup.com/v1.0/

Things(33964)]

Bugang-myeon (127.370516, 36.527029) link [https://ogc-3d-iot-
pilot.sensorup.com/v1.0/

Things(33957)]

Sinheung-dong (127.292253, 36.592906) link [https://ogc-3d-iot-
pilot.sensorup.com/v1.0/

Things(33950)]
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Step 2: In this step, 26 stations have been randomly selected around real stations (i.e., “US” stations).
They were called “KS” because it is assumed that their PM2.5 observations are known. In other
words, their PM2.5 observations were estimated using the Random Walk method
[https://en.wikipedia.org/wiki/Random_walk].

Step 3: In step 3, firstly, to start the process of simulating the PM2.5 observations for “UK” stations,
initial synthetic PM2.5 observations for “KS” stations was needed. Six classes describing the index for
the air quality were considered. Then, each of those 26 “KS” stations was randomly assigned to an
air quality class. Air quality classes have been extracted by considering the Air Quality Index Scale
and Color Legend provided by [aqicn.org]. The properties of each class are shown in Figure 18.
Secondly, the random walk method was applied to estimate smoother synthetic PM2.5 observations
for each “KS” station. So, every 10 seconds, a new PM2.5 value was estimated based on the random
walk method for each of those 26 “KS” stations. It is worth mentioning that the walking value is set
to be 20 ug/m3.

Figure 18. The air quality index provided by aqicn.org [http://aqicn.org]

Step 4: In this step, firstly the geographical distance between “KS” stations and “US” is calculated.
Secondly, the value of PM2.5 (calculated by Random Walk method) for all 26 “KS” stations and also
their geographical distance to the “US” station are fed into the IDW interpolation. The output of
applying the IDW interpolation is the calculated PM2.5 observation for the “US” station. Finally, the
calculated PM2.5 values for all “US” stations will be pushed to the STAPI.

The process of simulating air quality observations is shown in Figure 19.
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Figure 19. The methodology applied to simulate air quality

Figure 20 shows a visualization of the air quality simulator. All "US" and "KS" stations are shown,
and color coded according to their PM2.5 observations.
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Figure 20. The air quality simulator

6.2.5.1. Occupancy Simulator

We use three steps to create the simulators:

• Loading an IndoorGML file and creating an adjacency graph

• Filtering unnecessary nodes/edges from the adjacency graph to create a connectivity graph

• Simulating the occupancy and pushing it to STAPI

Step 1: The occupancy simulator gets an IndoorGML dataset as input and extracts the adjacency
graph with navigable and non-navigable nodes and edges. In this graph, nodes represent cells and
edges are the connection between the cells. A weight is assigned to each edge based on the
Euclidean distance between nodes.

Step 2: In step 2, nodes are classified into navigable and non-navigable cells by using semantic
information provided in the IndoorGML, i.e., the description of each cell. In this pilot, non-
navigable cells are areas where authorization is required for entering that area, such as electric
room, fire pump room, etc. Navigable cells, on the other hand, include areas where they are
accessible by public, for example, lobby, stairs, meeting rooms, etc. Then, all non-navigable cells
and edges connected to them, as well as parking lots where this pilot is not concerned of its
occupancy, need to be removed from the graph. The remaining nodes and edges form a
connectivity graph that can be used for occupancy simulation. In the simulator, the number of
people in each node is updated in a configurable frequency and the results are then pushed to
STAPI Figure 21.

40



Figure 21. General scheme of occupancy simulator

Step 3: In the simulator, a random number (representing the number of people in a cell) is assigned
to some random nodes. In every updating process of occupancy of a node, a person can either stay
in the node or he can go to another node considering the weight value of each connected edge. The
weight value has a direct relation with Euclidean distance between two nodes and it is calculated
as:

Where node i is connected to another node j, wij is the weight value of the edge connecting nodes i
and j, and dij is euclidean distance between two nodes i and j. Therefore, the longer the distance
between two nodes, the lower the chance of choosing that edge and its connected node for
transition. Figure 22 shows this process for a connectivity graph consisting of five nodes A, B, C, D,
and E, in different timestamps. In this figure, numbers in the circles are occupancy, arrows show
the transition of a person to a different or same node, and numbers on the edge of the connectivity
graph represent the weight values.

Figure 22. The occupancy updating process for five node A, B, C, D, and E in different timestamps. Numbers
in the circles show the occupancy

Figure 23 shows the connectivity graph of the second floor of Alphadom building. In this figure,
circles are nodes of the connectivity graph, and white lines are the edges. Occupancy is coded into
different colors in each node. By the end of updating occupancy, the results are pushed to STAPI.
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Figure 23. A visualization of occupancy simulator. Occupancy is color coded

6.2.6. Overview Augmented Reality GeoPortal Skymantics

6.2.6.1. IndoorGML

Two approaches were taken when trying to import and visualize either the Alphadom or Lotte
World data. Note that Lotte World is a recreation complex. Initially a custom C# script was utilized
to import the IndoorGML data and convert each feature to a game object for automatic
propagation. This was limited by the way JSON would get parsed. Some of the features would not
convert properly when parsing the data. The second approach was to use the STEMLAb InViewer
desktop plugin for Unity. This did get the IndoorGML to visualize and run in Unity. The difficulty
came when the end user wanted to quickly view the IndoorGML data again, as they have to input
the IndoorGML source information every time. Given the file size of the IndoorGML data, storing it
locally on the mobile device would not be an option.

Recommendations for further work: regarding this would be to have an indoor viewer inspired
plugin created that would stream the data from a server.

6.2.6.2. 3D Tiles

Importing and Rendering 3D tiles into Unity posed a bit of a challenge. The first approach was to
use the Mapbox Software Development Kit (SDK) for Unity – the 3D games engine (also referred to
as Unity3D). It was the initial choice for rendering map data in Unity3D. Unfortunately, despite
having a tileset.json file associated with the data, it was not possible to import the data into the
studio using the SDK. Best guess is that the SDK does not support the B3DM file structure. A possible
solution to this is to use the NASA-AMMOS /Unity3DTiles plug in for Unity 3D. This plugin allows
you to visually display the data locally or by streaming it to Unity for rendering and visualization.
When the participants tried to run it, there were several errors while compiling.
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Recommendations for further work: despite having the ability stream 3D Tile data, the size of the
dataset being streamed might cause performance issues if there is not a fast network connection
available. The file size of the data might cause an issue performance on a mobile app.

6.2.6.3. SensorThings API

The approach that was used was to use the Unity3D network handler to make the GET request to
the SensorThings API. This required that we create a code container gameobject that made the
request and parsed the data and another script that made the button and text association that
would display the final result retrieved from the api. First the URL was filtered to only request the
PM2.5 data and sorted so the most recent data was displayed at the top.

http://193.196.138.56:8080/frost-
airquality/v1.0/Datastreams(6)/Observations?$select=resultTime,result&$orderby=resultT
ime%20desc

Once that data was received, we had to parse the JSON. Unity3D does not have a natively built-in
JSON handler, but a plugin was used.

Once the data is parsed it has to be handed off to a debugger.log in Unity3D that has a line
associated with it to display the data being received in a gameobjected labeled text. This value text
is associated with a button User Interface (UI) that is blended into the image that appears once the
image target is triggered.

AR (Augmented Reality) was used as a part of this pilot. Vuforia SDK was installed into Unity3D for
AR to work. To make this all come together a QR Code was created that would trigger an image.
That image would house the button and text data spoken about above. The result of the API call
would be displayed in the results section of the rendered image on the mobile device.

Recommendations for further work: Unity 3D can still be used for AR visualization of STAPI data.
Vuforia SDK is only specific to Windows and Mac. Exploring ARCore and ARkit to handle the AR
would be worth investigating as they run on Linux. The idea of markerless AR might also be a good
idea for a future test. This is similar to Pokemon Go. When a user is in close proximity to the assets
they want to view it would pop up on their screen.

6.2.7. Overview GeoPortal STT
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Figure 24. CityThings concept

6.2.7.1. Basic of CityThings (CityGML – SensorThings)

The CityThings concept is a simple approach to manage and integrate the CityGML 3D city model
data (Figure 24A) and sensor or IoT data streams from the SensorThings (Figure 24B). The
associations between the sensor systems and the 3D city models (Figure 24AF) are created and
stored by the enrichment on the SensorThings at the properties of the physical sensor systems
which are stored in as a Key Pair Value (KPV) in the Things’s property array and must contain the
unique CityGML ìdentifier (gmlid) of the building sections where the sensor systems belong to. This
SensorThings server that has already been enriched with the linkage to the CityGML city model is
referred to as CityThings. In addition, other important information or associations can be added to
the Things’s property array such as an association with the WFS model server. For example, the
following JSON shows an example of the Things entity from the CityThings.

44



{
    "name": "Air Quality Sensor 1",
    "description": "Air Quality Sensor Station in Sejong",
    "properties": {
        "citygmlid":"[CityGML's gml-id here]",
        "deploymentCondition": "Deployed in the third-floor balcony",
        "wfsAssociations": [
            {
                "Type": "Feature",
                "Link":
"https://wfs.domain.local/collections/Sector5buildings/items/35"
            },
            {
                "Type": "Collection",
                "Link": "https://wfs.domain.local/collections/Sector5buildings"
            },
            {
                "Type": "Feature",
                "Link": "https://wfs.domain.local/collections/HeliPad/20"
            }
        ]
    }
}

6.2.7.2. The CityThings and the 3D Geoportal

The CityGML models were to be converted to the OGC 3D Tiles format and stored on the OGC 3D
Portrayal Service (Figure 24C) to be visualized on the GeoPortal. The attribute information of the
CityGML model was to be stored in the 3D Tiles dataset, which included the unique gmlid on each
building or building part. With the CityThings setup, users or GeoPortals (clients) can use this gmlid
to make a request for sensor or IoT datastreams through the SensorThings interface. For example,
the following HTTP request shows a request for the SensorThings Datastream which observes
temperature and locations recorded in a CityGML model.

http://<STA-Base>/Datastreams?$expand=Thing&$expand=ObservedProperty&
$filter=Things/properties/citygmlid eq ‘citygmlid-here’&
$filter=ObservedProperty/name eq ‘temperature’&
$filter=Datastream/unitOfMeasurement eq ‘Celsius’

6.2.7.3. The CityThings and the WPS – Property Estimator

There are two main approaches to handle the datastreams from the WPS (Figure 24E) which are:

1. Storing the processed data in the SensorThings API implementations, and

2. Sending the processed data to the client directly.

If the WPS process required high processing power and long processing time, the processed data
should be stored in the SensorThings. In this case, a new set of Things, Sensors, FeaturesOfInterest
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and Datastreams entities that represent the WPS should be registered in the SensorThings API
implementations to avoid confusion between the raw dataset and processed dataset. If the WPS
process required low processing power and short processing time, the processed data can be
transferred directly to the clients. The comparison and evaluation of these two approaches are
needed to ensure better performance and scalability.
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Chapter 7. Implementation of the 3D IoT
Smart City Platform
The concept of the 3D IoT Smart City Platform described in section 6 has been implemented by the
participants of this Pilot. The result is not one unified system but the implementation of the two
main use cases on outdoor air quality and indoor occupancy. Some components are used in both
use cases, others are specific for one use case only.

The developed components and the four GeoPortals implemented in the 3D IoT Pilot are available
at the OGC 3D IoT Pilot persistent demo page

note

LINK TO BE ADDED, SEE ISSUE 101

The components used in both use cases, as well as the data preparation, are documented in section
7.1. It includes:

• 3D Models in CityGML and IndoorGML

• the WFS model server by GIS.FCU

Section 7.2 documents the implementation of the first use case on the Outdoor 3D City Model and
outdoor air quality sensors, especially real-time monitoring of micro-dust. The section covers the
following components:

• STT Geoportal

• WFS model server by GIS.FCU for 3D buildings

• WPS property estimator by Helyx SIS.

Section 7.3 focuses on the Indoor Building Model and indoor sensors such as real-time monitoring
of indoor occupancy. The section covers the following components:

• Gaia3D Geoportal

• Cyient Geoportal

• Skymantics Geoportal (Augmented Reality)

7.1. Components / Services used in both air quality and
indoor occupancy use case

7.1.1. Preparing 3D Models in CityGML and IndoorGML

7.1.1.1. CityGML and 3D Tiles

Due to the security situation in Korea, export of any digital maps to outside of Korea is forbidden by
the law. For the 3D IoT pilot project, the pilot participants were obliged to use 3D tiles data of the
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Sejong smart city area derived from CityGML data sets to avoid conflict with Korean Law. The
derivation process is composed of the steps: first the conversion of CRS from the local reference
system to EPSG:3857 and second, derivation of CityGML data to 3D tiles by FME. During the
conversion process through FME, the gml ID of each feature in CityGML data was mapped to 3D
Tiles as shown in Figure 25.

Figure 25. Mapping Attributes (GML ID) from CityGML to 3D Tiles by FME.

As the Sejong’s CityGML data is not contained with real-world height information on each building,
the pilot participants clamped the building models to fit the 3D ellipsoid on the web-client. In the
Cesium web client, this is done by adjusting the height offset of the model matrix of the 3D Tiles
with the following JavaScript code:
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tileset.readyPromise.then(function () {
        var heightOffset = 99 //height offset here;
        var boundingSphere = tileset.boundingSphere;
        var cartographic = Cesium.Cartographic.fromCartesian(boundingSphere.center);
        var surface = Cesium.Cartesian3.fromRadians(cartographic.longitude,
cartographic.latitude, 0.0);
        var offset = Cesium.Cartesian3.fromRadians(cartographic.longitude,
cartographic.latitude, heightOffset);
        var translation = Cesium.Cartesian3.subtract(offset, surface, new Cesium
.Cartesian3());
        tileset.modelMatrix = Cesium.Matrix4.fromTranslation(translation);
    });

After the conversion process, the resulting 3D Tiles building model can be loaded in a Cesium web-
client and clamped to the ellipsoid as shown in Figure 26.

Figure 26. web-based visualization of Sejong 3D Building Model

7.1.1.2. IndoorGML

For the pilot project, the pilot participants prepared an indoor 3D model of a building called
Alphadom, which is a complex shopping mall located in Seongnam city. The initial data was built
using InEditor, which is an open source IndoorGML editing tool available at https://github.com/
STEMLab/InEditor as shown in Figure 27.
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Figure 27. IndoorGML data for Alphadom.

This building is composed of 2115 cells with 22 floors (7 underground floors and 15 ground floors).
While the initial IndoorGML data was given in a local reference system, it is converted to
EPSG:3857 and the height in meters. Since the version of IndoorGML that was applied is v.1.0.3, the
storey attribute is not explicitly defined. The pilot participants added the storey data as a gml
description, as well as the usage of cell. The list of usages is given as below (Figure 28).

Figure 28. List of Cell Usages.

The data set also includes the navigation network to facilitate the path finding in indoor space. It is
defined as a separate space layer from the topographic layer.
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7.1.2. WFS model server by GISFCU

Figure 29. WorkFlow of GML Feature Queries.

In this pilot, the implementation of Web Feature Services follows the OGC API - Features version 1.0
standard, and there are two different datasets: one in CityGML and the other in IndoorGML.

7.1.2.1. CityGML Building Features

The client can send a request with a bounding box or the GML ID of the building to query building
features of Sejong City. The API services will return the GeoJSON encoding building features. Since
the support for 3D models is out-of-scope of GeoJSON in OGC API - Features, the pilot participants
added the glTF model URL as property of building features, so after receiving the GeoJSON
response, the client can also download 3D models directly by parsing the property modelUrl of the
features in the response GeoJSON.

7.1.2.2. Preprocessed glTF

Figure 30. WorkFlow of preprocessing glTF.
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Due to the data policy, the CityGML data cannot be persisted outside South Korea, so the CityGML
dataset was imported to the 3DCityDB and hosted in South Korea. Therefore, participants only had
access to 3DCityDB instead of the source data CityGML. For WFS glTF model provision, it was
proposed to put the glTF building models in the properties of GetFeature responses. This would
required all the building models to be preprocessed, the batch exporting process to be
asynchronous and glTF models to be exported with 3DCityDB Importer Exporter. The exported
building model had to be named as its GML ID, and then the feature could be connected to glTF
model by setting the feature id as GML ID.

7.1.2.3. Sejong City Building Feature and Model Services

Figure 31. Interaction between client and OGC API - Features operations.

The client can query Sejong City Building features with a 2D bounding box using OGC API –
Features capabilities, and query the specific building feature with GML ID via the same API. The
service returns the query result in GeoJSON format, and each building feature has a property
modelUrl. Additionally, after each query operation, the client can download the building model in
glTF format instead of all the buildings by the GetModel operation. The same operation was
implemented in the Testbed 14 CityGML and AR Service. The client can send separate requests with
each of these modelUrls and retrieve the glTF models.

• OGC API - Features

◦ GET /collections/SejongCityBuildings/items

Table 2. GetFeatures Parameter

Parameter Description Remarks

bbox (optional) Only features that have a
geometry that is within
the bounding box are
selected.

Provided as 4 numbers,
WGS84 coordinate
system.

The following example illustrates how to retrieve a feature:

https://tm.gis.tw/3dwfs/collection/SejongCityBuildings/items?
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bbox=127.2515,36.4815,127.2525,36.4825

{
  "type": "FeatureCollection",
  "features": [
    {
      "type": "Feature",
      "id": "UUID_4552ad98-c383-48c2-a36b-fc517b2c3ffa",
      "geometry": {
        "type": "Point",
        "coordinates": [
          127.251864591667,
          36.4819001943496,
          47.444417
        ]
      },
      "properties": {
        "gmlid": "UUID_4552ad98-c383-48c2-a36b-fc517b2c3ffa",
        "modelUrl":
"http://tm.gis.tw/3dwfs/static/citydbLoD2ExampleNoTiling/Tiles/0/0/1/UUID_4552ad98-
c383-48c2-a36b-fc517b2c3ffa.gltf"
      }
    },
    ...
  ]
}

• GetFeature

◦ GET /collections/SejongCityBuildings/items/{featureId}

Table 3. GetFeature Parameter

Parameter Description Remarks

featureId (required) Local identifier of a
feature.

Using GML ID as local
identifier.

The following example requests to retrieve feature:

https://tm.gis.tw/3dwfs/collection/SejongCityBuildings/items/UUID_dadf7c2b-dd5d-4e65-9709-
e3f2ccef8655
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{
  "type": "Feature",
  "id": "UUID_dadf7c2b-dd5d-4e65-9709-e3f2ccef8655",
  "geometry": {
    "type": "Point",
    "coordinates": [
      127.251977477379,
      36.4820200560248,
      46.357362
    ]
  },
  "properties": {
    "gmlid": "UUID_dadf7c2b-dd5d-4e65-9709-e3f2ccef8655",
    "modelUrl":
"http://tm.gis.tw/3dwfs/static/citydbLoD2ExampleNoTiling/Tiles/0/0/2419/UUID_dadf7c2b-
dd5d-4e65-9709-e3f2ccef8655.gltf"
  }
}

After parsing all the modelUrl, the client could download glTF models and visualize them in the glTF
support client.

Figure 32. Showing glTF models of a query result on Cesium client.

7.1.2.4. Indoor Features

There would be several types of Indoor feature queries. A simple spatial query of feature
intersection or containment within the bounding box of the 3D points, semantic query on
classification of the cell or level, and more complex query like querying rest rooms on the optimal
path from point A to point B. Currently there is no classification of the cellspace in the pilot demo’s
IndoorGML dataset, and the IndoorGML dataset is not connected to the Sejong CityGML dataset.
The GeoPortal clients preprocessed the IndoorGML dataset and directly imported the whole Indoor
data to the portal. Thus, the participants suggested that future work on the service should include
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the combination of Indoor and City Building Feature queries. The client scenario of the GeoPortal
would be: First, query the City Building features, and after we get the GML IDs from the feature, we
can query the Indoor features by the same GML IDs we retrieved from the CityGML feature request.
The demo IndoorGML dataset in this pilot supports querying by bounding box and GML ID. The
client can query the whole IndoorGML by GML ID of IndoorFeatures tags in IndoorGML. The
response format is GeoJSON, the GML files can be downloaded by parsing the property modelUrl of
the features in the response GeoJSON.

• GetFeatures

◦ GET /collections/IndoorBuildings/items

Table 4. GetFeatures Parameter

Parameter Description Remarks

bbox (optional) Only features that have a
geometry that is within
the bounding box are
selected.

Provided as 4 numbers,
WGS84 coordinate
system.

The following example requests to retrieve features:

http://tm.gis.tw/3dwfs/collection/IndoorBuildings/items?bbox=127,36,129,40
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{
  "type": "FeatureCollection",
  "features": [
    {
      "type": "Feature",
      "id": "IFs",
      "geometry": {
        "type": "Point",
        "coordinates": [
          127.102431920709,
          37.5133338408155,
          3
        ]
      },
      "properties": {
        "gmlid": "IFs",
        "modelUrl": "http://tm.gis.tw/3dwfs/static/indoorgml/LWG_IndoorGML-
Absolute_CRS.gml"
      }
    },
    {
      "type": "Feature",
      "id": "nc82ac00-9610-7fe8-d6b2-27da02bcb53f",
      "geometry": {
        "type": "Point",
        "coordinates": [
          127.112537967655,
          37.3941675311279,
          -21
        ]
      },
      "properties": {
        "gmlid": "nc82ac00-9610-7fe8-d6b2-27da02bcb53f",
        "modelUrl": "http://tm.gis.tw/3dwfs/static/indoorgml/Alphadom_IndoorGML-
Absolute_CRS-meter-Network_.gml"
      }
    }
  ]
}

• GetFeature

◦ GET /collections/IndoorBuildings/items/{featureId}

Table 5. GetFeature Parameter

Parameter Description Remarks

featureId (required) Local identifier of a
feature.

Using GML ID as local
identifier.
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The following example illustrates a request for retrieving a feature:

http://tm.gis.tw/3dwfs/collection/IndoorBuildings/items/nc82ac00-9610-7fe8-d6b2-27da02bcb53f

{
  "type": "Feature",
  "id": "nc82ac00-9610-7fe8-d6b2-27da02bcb53f",
  "geometry": {
    "type": "Point",
    "coordinates": [
      127.112537967655,
      37.3941675311279,
      -21
    ]
  },
  "properties": {
    "gmlid": "nc82ac00-9610-7fe8-d6b2-27da02bcb53f",
    "modelUrl": "http://tm.gis.tw/3dwfs/static/indoorgml/Alphadom_IndoorGML-
Absolute_CRS-meter-Network_.gml"
  }
}

7.2. Outdoor 3D City Model and outdoor air quality
sensors

7.2.1. STT GeoPortal

Figure 33. Overall system architecture of STT GeoPortal

7.2.1.1. The CityThings and the 3D Geoportal

The overall structure of the STT GeoPortal is shown in Figure 33 which aims to showcase the
integration of air quality data from different sensor sources including the real-world and synthetic
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sensor data. In part A of Figure 33, the sensor data is collected and managed in the SensorThings
API (STAPI) servers which are hosted by different parties (STT, GIS.FCU, Helyx, and SensorUP). Raw
data collected by each sensor can be retrieved through these STAPI servers for presentation directly
on the GeoPortal client as shown in Figure 34. Also, in part E of Figure 33, the WPS server is
available for pre-processing the sensor data from STAPI server and visualize the data to the client
as a heatmap layer as shown in Figure 35. In part B and C of Figure 33, the 3D city model layer is
available in the CityGML format and converted to 3D Tiles format and hosted in the 3D Portrayal
Services which is retrieved by the user client through the GeoPortal. As the attributes of the
building are preserved in the 3D Tiles format, the CityGML and SensorThings API can be linked
with the CityThings concept (part F of Figure 33). The GeoPortal is built based on the
virtualcitySYSTEMS application which is based on the Cesium JavaScript library.

Figure 34. STT GeoPortal with raw air quality sensor data at the sensor location
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Figure 35. STT GeoPortal with processed sensor data from WPS services

7.2.1.2. Provide 3D Tiles building models as OGC 3D Portrayal Services

The converted building models in the 3D Tiles format are hosted on an implementation of the 3D
Portrayal Service standard which is an OGC standard for 3D geospatial content delivery. Users can
make a GetScene request to retrieve a 3D scene represented as 3D geometries. If the request is valid,
users will get a document of the media type as specified in the request format parameter. The
retrieved document contains a 3D scene assembled from the features of the selected layers within
the specified bounding box, represented in the specified format.

Table 6. Example of the request properties in the 3D Portrayal Services

Property name Value

service 3DPS

request GetScene

layers building

format application/json

boundingbox 127.238631,36.478551,1
27.260261,36.492008

For example, in this pilot, user clients can retrieve and visualize the 3D building models with
parameters shown in Table 2 and forms the request URL as http://193.196.37.89:8092/service/v1?
service=3DPS&acceptversions=1.0&request=GetScene&layer=building&format=application/json&
boundingbox=127.238631,36.478551,127.260261,36.492008. This request operation returns the KVP in
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JSON format that contains the tileset.json file of the request 3D Tiles models hosted on the server.
Then, users can use it for rendering the 3D building models on the web client. The overall steps of
using 3D Portrayal Service is shown in Figure 36.

Figure 36. The 3D Portrayal Services request example for 3D building models in Sejong, South Korea

7.2.1.3. The CityThings and the WPS – Property Estimator

There are two main approaches for handling the datastreams from the WPS (Figure 24E) which are
1. Storing the processed data in the SensorThings and 2. Sending the processed data to the client
directly. If the WPS process required high processing power and long processing time, the
processed data should be stored in the SensorThings. In this case, a new set of Things, Sensors,
FeaturesOfInterest and Datastreams entities that represents the WPS should be registered to the
SensorThings to avoid confusion between the raw dataset and processed dataset. If the WPS
process required low processing power and short processing time, the processed data can be
transferred directly to the clients. The comparison and evaluation of these two approaches is
needed to ensure better performance and scalability.

7.2.2. Web Feature Service to provide 3D building models in glTF

7.2.2.1. Generate glTF using 3DCityDB Importer/Exporter

In this pilot, the CityGML is imported to the 3DCityDB and the 3DCityDB is hosted on a VM machine
in South Korea. For serving data encoded in the 3D model format glTF, the steps involved in
generating glTF from 3DCityDB using the 3DCityDB Importer/Exporter tool are listed below:

1. Install 3DCityDB Importer/Exporter: Tested on version 4.2.0, Java 8 Runtime Environment.

2. Connect to the 3DCityDB: Select the database label and fill in the server connection information.

3. Select the KML/COLLADA/glTF Export label and set the output folder, the tool will save a KML file
of the export configuration under the folder. Then we can choose to export objects in the
bounding box or single objects by GMLID. The following screenshot shows the example settings
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to implement the WFS.

4. Start to Export.

Figure 37. Settings of exporting glTF served by GIS.FCU WFS model server.

7.2.2.2. Mapping glTF file by GML IDs

After exporting, all the glTF and DAE 3D models can be found in folders under
[ExportFolderName]\Tiles\0\0. Each folder name is the primary key column id in the table
cityobject in 3DCityDB, and each 3D model file name is the column gmlid in the same table. So
when we query the buildings and their 3D models, select the column id and gmlid, then combine
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them together with the format like .gltf, as result we can get the file paths of each building’s 3D
model: [ExportFolderName]\Tiles\0\0\[id]\[gmlid].gltf.

Figure 38. 3D models exported from 3DCityDB.

7.2.3. SensorThings API for air quality measurement

7.2.3.1. Connecting real world air quality Sensor Measurements

7.2.3.1.1. GIS.FCU Implementation - Air synthetic data from Civil IOT Taiwan Data Service Platform

The air synthetic data is the real PM2.5 data from Taiwan Civil IOT Taiwan Data Service Platform, the
participants collected the data from 19 stations in the air quality station dataset and imported the
data into the database. The GIS.FCU SensorThings API server is developed using ASP.NET C# OData
and MSSQL, the whole server implementation is focused on replacing the Taiwan location
identification by Sejong City and creating a connection between the real-world air quality and
CityGML dataset.

Figure 39. Taiwan Civil IOT Taiwan Data Service Platform. (Link: https://ci.taiwan.gov.tw/dsp/en/
environmental_en.aspx)
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The following steps describe the implementation of the GIS.FCU SensorThings API server:

1. Historical Data Import: The supplied historical data is in Comma-Separated Values (CSV) format.
The data can be imported into a database like MSSQL or PostgreSQL, as both management
systems offer spatial function support.

2. De-identification Sensor Data: Duplicate the sensor data from SensorThings API provided by the
same dataset on Taiwan Civil IOT Taiwan Data Service Platform. Moving all coordinates of
Locations to Sejong City.

3. SensorThings API Development: Build a SensorThings API interface using ASP.NET C# OData.
The following data entities were implemented: Things, Locations, HistoricalLocations,
Datastreams, Sensors, ObservedProperties, Observations and FeaturesOfInterest. Support all
built-in filter operators: Comparison Operators, Logical Operators and Grouping Operators. Also
support built-in query functions: String Functions, Date Functions and Math Functions.

4. Sejong City Building Connection: In order to connect with the CityGML building, property gmlid
is put in the properties of Things, and property array Associations links to the related city
building features.

The following example shows a sensor station that connects a building in Sejong City CityGML and
the associated city building features from GIS.FCU Web Feature Service.
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{
  "@odata.context":
"http://59.120.223.169/SensorThingsAPI/AirQuality/v1.0/$metadata#Things",
  "value": [
    {
      "@iot.id": 1,
      "@iot.selfLink":
"http://59.120.223.169/SensorThingsAPI/AirQuality/v1.0/Things(1)",
      ...
      "properties": {
        "gmlid": "UUID_dadf7c2b-dd5d-4e65-9709-e3f2ccef8655",
        "Associations": [
          {
            "Type": "Feature",
            "Link":
"https://tm.gis.tw/3dwfs/collection/SejongCityBuildings/items/UUID_dadf7c2b-dd5d-4e65-
9709-e3f2ccef8655"
          }
        ]
      },
      "Locations@odata.navigationLink":
"http://59.120.223.169/SensorThingsAPI/AirQuality/v1.0/Things(1)/Locations",
      "HistoricalLocations@odata.navigationLink":
"http://59.120.223.169/SensorThingsAPI/AirQuality/v1.0/Things(1)/HistoricalLocations",
      "Datastreams@odata.navigationLink":
"http://59.120.223.169/SensorThingsAPI/AirQuality/v1.0/Things(1)/Datastreams"
    }
  ]
}

7.2.3.1.2. STT Implementation - Air quality data from South Air Korea Environment Corporation

STT managed to get the air quality data from air quality sensors provided by the World Air Quality
Index project (http://aqicn.org/) and collected it in the SensorThings API server which including
several data types of the air quality such as PM10, PM2.5, NO2, CO, SO2, NO, CO2, pressure, humidity,
wind speed, wind direction, temperature and humidity. STT used the Fraunhofer Opensource
SensorThings-Server (FROST: https://github.com/FraunhoferIOSB/FROST-Server) as the
SensorThings server. As Sejong city is the study area, the participants selected 5 air quality stations
to implement in this pilot including stations at Bugang-myeon, Sinheung-dong, Areum-dong,
Hansol-dong and Osong-eup. ATT wrote the Node.js program to establish the connection from these
5 air quality stations to update to the FROST server in hourly based.

Table 7. STT SensorThings Server for air quality data

SensorThings URL Description

http://193.196.138.56:8080/frost-
airquality/v1.0/Things

Things Entity includes 5 sensor
systems
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SensorThings URL Description

http://193.196.138.56:8080/frost-
airquality/v1.0/Sensors

Sensors Entity includes 5 sensor
information

http://193.196.138.56:8080/frost-
airquality/v1.0/ObservedProperties

ObservedProperties Entity includes 12
data types of air quality

http://193.196.138.56:8080/frost-
airquality/v1.0/Datastreams

Datastreams Entity includes 120
datastreams (5 sensor system x 12
data types)

http://193.196.138.56:8080/frost-
airquality/v1.0/Observations

Observations Entity collects the sensor
data results in hourly based

http://193.196.138.56:8080/frost-
airquality/v1.0/FeaturesOfInterest

FeaturesOfInterest Entity of each
sensor systems (Thing)

http://193.196.138.56:8080/frost-
airquality/v1.0/Locations

Location Entity for storing current
location of each sensor systems
(Thing)

http://193.196.138.56:8080/frost-
airquality/v1.0/HistoricalLocations

HistoricalLocations Entity for storing
historical location when the sensor
systems are moved.

The information of each air quality station is collected in the Things Entity including name,
description, properties and links to other associated entity in SensorThings server. If the air quality
station is connected to any available CityGML, the connection of each Things to CityGML will be
included in the properties Key pair value as shown in the following json response.

{
      "name": "Air Quality Station - Bugang-myeon, Sejong, South Korea",
      "description": "Air Quality data from https://aqicn.org/json-api/doc/",
      "properties": {
        "gmlid": "<gml_id here>",
        "Associations": [
          {
            "Type": "Feature",
            "Link": "<wfs_url here>"
          }
        ]
      },
      "Datastreams@iot.navigationLink": "http://193.196.138.56:8080/frost-
airquality/v1.0/Things(1)/Datastreams",
      "Locations@iot.navigationLink": "http://193.196.138.56:8080/frost-
airquality/v1.0/Things(1)/Locations",
      "HistoricalLocations@iot.navigationLink": "http://193.196.138.56:8080/frost-
airquality/v1.0/Things(1)/HistoricalLocations",
      "@iot.id": 1,
      "@iot.selfLink": "http://193.196.138.56:8080/frost-airquality/v1.0/Things(1)"
}
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7.2.4. Helyx Implementation regarding out door air quality sensors

The Helyx Processes API is written in Python 3.6 using the flask-restplus framework and adheres to
the OpenAPI specification 3.0. Details can be found in the Appendix API Specification

The API has been deployed to the following URL:

http://helyxtest.westeurope.azurecontainer.io/

Figure 40. Screenshot of Helyx Processes API

As well as the standard endpoints for OGC API - Common, the API supports two primary endpoints
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"estimator" and "administer".

The "estimator" endpoint exposes the estimation request functionality, for both air quality and
occupancy. This endpoint supports:

• GET on /estimator: returns a list of previously requested estimates.

• GET on /estimator/{uuid}: returns a previously requested estimate, designated by the path
parameter uuid.

• POST on /estimator: A POST request with a JSON body to this endpoint for requesting an air
quality or occupancy estimate for a specific point or feature. The URL in the "Location" Header
of the POST response sends the user to the estimation resource created for this request at
/estimation/{uuid}.

The "administer" endpoint exposes the functionality for managing the air quality model being
created by the server. This endpoint supports:

• GET on /administer: returns the configuration currently being used by the model.

• POST on /administer: A POST request with a JSON body to this endpoint sets the configuration
for the model, and restarts the model.

The "administer/rasters" endpoint exposes the resources created by the air quality model. This
endpoint supports:

• GET on /rasters: returns a list of Inverse Distance Weighting raster datasets created by the
model, whose names identify which date and height the raster datasets pertain to.

• GET on /rasters/{name}: returns a download of a specific Inverse Distance Weighting raster.

The POST request on the "/estimator" endpoint controls the primary functionality for the API. These
POST requests run the estimation process. In the case of air quality estimates the server interacts
with the outdoor air quality sensors on the STAPIs to provide either derived point-based
estimations or links to interpolated raster datasets from the persisted model. If the user has
requested an estimate for a GML Feature rather than a coordinate point the server will derive the
centroid to use for the estimation from the GML feature on the OGC-Collections API.

In the case of occupancy estimates the server queries the OGC-Collections API by the chosen GMLID
to find all the nested elements inside that chosen GMLID. These are then checked for sensors in the
STAPIs. If sensors exist for these the nested elements readings are retrieved and an average is taken
across sensors for the chosen time frame, to provide an average occupancy for the chosen GMLID.

7.2.4.1. Challenges

The challenges encountered whilst implementing the Estimator are as follows:

• The link between occupancy sensors, features and elements: The cross-API challenge of
matching sensors to features and elements was necessary in order to calculate occupancy
values for parts of GML features. Discussions were had as to whether sensor IDs stored in the
GML or GMLIDs should be stored in the Things or FeatureOfInterest resources of the STAPIs. As
the GML features in the Collections API describe static features, whereas sensors may move or
change it was decided it would be inappropriate to store sensor identifiers in the GML Features.
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As the sensors in the pilot were stationary and there was a one-to-one relationship between the
sensors and the objects they described, the decision between storing the object IDs on the Thing
resource of the FeatureOfInterest was easy, as they are the same thing. Therefore, the GMLID of
elements in the Collections API were stored in the corresponding Thing resource in the STAPI
service. However, A more complex approach could have been taken to group Thing sensors
under FeatureOfInterest to allow for faster identification of parent features, ideal for
calculating derived aggregate estimates. In such a case the FeatureOfInterest may contain the ID
of a building floor in a GML Feature. The Things may contain the ID of a room or volume in a
GML Feature. In such a case, a filter on FeatureOfInterest would return all of the Things for a
single building floor, at which point each Thing can be inspected for their reading about a
specific room on the floor. This could be described as "Cascading IDs", where the
FeatureOfInterest describes the parent element and the Things describe child elements.

• The time frame of sensor readings: The sensor readings across the STAPIs were not
standardized in time, meaning one sensor may output a reading every 4 minutes and another
might output a reading every 1 minute. This means certain sensors have a large effect on time
range averages than others. This was accepted as a limitation of the pilot.

7.2.4.2. Further development

There are two major improvements that could be made to this OGC API-Processes Estimator

• Voxels: The persisted air quality model should use voxels instead of raster datasets to represent
bounding volumes for recording air quality. This would be far more appropriate for a 3D
environment. The only reason this was not implemented was due to time constraints.

• Multiple STAPIs: Although the API allows uses to request estimates from a range of STAPIs the
estimates are only calculated against the chosen STAPI. This was partially due to practicality of
conducting technology integration experiments against each STAPI in turn to test varying
functionality. The functionality could be extended to allow estimates to be calculated across
multiple STAPIs at once. In the case of the persisted air quality model, the server would have to
run an MQTT client connection for each STAPI simultaneously in order to account for updates to
any STAPI in the model. In the pilot’s case 4, MQTT client connection would have to be
maintained.

7.3. Indoor Building Model and indoor sensors

7.3.1. Gaia3D Implementation of the GeoPortal(only occupancy reading)

The overall structure of the implementation is shown in Figure 41.
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Figure 41. Process structure of the GeoPortal

7.3.1.1. Sensor Datastream

It is expected that an occupancy sensor has real location. Also, for visualization, the location of the
sensor is needed. After expanding the data of Things and Datastream resources, the Datastream is
filtered with ObservedProperty 'occupancy'.

Locations -> Things -> Datastream -> Observations
                            ^
                            |
                        ObservedProperty : occupancy

Per every 10 sec window, the client sends a request to the server and then refreshes the value of the
indoor occupancy data.

ex) https://ogc-3d-iot-pilot.sensorup.com/v1.0/Locations?$expand=Things/Datastreams/
Observations&$filter=Things/Datastream/ObservedProperty/name%20eq%20%27occupancy%27

...
{
    @iot.id: 21778,
    @iot.selfLink: "https://ogc-3d-iot-pilot.sensorup.com/v1.0/Locations(21778)",
    description: "Telus",
    name: "marketmall_cell_12",
    encodingType: "application/vnd.geo+json",
    location: {
        coordinates: [
            -114.15561497211456,
            51.08518410671183,

69

https://ogc-3d-iot-pilot.sensorup.com/v1.0/Locations?$expand=Things/Datastreams/Observations&$filter=Things/Datastream/ObservedProperty/name%20eq%20%27occupancy%27
https://ogc-3d-iot-pilot.sensorup.com/v1.0/Locations?$expand=Things/Datastreams/Observations&$filter=Things/Datastream/ObservedProperty/name%20eq%20%27occupancy%27


        ],
        type: "Point",
    },
    Things: [
        {
            @iot.id: 21779,
            @iot.selfLink: "https://ogc-3d-iot-pilot.sensorup.com/v1.0/Things(21779)",
            description: "Telus",
            name: "marketmall_cell_12",
            properties: { },
            Datastreams@iot.navigationLink:
            "https://ogc-3d-iot-pilot.sensorup.com/v1.0/Things(21779)/Datastreams",
            HistoricalLocations@iot.navigationLink:
            "https://ogc-3d-iot-
pilot.sensorup.com/v1.0/Things(21779)/HistoricalLocations",
            Locations@iot.navigationLink:
            "https://ogc-3d-iot-pilot.sensorup.com/v1.0/Things(21779)/Locations",
            Datastreams: [
                {
                    @iot.id: 21782,
                    @iot.selfLink: "https://ogc-3d-iot-
pilot.sensorup.com/v1.0/Datastreams(21782)",
                    description: "*",
                    name: "marketmall_cell_12_occupancy",
                    observationType:
                    "http://www.opengis.net/def/observationType/OGC-
OM/2.0/OM_CountObservation",
                        unitOfMeasurement: {
                            symbol: "*",
                            name: "*",
                            definition: "*",
                        },
                        Observations@iot.nextLink:
                        "https://ogc-3d-iot-
pilot.sensorup.com/v1.0/Datastreams(21782)/Observations?$top=100&$skip=100",
                    Observations: [
                    {
                        @iot.id: 27946,
                        @iot.selfLink:
                        "https://ogc-3d-iot-
pilot.sensorup.com/v1.0/Observations(27946)",
                        phenomenonTime: "2019-11-13T23:02:38.138Z",
                        resultTime: null,
                        result: 1,
                        Datastream@iot.navigationLink:
                        "https://ogc-3d-iot-
pilot.sensorup.com/v1.0/Observations(27946)/Datastream",
                        FeatureOfInterest@iot.navigationLink:
                        "https://ogc-3d-iot-
pilot.sensorup.com/v1.0/Observations(27946)/FeatureOfInterest",
                    },
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                    ...
                    ]
                }
        }
    ],
    HistoricalLocations@iot.navigationLink:
    "https://ogc-3d-iot-pilot.sensorup.com/v1.0/Locations(21778)/HistoricalLocations",
}
...

This json is the part of the response body from SensorThingsAPI.

7.3.1.2. Geometry Model Data stream

In the case of Gaia3D, the local IndoorGML data is used because it is needed to be converted to a
geometry model. After converting, it is visualized with WebGL library.

Figure 42. IndoorGML modeling(Alphadom)

7.3.1.3. Sensor Visualization

With the location value from the SensorThingsAPI server, the sensor is visualized using pin board.
'1 sensor per 1 room' is assumed. The Sensor icon is attached at the bottom of the pin board for
intuitive sight. The real time value of the pin board is shown at the pin board. If the user clicks the
pin board, then the information of the sensor is printed at the left navigation bar and the history
graph is shown at the bottom side separately. Also, through the ‘history’ button the history graph
can be shown. The latest 100 values are shown on the graph.
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Figure 43. Overall UI and sensor value history graph

About the IndoorGML geometry, each room is colored with the value of the occupancy sensor. 0 :
white, 1-2 : blue, 3-5 : green, 6- : orange. The network of the IndoorGML is drawn with the geometry.
Also, for convenient viewing, the transparency is applied at the geometry.

Figure 44. The implementation of the Geoportal

For the user’s convenience, the geometry model is separated by the floors.
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Figure 45. The floor division of IndoorGML modeling

7.3.1.4. Challenge

• Connecting with the WPS server for Indoor occupancy : Due to constraints of this pilot project,
the assumption that '1 sensor per 1 room' is selected. This was because the previous assumption
of 'multiple sensors per 1 room' was outside of the scope of this pilot. Furthermore, multiple
sensors calculating per building, floors, etc. were also outside of the scope of this pilot. So, the
visualization of the calculated value appeared to be difficult to implement.

7.4. Overview and Architecture by Cyient
The architecture of the Cyient component is shown in Figure 46.

Figure 46. Architecture
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The Primary motivation for addressing the topic of a 3D IOT model is based on the real-world
scenario where there is concern about environmental issues. City Management need to monitor
and take preparatory actions. Mainly environmental issues of air quality, water and solid waste etc.
are monitored as they can lead towards severe health issues in human beings. To accelerate
research and development for this model, the requirements of this initiative were to conduct the
following prototyping and activities:

• The scenario is majorly dependent on 3D buildings of cities and air quality, synthetic occupancy
data.

• 3D buildings, which are available in the formats that include IndoorGML and CityGML, so we
need to convert these files to tile set data in a Cesium readable format using FME.

• Visualize the tile set data on Cesium, which is an open-source JavaScript library for 3D globes
and maps.

• Fetch/get air quality and synthetic occupancy data from the Sensor Things API, Sensor Things
API is format of OGC.

• Algorithm will read location information from the data provided by the API, and GML IDs from
the building data integrate both and visualize in a 3D in a GeoPortal-appropriate manner.

• Another algorithm analyzes and classifies data, and gives proper analytics and alerts to the end
user.

7.4.1. Cyient 3D GeoPortal

The 3D GeoPortal Platform allows the interaction of users with the Web-enabled GIS and provides
spatial and non-spatial information display. Internet browsing software products (like
Mozilla/Chrome) provide the service requesting and result visualization 3D platform to the users in
client side. The 3D Platform interface includes the Cesium WebGL virtual globe, which is capable of
performing the rotation, zoom, pan and fly operations. On the top right, the in-built buttons are
available to geo-locate, refresh, changing the 3D mode and selecting the base layer. The web base
interface is the initial page/Landing Page of the 3D Platform, which is accessed by the client through
a call of HTML page on AWS cloud server.
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Figure 47. GeoPortal With 3D Data

The integration algorithm for integrating sensors and building is based on geospatial information.
The algorithm collects latitude, longitude, and altitude details from a SensorThings API
implementation and places a symbol at the position. Based on the thresholds of AQI devices are
color coded too. The following figure shows Air quality data on 3D buildings.

7.4.2. Air Quality Dashboard

Figure 48. Dashboard

At the time of reporting, Cyient were working on IndoorGML support for the collected node and
edges data and had made a connectivity graph.
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Figure 49. IndoorGML 3D

Figure 50. Floor 5 Alphadom

Figure 51. Floor 5 Alphadom with Tile
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Figure 52. Floor b6 Alphadom with Tile

Figure 53. Floor 16 Alphadom with Tile

7.5. Skymantics 3D GeoPortal
The Skymantics GeoPortal is implemented in an Augmented Reality environment using MAIDEN,
an application built using the Unity 3D engine. The Unity 3D engine is augmented using Vuforia
SDK to provide the augmented reality enhancements. The concept proposed was to provide an
overlay graphic depicting the sensor readings for occupancy and air quality measurements for a
location in an augmented reality environment (see Figure 54).
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Figure 54. Mock-up of the Skymantics 3D GeoPortal for Air Quality and Occupancy

Additionally, the GeoPortal should be capable of displaying IndoorGML and CityGML for the
SmartCities representation of Sejong City.

7.5.1. IndoorGML

Two datasets were provided in IndoorGML format for display within the Skymantics GeoPortal,
Alphadom and Lotte World. These datasets were provided via an FTP server. Initially, a custom C#
script was utilized to import the IndoorGML data and convert each feature to a game object. Game
objects are the base class for displaying content within the Unity 3D engine. Some issues were
encountered in the script during JSON parsing in which some of the features would not convert
properly. This led to a secondary approach which was to import the STEMLab InViewer desktop
plugin for Unity 3D.
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Figure 55. Unity 3D with STEMLab InViewer Plugin

One limitation in this approach is that the entire IndoorGML dataset must be downloaded locally in
order to display the content. Thus, the dataset could not be loaded onto a mobile device. A larger
effort would be required to custom develop a mobile application in Unity 3D to parse and display
IndoorGML, possibly using GeoPackage or a WFS model server via the OGC API - Features
accessible via the web. Integration of the IndoorGML plugin within a GeoPortal in the future could
provide value to end users attempting to use IndoorGML for indoor navigation in an AR mobile
application.

7.5.2. CityGML (3D Tiles)

Due to a policy constraint with the sponsor, the CityGML content had to be delivered using 3D Tiles.
Thus, this content was consumed by Skymantics 3D GeoPortal using GL Transmission Format (glTF),
a file format for 3D scenes and models using the JSON standard. The glTF dataset was provided via
a WFS model sever by GIS.FCU.

Initially, Skymantics attempted to use the Mapbox SDK for Unity 3D to display the glTF content.
However, Mapbox does not support the B3DM standard. Despite containing JSON, the file was
incompatible with the Mapbox Studio service for serving map and tile content.

Skymantics also investigated use of the NASA-AMMOS Unity 3D Tiles plugin. This plugin visually
displays the data locally or by streaming it to Unity for rendering and visualization. However, this
software appeared to be at an early stage of development and had limitations that prevented its
use. The application was slow to respond, but could be a viable solution in the future.

In the final implementation, Skymantics used the Khronos UnityGLTF plugin for Unity 3D engine to
display the Sejong City Building (see Figure 56).
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Figure 56. Unity 3D with STEMLab InViewer Plugin

Some challenges were encountered because the plugin was out-of-date for the current version of
Unity 3D, and significant effort was made to update the plugin to function in the latest version of
Unity 3D used in MAIDEN. Additionally, the plugin contained several artifacts for use of Microsoft
HoloLens. These packages had to be removed in order to display within the Unity 3D environment
properly. Once again, integration of glTF within the AR environment needs significant effort, which
can be considered in future work.

7.5.3. SensorThings API

Skymantics developed custom scripts to retrieve the air quality and occupancy data from various
participant components. The first approach used the Unity 3D network handler to send an HTTP
GET request to the Sensor Things API. This is encapsulated in a game object to make the request
and parse the data. Then another script rendered the user interface for the button and text
association that would display the final result retrieved from the STAPI. In order to retrieve the
latest readings, the API request for the PM2.5 data had to be sorted by time:

"http://193.196.138.56:8080/frost-
airquality/v1.0/Datastreams(6)/Observations?$select=resultTime,result&$orderby=resultTime%20d
esc"

Once that data was received, the 3D GeoPortal parses the JSON content. Unity 3D does not have a
native JSON handler. Therefore, a custom script was developed to parse the readings. Once the data
is parsed, it is stored in a debug log in Unity 3D which is then converted to a gameobject text. The
text value is associated with a UI button that is incorporated into an image that appears once the
image target is triggered.

The Vuforia SDK was used to implement the AR portion of the 3D GeoPortal. A Quick Response (QR)
code was used to trigger the event to retrieve the sensor reading and display the image of the result
(see Figure 57).
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Figure 57. Mobile device scan of a QR code

The result of the STAPI query is displayed in the results of the image rendered on the mobile device
(see Figure 58)

Figure 58. Augmented Reality Overlay

7.5.4. Recommendations for Future Work

• Skymantics recommends future development to include a mobile application for IndoorGML
using a WFS model server to display indoor maps in augmented reality.

• The size of the glTF dataset being served by the OGC API - Features implementation might cause
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performance issues if the network has limited bandwidth. The file size of the data might cause
an issue performance on a mobile app. Skymantics also recommends considering
improvements for serving the buildings based on zoom level via an implementation of the draft
OGC API - Tiles specification.

• Unity 3D can be used for AR visualization of STAPI data. Vuforia SDK is only compatible with
Windows and MacOS. Further exploration of ARCore and ARkit to handle the AR would be
worth investigating as they run on Linux.

• The concept of Markerless AR currently used in video games (e.g. Pokemon GO) can provide
interesting use cases for Smart Cities AR. When a user is in close proximity to geographic assets,
it will trigger a pop up on their screen.
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Chapter 8. Summary

8.1. Recommendations and change requests

8.1.1. Features of Interest and observed/inferred properties in the built
environment

The core challenge of this initiative was to forge a close connection between the stable view of city
features represented by building or infrastructure models, and the dynamic, shifting view of
sensors, observation datastreams, and observed properties. The former may incorporate
characteristic feature properties but those properties are generally expected to remain constant in
both their types and their values. Sensor observed or model inferred properties, on the other hand,
are likely to vary constantly in value and change in type with every new sensor or computational
procedure.

Existing data models and API’s do not integrate these perspectives very well. Neither CityGML 2 nor
3D Tiles have particular allowances for properties that change in value and number. Same with
WFS or OGC API - Features. A new feature in CityGML 3, "dynamizers" does support varying
property values, but it is still unclear what the best practice will be for adding and substracting
properties on-the-fly.

On the observation side, SensorThings API connects each datastream to a "Feature of Interest" (FoI)
as well as a "Thing" but it is left up to those respective feature representations, lampposts for
example, to characterize their own places in the larger environment such as a building facades or
city blocks.

The 3D-IoT pilot demonstrated that the most feasible solution is not to overload either the feature
or the observed property perspectives with each other’s capabilities, but to establish and maintain
accurate and durable common identifiers (e.g. GML ID’s) that align FoI’s / Things of the latter
perspective with the city model elements of the former perspective.

While this approach was successful in bringing sensor data together with model objects, it was not
very durable. Any changes to one system needed to be carefully re-aligned with other systems on a
system-by-system basis. One could imagine a more sustainable approach incorporating an
authoritative service, a registry perhaps, to which other systems would be subscribed and which
would maintain a current set of feature identifiers, and as well a current set of observed properties
corresponding to those features with links to the sources of observations setting the values of those
observed properties.

This still leaves the issue of the "hack" utilized in the pilot of incorporating what are essentially
foreign key identifiers into the definitions of Things and FoI within SensorThings services. A
potential SensorThings API change request will be to provide a more organized means of indicating
where additional / authoritative information about those objects and their relationships to one
another can be found.
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8.1.2. Derived observations and virtual sensors O&M and the SensorThings
API

Another challenge of the pilot was to derive observed properties for Features of Interest which are
not directly the result of observations. In the case of building occupancy, the derivation procedure
involved adding up the occupancies of rooms comprising a larger building unit such as a floor. In
the case of air quality, the derivation procedure involved interpolating sampled air quality
locations to a larger grid so that, for example, a grid subset might correspond to a neighborhood,
street, or block. While the procedures were carried out by the Helyx web processing service and
visualized in one or more of the client components, there was also interest in being able to load
these "virtual" observations into a SensorThings API service.

Procedures themselves are concepts inherent in the Observations and Measurements model and in
the SOSA-SSN ontology that corresponds to it. Related to this is the Semantic Sensor Network
Ontology (SSN) which follows a horizontal and vertical modularization architecture by including a
lightweight but self-contained core ontology called SOSA (Sensor, Observation, Sample, and
Actuator) for its elementary classes and properties. In the SOSA-SSN ontology, sensors execute
procedures, but procedures can also associated with sets of inputs and outputs and used by
observations. Procedures are not, however, implemented separately from Sensors in the current
SensorThings API model, and any observation (as part of a datastream) requires a Sensor to be
associated with it. A "virtual" derived observation, therefore, requires a virtual Datastream and a
virtual Sensor to go with a virtual Thing and presumably a non-virtual ObservedProperty and FoI.
It was indeed possible, in this way, to load derived observations into a SensorThings API instance.

The relationship that could not easily be represented in the SensorThings API, though, was between
input observations from real sensors, a derivation procedure, and output observations from virtual
sensors. There are several possible approaches for this:

• Document this relationship outside of the SensorThings API instance in case that it is needed for
some purpose other than day-to-day observation usage.

• Add a Procedure object with inputs and outputs to the SensorThings API as in SOSA-SSN. This is
a possible extension to the SensorThings API but adds some degree of complexity to the design
of an intentionally "simple" API.

• Add an "isInput" relation between Datastreams and Sensors. This is a relatively simple addition
but contravenes the SensorThings API design principle of having at most one relation between
each two types of resources.

• Include an optional input query string attribute for virtual sensors. This query could be used by
a SensorThings API client to query and receive the observations used to compute the derived
observation. Together with an attribute referencing or describing the procedure (or processing
service request) used, the origin of a derived observation could then be recovered if needed
without overly complicating SensorThings API. For example, a user might want to see the point
observations that were used to construct an interpolated grid observation, in order to try to
explain anomalous values. With this provenance information, it would be straightforward to do
this.

Whichever approach is taken, the pilot made clear that processing and modeling of sensor
observations to produce new ones has many useful applications and a SensorThings API model for
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representing this is a worthwhile endeavor.

8.1.3. Smart building / district design implications of 3D-IoT work

The 3D-IoT Pilot was focused on testing certain technical aspects of interoperability between sensor
information and building information. The intent of a pilot, however, is always to consider
questions of implementation and deployment feasibility and value. One useful question is: what are
the implications of the Pilot work and outcomes for future design of smart buildings and districts
that support comprehensive awareness of built environment observable properties based on IoT
sensors and digital infrastructure?

One very clear answer to this question is the importance of keeping the design, physical, and digital
representations of built environment and environment sensing elements aligned with each other.
Awareness based on observable properties is only valid if the Things providing sensing capabilities
and the building or district Features of Interest (FoI) that they observe (singly or in aggregate) are
correctly linked in all three representational realms. If the sensor platform designed / constructed
for Room 24-A is linked in the digital infrastructure to Room 26-A (or even worse, Room 24-A in
another building), any data being provided by that sensor will provide an incorrect or even
dangerous awareness of building state.

This has at least three design implications:

• Designs need to incorporate, maintain, and identify the Things supporting sensor devices, as
well as to indicate which built FoI’s they are associated with (if different). For the purposes of
aggregation, it would even be worthwhile to catalog those feature hierarchies which should be
used to derive observed properties for aggregate features such as floors. Design concerns might
also include sensor coverage, redundancy, connectivity, and extensibility.

• Designs should include the Information and Communications Technology (ICT) as well as power
infrastructure needed to connect, validate, and maintain sensor data streams.

• Smart building / smart district design needs to account not only for the form, type, positioning,
and connections of construction elements, but also their physical and digital identities for
linking to digital information. Even methods of validation and recovery should be considered,
such as persisting those identities in bar / QR codes physically attached to building components.

A significant part of the challenge accompanying the transition to smart buildings / districts / cities
is retrofitting existing structures with these sorts of sensing elements and digital "twin" model
information. A comprehensive design approach will reduce the burden of this difficulty and cost at
least for new construction or major refits. A useful role for this Pilot and subsequent initiatives will
be to further delineate critical and useful design criteria for IoT-enabled built environments.
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Appendix A: Open API Specification of
Property Estimator WPS for synthetic air
quality Sensor Measurements
This section further describes the Helyx Implementation, regarding outdoor air quality sensors. The
Helyx Processes API is written in Python 3.6 using the flask-restplus framework and adheres to the
OpenAPI specification 3.0. A fragment of the schema implemented by the API is presented below.

{
    "swagger": "2.0",
    "basePath": "/",
    "paths": {
        "/common/": {
            "get": {
                "responses": {
                    "200": {
                        "description": "Success"
                    }
                },
                "summary": "Returns the common landing page, made up of links to API
resources",
                "operationId": "get_common",
                "tags": [
                    "common"
                ]
            }
        },
        "/common/administer": {
            "get": {
                "responses": {
                    "200": {
                        "description": "Success"
                    }
                },
                "summary": "Returns the current configuration for the persisted model
",
                "operationId": "get_administer",
                "tags": [
                    "common"
                ]
            },
            "post": {
                "responses": {
                    "200": {
                        "description": "Success"
                    }
                },
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                "summary": "Store new config and recreate persisted model",
                "operationId": "post_administer",
                "parameters": [
                    {
                        "name": "payload",
                        "required": true,
                        "in": "body",
                        "schema": {
                            "$ref": "#/definitions/configuration"
                        }
                    }
                ],
                "tags": [
                    "common"
                ]
            }
        },
        "/common/administer/rasters/": {
            "get": {
                "responses": {
                    "200": {
                        "description": "Success"
                    }
                },
                "summary": "Returns a list of the requested estimations",
                "operationId": "get_administerresources",
                "tags": [
                    "common"
                ]
            }
        },
        "/common/administer/rasters/{name}": {
            "parameters": [
                {
                    "name": "name",
                    "in": "path",
                    "required": true,
                    "type": "string"
                }
            ],
            "get": {
                "responses": {
                    "200": {
                        "description": "Success"
                    }
                },
                "summary": "Returns a list of rasters created by the persisted model",
                "operationId": "get_administerresource",
                "tags": [
                    "common"
                ]
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            }
        },
        "/common/api": {
            "get": {
                "responses": {
                    "200": {
                        "description": "Success"
                    }
                },
                "summary": "Returns the api defintion for this web service (not yet
implemented)",
                "operationId": "get_ogcapi",
                "tags": [
                    "common"
                ]
            }
        },
        "/common/conformance": {
            "get": {
                "responses": {
                    "200": {
                        "description": "Success"
                    }
                },
                "summary": "Returns a list of the conformance classes this web service
conforms to (currently using placeholders)",
                "operationId": "get_conformance",
                "tags": [
                    "common"
                ]
            }
        },
        "/common/estimator": {
            "get": {
                "responses": {
                    "200": {
                        "description": "Success"
                    }
                },
                "summary": "Returns a list of the requested estimations",
                "operationId": "get_estimator",
                "tags": [
                    "common"
                ]
            },
            "post": {
                "responses": {
                    "201": {
                        "description": "Estimation successfully requested."
                    }
                },
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                "summary": "Creates an estimate for either air quality or occupancy",
                "operationId": "post_estimator",
                "parameters": [
                    {
                        "name": "payload",
                        "required": true,
                        "in": "body",
                        "schema": {
                            "$ref": "#/definitions/estimation"
                        }
                    }
                ],
                "tags": [
                    "common"
                ]
            }
        },
        "/common/estimator/{uuid}": {
            "parameters": [
                {
                    "name": "uuid",
                    "in": "path",
                    "required": true,
                    "type": "string"
                }
            ],
            "get": {
                "responses": {
                    "404": {
                        "description": "estimate not found."
                    }
                },
                "summary": "Returns details of an estimate",
                "operationId": "get_estimate",
                "tags": [
                    "common"
                ]
            }
        }
    },
    "info": {
        "title": "Helyx OGC API - Processes",
        "version": "0.1",
        "description": "An OGC API - Processes for IoT property estimation"
    },
    "produces": [
        "application/json"
    ],
    "consumes": [
        "application/json"
    ],
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    "tags": [
        {
            "name": "common",
            "description": "The landing page of the OGC API"
        }
    ],
    "definitions": {
        "estimation": {
            "required": [
                "name"
            ],
            "properties": {
                "name": {
                    "type": "string",
                    "description": "A name to give to your request"
                },
                "air readings": {
                    "type": "array",
                    "items": {
                        "$ref": "#/definitions/air readings"
                    }
                },
                "occupancy readings": {
                    "type": "array",
                    "items": {
                        "$ref": "#/definitions/occupancy readings"
                    }
                }
            },
            "type": "object"
        },
        "air readings": {
            "required": [
                "default sensorThing API"
            ],
            "properties": {
                "aggregation type": {
                    "type": "string",
                    "description": "The type of aggregation to use, either simple on-
the-fly aggregation or derived from a persisted model",
                    "example": "on-the-fly",
                    "enum": [
                        "on-the-fly",
                        "persisted"
                    ]
                },
                "default sensor type": {
                    "type": "array",
                    "items": {
                        "type": "string",
                        "description": "The type of estimation to be carried out",
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                        "example": "PM2.5",
                        "enum": [
                            "PM2.5",
                            "CO"
                        ]
                    }
                },
                "default radius": {
                    "type": "integer",
                    "description": "The default spherical radius to be used in the
process (in meters)"
                },
                "default start time": {
                    "type": "string",
                    "format": "date-time",
                    "description": "The default start time for estimates"
                },
                "default end time": {
                    "type": "string",
                    "format": "date-time",
                    "description": "The default end time for estimates"
                },
                "default sensorThing API": {
                    "type": "string",
                    "description": "The SensorThing API to query",
                    "example": "Cyient",
                    "enum": [
                        "Cyient",
                        "GIS.FCU",
                        "SensorUp",
                        "STT"
                    ]
                },
                "centroids": {
                    "type": "array",
                    "items": {
                        "$ref": "#/definitions/centroid"
                    }
                },
                "GMLIDs": {
                    "type": "array",
                    "items": {
                        "$ref": "#/definitions/GMLIDs"
                    }
                }
            },
            "type": "object"
        },
        "centroid": {
            "properties": {
                "geometry": {
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                    "$ref": "#/definitions/geometry"
                },
                "properties": {
                    "$ref": "#/definitions/properties"
                }
            },
            "type": "object"
        },
        "geometry": {
            "required": [
                "type"
            ],
            "properties": {
                "type": {
                    "type": "string",
                    "description": "The geometry type of sensor to be used",
                    "example": "Point",
                    "enum": [
                        "Point"
                    ]
                },
                "coordinates": {
                    "type": "array",
                    "description": "The coordinates for the centroid, either Lon, Lat
and Azimuth or just Lon, Lat",
                    "items": {
                        "type": "number"
                    }
                }
            },
            "type": "object"
        },
        "properties": {
            "required": [
                "sensorThing API"
            ],
            "properties": {
                "radius": {
                    "type": "integer",
                    "description": "The spherical radius to be used in the process (in
meters)"
                },
                "start time": {
                    "type": "string",
                    "format": "date-time",
                    "description": "The start time for estimates"
                },
                "end time": {
                    "type": "string",
                    "format": "date-time",
                    "description": "The end time for estimates"
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                },
                "sensor type": {
                    "type": "string",
                    "description": "The type of sensor to be used",
                    "example": "PM2.5",
                    "enum": [
                        "PM2.5",
                        "CO"
                    ]
                },
                "sensorThing API": {
                    "type": "string",
                    "description": "The SensorThing API to query",
                    "example": "Cyient",
                    "enum": [
                        "Cyient",
                        "GIS.FCU",
                        "SensorUp",
                        "STT"
                    ]
                }
            },
            "type": "object"
        },
        "GMLIDs": {
            "required": [
                "ID"
            ],
            "properties": {
                "ID": {
                    "type": "string",
                    "description": "The ID of the feature for which to calculate an
aggregation"
                },
                "properties": {
                    "$ref": "#/definitions/properties"
                }
            },
            "type": "object"
        },
        "occupancy readings": {
            "required": [
                "GMLIDs"
            ],
            "properties": {
                "default start time": {
                    "type": "string",
                    "format": "date-time",
                    "description": "The default start time for estimates"
                },
                "default end time": {
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                    "type": "string",
                    "format": "date-time",
                    "description": "The default end time for estimates"
                },
                "GMLIDs": {
                    "type": "array",
                    "items": {
                        "$ref": "#/definitions/GMLIDs"
                    }
                }
            },
            "type": "object"
        },
        "configuration": {
            "required": [
                "AOI",
                "API",
                "SensorType"
            ],
            "properties": {
                "API": {
                    "type": "string",
                    "description": "The SensorThing API to query",
                    "example": "Cyient",
                    "enum": [
                        "Cyient",
                        "GIS.FCU",
                        "SensorUp",
                        "STT"
                    ]
                },
                "SensorType": {
                    "type": "string",
                    "description": "The type of sensor to be used",
                    "example": "PM2.5",
                    "enum": [
                        "PM2.5",
                        "CO"
                    ]
                },
                "AOI": {
                    "$ref": "#/definitions/polygon"
                }
            },
            "type": "object"
        },
        "polygon": {
            "required": [
                "type"
            ],
            "properties": {
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                "type": {
                    "type": "string",
                    "description": "The geometry type of sensor to be used",
                    "example": "Polygon",
                    "enum": [
                        "Polygon"
                    ]
                },
                "coordinates": {
                    "type": "array",
                    "items": {
                        "type": "array",
                        "items": {
                            "type": "array",
                            "items": {
                                "type": "number"
                            }
                        }
                    }
                }
            },
            "type": "object"
        }
    },
    "responses": {
        "ParseError": {
            "description": "When a mask can't be parsed"
        },
        "MaskError": {
            "description": "When any error occurs on mask"
        },
        "NoResultFound": {}
    }
}
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Table 8. Revision History

Date Editor Release Primary
clauses
modified

Descriptions

Feb 24, 2020 V. Coors 0.9 all initial version

Mar 30, 2020 V. Coors 1.0 all final version
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