
OGC Testbed-15
Scaling Units of Work (EOC, Scale, SEED)

Table of Contents
1. Subject. 4

2. Executive Summary. 5

2.1. Document contributor contact points . 7

2.2. Foreword . 7

3. References . 8

4. Terms and definitions . 9

4.1. Abbreviated terms . 9

5. Overview . 11

6. Overview of Distributed Processing Approaches . 12

6.1. Challenges for Improving Distributed Processing . 12

6.2. New Approaches to Distributed Processing . 13

7. EOC, SCALE and SEED . 15

7.1. Earth Observation Clouds (EOC) Approach . 15

7.1.1. Application Package . 15

7.1.2. Specific Workloads (ADES & EMS) . 18

7.2. Scale and SEED . 19

7.2.1. Scale . 19

7.2.2. SEED . 20

7.2.3. Discovery of SEED Compliant Docker Images . 20

7.3. Commonality Analysis and Conclusions . 21

8. Knowledge Gained in Testbed 15 . 23

8.1. The Scale Environment at George Mason University (GMU) . 23

8.1.1. Input Data and Workspaces . 23

8.2. Scheduling Work on Scale . 24

8.2.1. Automatic Workflow Execution with Ingest Jobs and Triggers. 24

8.2.2. Manual Workflow Execution . 25

8.3. Anatomy of a Job. 25

8.4. Definition of Workflows via Scale Recipes . 29

8.5. Integration into WPS Processes and Workflows . 29

8.6. Identified Limitations and Challenges . 30

8.7. Use of SEED in Testbed 15. 30

9. Evaluation, Conclusion and Recommendations for Future Work . 32

9.1. Evaluation Criteria and Results. 32

9.2. Conclusion . 34

9.3. Recommendations for Future Work . 34

Appendix A: Revision History . 36

Appendix B: Bibliography . 37

Publication Date: 2020-01-08

Approval Date: 2019-11-21

Submission Date: 2019-10-30

Reference number of this document: OGC 19-022r1

Reference URL for this document: http://www.opengis.net/doc/PER/t15-D021

Category: OGC Public Engineering Report

Editor: Alexander Lais

Title: OGC Testbed-15: Scaling Units of Work (EOC, Scale, SEED)

OGC Public Engineering report

COPYRIGHT

Copyright © 2019 Open Geospatial Consortium. To obtain additional rights of use, visit
http://www.opengeospatial.org/

WARNING

This document is not an OGC Standard. This document is an OGC Public Engineering Report created
as a deliverable in an OGC Interoperability Initiative and is not an official position of the OGC
membership. It is distributed for review and comment. It is subject to change without notice and
may not be referred to as an OGC Standard. Further, any OGC Public Engineering Report should not
be referenced as required or mandatory technology in procurements. However, the discussions in
this document could very well lead to the definition of an OGC Standard.

1

http://www.opengis.net/doc/PER/t15-D021
http://www.opengeospatial.org/

LICENSE AGREEMENT

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of charge and
subject to the terms set forth below, to any person obtaining a copy of this Intellectual Property and
any associated documentation, to deal in the Intellectual Property without restriction (except as set
forth below), including without limitation the rights to implement, use, copy, modify, merge,
publish, distribute, and/or sublicense copies of the Intellectual Property, and to permit persons to
whom the Intellectual Property is furnished to do so, provided that all copyright notices on the
intellectual property are retained intact and that each person to whom the Intellectual Property is
furnished agrees to the terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include,
in addition to the above copyright notice, a notice that the Intellectual Property includes
modifications that have not been approved or adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY
PATENTS THAT MAY BE IN FORCE ANYWHERE IN THE WORLD. THE INTELLECTUAL PROPERTY IS
PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. THE COPYRIGHT HOLDER OR
HOLDERS INCLUDED IN THIS NOTICE DO NOT WARRANT THAT THE FUNCTIONS CONTAINED IN
THE INTELLECTUAL PROPERTY WILL MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF
THE INTELLECTUAL PROPERTY WILL BE UNINTERRUPTED OR ERROR FREE. ANY USE OF THE
INTELLECTUAL PROPERTY SHALL BE MADE ENTIRELY AT THE USER’S OWN RISK. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR ANY CONTRIBUTOR OF INTELLECTUAL PROPERTY RIGHTS
TO THE INTELLECTUAL PROPERTY BE LIABLE FOR ANY CLAIM, OR ANY DIRECT, SPECIAL,
INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM
ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
OF CONTRACT, NEGLIGENCE OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF OR IN
CONNECTION WITH THE IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF
THIS INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the
Intellectual Property together with all copies in any form. The license will also terminate if you fail
to comply with any term or condition of this Agreement. Except as provided in the following
sentence, no such termination of this license shall require the termination of any third party end-
user sublicense to the Intellectual Property which is in force as of the date of notice of such
termination. In addition, should the Intellectual Property, or the operation of the Intellectual
Property, infringe, or in LICENSOR’s sole opinion be likely to infringe, any patent, copyright,
trademark or other right of a third party, you agree that LICENSOR, in its sole discretion, may
terminate this license without any compensation or liability to you, your licensees or any other
party. You agree upon termination of any kind to destroy or cause to be destroyed the Intellectual
Property together with all copies in any form, whether held by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all
or part of the Intellectual Property shall not be used in advertising or otherwise to promote the sale,
use or other dealings in this Intellectual Property without prior written authorization of LICENSOR
or such copyright holder. LICENSOR is and shall at all times be the sole entity that may authorize
you or any third party to use certification marks, trademarks or other special designations to

2

indicate compliance with any LICENSOR standards or specifications.

This Agreement is governed by the laws of the Commonwealth of Massachusetts. The application to
this Agreement of the United Nations Convention on Contracts for the International Sale of Goods is
hereby expressly excluded. In the event any provision of this Agreement shall be deemed
unenforceable, void or invalid, such provision shall be modified so as to make it valid and
enforceable, and as so modified the entire Agreement shall remain in full force and effect. No
decision, action or inaction by LICENSOR shall be construed to be a waiver of any rights or
remedies available to it.

None of the Intellectual Property or underlying information or technology may be downloaded or
otherwise exported or reexported in violation of U.S. export laws and regulations. In addition, you
are responsible for complying with any local laws in your jurisdiction which may impact your right
to import, export or use the Intellectual Property, and you represent that you have complied with
any regulations or registration procedures required by applicable law to make this license
enforceable.

3

Chapter 1. Subject
This OGC Testbed-15 Engineering Report (ER) presents a thorough analysis of the work produced by
the Earth Observation Clouds (EOC) threads in OGC Testbeds 13 and 14 in relation to the Scale
environment. Scale provides management of automated processing on a cluster of machines and
the SEED specification to aid in the discovery and consumption of a discrete unit of work contained
within a Docker image. Scale and SEED were both developed for the National Geospatial
Intelligence Agency (NGA) of the United States.

The ER attempts to explain how the OGC Testbed-13 [https://www.opengeospatial.org/projects/initiatives/

testbed13] and OGC Testbed-14 [https://www.opengeospatial.org/projects/initiatives/testbed14] research
results of "bringing applications/users to the data" relate to Scale and SEED.

Chiefly, while comparing the two approaches, the report identifies and describes:

• Opportunities for harmonization or standardization;

• Features which must remain separate and the rationale for this;

• The hard problems which will require additional work; and

• Opportunities which should be examined in future initiatives.

For developers, the ER constitutes a technical reference supporting the comparison of the two
approaches, thereby enabling developers to make informed choices, understand trade-offs, identify
relevant standards and clarify misunderstandings.

4

https://www.opengeospatial.org/projects/initiatives/testbed13
https://www.opengeospatial.org/projects/initiatives/testbed14

Chapter 2. Executive Summary
Multiple approaches for the distribution and deployment of workloads have been developed in
recent years, and some of them have been the object of work performed in OGC Testbeds 13 and 14.
This ER aims at comparing the work done in the EOC threads of those Testbeds, affecting relevant
OGC standards, with the NGA Scale environment and its metadata specification "SEED".

Both approaches have in common that they encapsulate workloads in Docker containers, making
them as independent as possible of the execution environment. More importantly, such Docker
containers can be moved to nodes in the data center closest to the data or to other data centers
altogether.

The added value of the assessed approaches is in the following areas:

• Discovery of available processes;

• Deployment of process instances where they are best suited, such as the node closest to the data
or meeting other performance criteria best;

• Providing the necessary inputs to processes, possibly across nodes;

• Capturing process results as outputs, or as inputs for subsequent processes;

• Workflow orchestration, where multiple processes are chained together and process the
respective output of their predecessor.

Achieving this functionality requires the awareness of available processes, data and resources.
Discovery of processes requires a machine-readable manifest of the interfaces for a processor,
including inputs in their supported formats, necessary processing resources to carry out their work
and provided outputs in their supported formats. When this manifest is combined with Docker for
encapsulating the program of the process, a reusable and transferable processing unit is created
that allows a robust and scalable processing environment.

The OGC Web Processing Service (WPS) approach, discussed in the Earth Observation Cloud (EOC)
threads of OGC Testbeds 13 and 14, does not directly prescribe how processes are to be executed,
leaving the underlying technology flexible, while defining a clear and strict definition of the
interface. Compatibility between different server and process implementations can be ensured by
strictly verifying said interface. In terms of Application Programming Interface (API) design, WPS is
aimed at interactive clients, based on direct selection of data and processes by the user, but also at
scheduled bulk background processing.

On the other hand, Scale has exactly one deployment model aimed at a single data center with
multiple nodes. Scale is not a standard or specification, but a specific implementation that defines
its own particular interfaces. Being an implementation and runtime environment, Scale provides
all the functionality needed to execute specific tasks and more complex workflows, including the
scheduling of specific tasks on nodes and the provision of data. Scale is primarily intended as a data
driven application that processes incoming data that is available in its workspaces. The starting
point for processing is by default a new file in a folder, not a user request.

During OGC Testbed 15, Scale was evaluated in more detail, assessing similarities, benefits and
drawbacks compared to the previously established OGC-based approach. The following main

5

observations for the use of Scale in the context of processing are summarized below:

• The Scale model is designed for a very specific purpose with a narrow focus. With only one
implementation to consider, fewer verification steps and less specification are needed for
compatibility and interoperability. At the same time, Scale does not integrate with other systems
directly. Using the API and wrappers, it can be integrated of course.

• On-demand processing, as needed for interactive clients, requires workarounds in Scale, as it is
not the primary and intended mode of operation. Input and output data must be in Scale
Workspaces, but there are no direct APIs provided for uploading or downloading such data.
These can be added using other software, such as FTP or HTTP servers, or other means for file
exchange.

• Experiments were carried out for wrapping calls to Scale jobs and workflows via OGC WPS. The
inevitable similarity of needing inputs and outputs makes such a mapping straightforward
when wrapping the simpler Scale APIs into OGC WPS calls.

• For declaring outputs, Scale prescribes specific files and locations to be created inside the
Docker containers. The respective files are then picked up by the Scale runtime after a job has
finished and before the Docker container is discarded.

• The SEED specification, intended as process descriptor for Scale jobs, encapsulates all necessary
information about a particular process and bundles it directly with the Docker image’s
metadata. This approach allows detailed discovery and assessment of suitable Docker
containers by retrieving only the image from the registry. There is no need for accompanying
services or files containing metadata.

In summary, Scale is a very concrete runtime environment and implementation for distributed
processing, while the OGC WPS standard is a specification allowing interoperable implementations
from different vendors. The flexibility and detail of the interface specification of OGC WPS would
allow issuing Scale requests as part of a WPS workflow, if desired.

Scale has a different overall approach to processing. This approach can be wrapped into OGC WPS-
compliant interfaces. The reverse would be possible to some degree by integrating a WPS-compliant
client in a Scale job, but would lack the stringent verification of inputs and outputs in subsequent
steps.

Following the assessment and presented conclusions, the recommendations from this ER are as
follows:

• Consider adding metadata for jobs and workflows into Docker image metadata
The interface definition metadata embedded with the container, as done in the SEED
specification, allows a wider and more automated discovery and reuse of process
implementations. With the move to dockerized workloads, the process doesn’t have to be hosted
by a particular entity anymore but can instead be transferred to the environment closest to the
data.
Metadata that is embedded in the container helps with discovering, integrating and using such
processes with the appropriate input validation.

• Provide guidance on the mapping of SEED manifests to WPS process descriptions
The SEED specification does not depend on Scale and was designed with environments other
than Scale in mind. Creating a best practice on how to use SEED-compliant containers in a WPS

6

environment, enabling their exploitation within OGC WPS workflows, would be an interesting
possibility facilitating integration. SEED-compliant images could then be discovered and reused
following the aforementioned semantics, but integrated into WPS-compliant workflows.

• Consider using Scale as backend for EOC ADES instances
EOC ADES instances are responsible for deploying and managing processes in a particular
environment. OGC WPS does not prescribe a particular implementation for the scheduling of
work, actual deployment of processes or data transfer. Those tasks could be solved to a large
extent by wrapping existing Scale functionality with an appropriate facade that implements the
OGC WPS standards and mediates between WPS clients and the Scale environment.

OGC WPS-compliant implementations and Scale are not directly comparable in terms of scope,
functionality or goals. This ER demonstrates that there are still synergies between the two
approaches that should be explored, ultimately to the benefit of OGC WPS.

2.1. Document contributor contact points
All questions regarding this document should be directed to the editor or the contributors:

Contacts

Name Organization Role

Alexander Lais Solenix Editor

Paulo Sacramento Solenix Contributor

Juozas Gaigalas George Mason University Contributor

Ziheng Sun George Mason University Contributor

2.2. Foreword
Attention is drawn to the possibility that some of the elements of this document may be the subject
of patent rights. The Open Geospatial Consortium shall not be held responsible for identifying any
or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any
relevant patent claims or other intellectual property rights of which they may be aware that might
be infringed by any implementation of the standard set forth in this document, and to provide
supporting documentation.

7

Chapter 3. References
The following normative documents are referenced in this document.

• OGC: OGC 06-121r9, OGC® Web Services Common Standard (2010) [https://portal.opengeospatial.org/

files/?artifact_id=38867&version=2]

• OGC: OGC 14-065r2, OGC Web Processing Service 2.0.2 Interface Standard Corrigendum 2 (2018)
[https://portal.opengeospatial.org/files/14-065r2]

• ISO: ISO/IEC 19510:2013, Information technology — Object Management Group Business Process
Model and Notation (2013) [https://www.iso.org/standard/62652.html]

8

https://portal.opengeospatial.org/files/?artifact_id=38867&version=2
https://portal.opengeospatial.org/files/14-065r2
https://www.iso.org/standard/62652.html
https://www.iso.org/standard/62652.html

Chapter 4. Terms and definitions
For the purposes of this report, the definitions specified in Clause 4 of the OWS Common
Implementation Standard OGC 06-121r9 [https://portal.opengeospatial.org/files/?artifact_id=38867&version=2]
shall apply. In addition, the following terms and definitions apply.

● Scale Job Type

A Scale Job Type is a template for a specific workload, defining the underlying Docker container,
command and arguments to execute, expected inputs and outputs as well as resource
requirements that are used for scheduling and allocation decisions.

● Scale Job

A Scale Job is an invocation, i.e. an instance, of a specific Job Type on specific input data.

● Scale Recipe

A Scale Recipe is a workflow that consists of various Job Type instances that consume the outputs
of their predecessor as inputs.

● Scale Recipe Execution

A Scale Recipe Execution is the invocation, i.e. an instance, of a specific Recipe with specific input
data. Input data can be passed to one or more Jobs, which create outputs. Those outputs can then
be passed to other jobs or considered as outputs of the overall Recipe when no further
processing is desired.

● Scale Result Manifest

A JSON document that describes the locations of outputs created by a specific Docker container,
that underlies a Job Type, mapping named outputs to file paths within the Docker container.
Scale can use the Result Manifest to identify and extract output files in order to provide them to
subsequent `Job`s, or to store them in their destination Workspace.

● Scale Workspace

A Scale Workspace is a file system location or AWS S3 Bucket, where Job inputs can be found or
Job outputs can be placed upon successful execution. Scale does not provide an API for accessing
the file data in a Workspace but can construct an externally accessible URL based on a
configured base URL and the relative file path within the workspace. Such constructed URLs are
also provided in the metadata of Jobs, allowing the retrieval of output data.

4.1. Abbreviated terms
• ADES Application Deployment and Execution Service

• AP Application Package

• API Application Programming Interface

• AWS Amazon Web Services

• BPMN Business Process Model and Notation

• CWL Common Workflow Language

9

https://portal.opengeospatial.org/files/?artifact_id=38867&version=2

• EMS Execution Management Service

• EOC Earth Observation Clouds

• ER Engineering Report

• FCA Federated Cloud Analytics

• ICT Information and Communication Technology

• JSON JavaScript Object Notation

• NGA National Geospatial-Intelligence Agency

• OGC Open Geospatial Consortium

• OWS OGC Web Services

• REST Representational State Transfer

• S3 Simple Storage Service

• WPS Web Processing Service

• XML eXtensible Markup Language

10

Chapter 5. Overview
This chapter provides an overview of the information laid out in this ER.

Chapters 1 and 2 contain the subject, executive summary and contributors of the ER.

Chapter 3 lists relevant references and standards.

Chapter 4 lists relevant terms and definitions.

Chapter 5, the present one, describes the structure of the ER.

Chapter 6 provides an overview of distributed processing approaches and the main challenges,
briefly introducing the two approaches under examination in the ER and their key differences.

Chapter 7 contains an extended state of the art for the two approaches at hand, EOC and
Scale/SEED, describing the work carried out in the EOC thread of previous Testbeds and describing
Scale/SEED in some detail.

Chapter 8 assesses and summarizes the work carried out in Testbed-15.

Chapter 9 provides a conclusion and recommendations for future work.

Appendix A provides a revision history of this Engineering Report.

Appendix B contains the bibliography for the used reference documents.

11

Chapter 6. Overview of Distributed
Processing Approaches
Datasets in the geospatial domain keep increasing in size and the algorithms applied for
computation keep increasing in complexity. Clusters, Grid computing and other means of
processing and distribution are increasingly being used for the processing of such large data sets.

In recent years, organizations started being able to rent processing power from cloud providers in
a highly flexible fashion. This has enabled a wide array of tools and approaches, as well as a
changed mindset, for the operation of large scale processing power when it is required. Tools, such
as Cloud orchestrators, Docker, and Kubernetes, primarily add the ability to provision, prepare,
control and contain runtime environments that are easy to re-create, are disposable and most
importantly transferable to other execution environments (e.g. data centers).

The approaches discussed in this ER focus on bringing the algorithms and their execution closer to
the data, avoiding the need to transfer very large datasets. This is achieved by packaging the
programs running the algorithms in a standardized fashion, so they can be executed closer to the
data, ideally in the same data center that stores the data in the first place.
Furthermore, chaining of different processes relying on multiple datasets and computations can be
executed in different data centers and consolidated in yet another. Since the outputs of a processor
usually reduce, refine and filter the amount of data when compared to the original inputs, only
those new outputs then need to be transferred for consolidation.

The following sections briefly outline the challenges for improving the status quo in terms of
transferability, compatibility and ease of use. This discussion is followed by a short summary of the
approaches explored in previous OGC Testbeds.

6.1. Challenges for Improving Distributed Processing
Earth observation products and other geospatial data lend themselves well to parallel processing,
where data is subdivided into pieces, such as tiles, that can be processed independently and merged
together once the computation is complete. This is already possible with the aforementioned
classical setup of a computational cluster.

Distributed processing nowadays also includes geographic distribution of data, e.g. agencies
concerned with data for a particular region of a country, or the collaboration of various national
agencies for processing at global scale. Even though the data may be in the same format and could
be used by the same processor, transferring the data to a single location is costly and possibly
inefficient in terms of required bandwidth, storage space and consequently the operator’s budget.

The primary challenges for improving on the status quo for distributed processing are in the
following areas:

• Bringing the algorithm to the data
EO Products are becoming increasingly larger, adding pressure on the required bandwidth and
storage capacity in data centers. At the same time, products can often be stored or archived
closer to the primary site of an interested party, such as an agency, scientific research center or

12

satellite operator. Processing the data at the location where it is stored reduces bandwidth and
storage requirements.

• Expressing and bundling a processor in a transferable way
Processing of geospatial data is done by computer programs, which may depend on a runtime
environment dictated by the used programming language, additional libraries, calibration data
and other auxiliary information. Deploying such programs and their required environment can
become a complex multi-step process. Fortunately, the various tools provided by cloud
computing infrastructures provide the fundamental means to create self-contained and
compact bundles that encapsulate the program and necessary data in a transferable format.

• Lifecycle control for execution, progress control, error handling and data I/O
Once the processing environment is transferred and in place, the ability to control, inspect and
chain various processes together into the necessary workflow for a task is important. By
defining a common interface for interacting with the application and its respective execution,
setting up and controlling the workflow consisting of processors from different implementers in
a single environment is possible.
Processes usually work on specific types of data, focusing on a type of sensor, data
representation, and often inherent properties of a specific platform. Accordingly, the suitability
of a processor for a specific type of data can be determined based on the combined meta-
information of input data and processor.

The most important aspect for the distribution and processing across agencies and data centers is
the use of well-defined standards that specify data formats, supported processing capabilities,
available data and available processing capacity.

Industry partners and agencies alike can provide the implementation of algorithms aimed at a
specific result or field of research. Discovery features for processes allow interested users to find,
assess, buy, retrieve and use such implementations in order to use them on their data or in their
workflow. Solutions for discovery are a secondary but equally important aspect for the efficient use
of distributed resources.

6.2. New Approaches to Distributed Processing
One of the primary challenges, as discussed above, is the encapsulation of an algorithm and the
clear definition of inputs, outputs, error states and resource requirements. This definition and
format must be created in a way that an execution orchestration system can invoke the algorithm
by itself or in a workflow, ensuring compatibility and availability of input data as well as correct
execution on the most suitable processing node.

Two approaches that address this challenge are discussed in this Engineering Report (ER). The two
approaches share some of the underlying technologies but differ in their overall utilization and
philosophy.

This ER considers the following approaches:

• The Transactional extension of WPS (WPS-T) [1] used in the EOC threads of Testbeds 13 and 14,
featuring dynamic definition, upload and deployment of processors, together with a format for
metadata describing the process and lifecycle.

13

• The Scale processing environment that aims at high-performance processing and dynamic
workload distribution to various participating nodes. Scale [2] is supported by the SEED [3]
metadata specification and was explored with a data center deployment as part of Testbed 15.

The approach taken for EOC (WPS and WPS-T) was assessed in OGC Testbeds 13 and 14, it is
summarized in [4] for the process description and [5] for the execution orchestration environment.
Consequently, this Engineering Report will summarize and highlight the aspects relevant for the
comparison with the approach taken by SEED and Scale respectively.

The Scale Data Center (D145) deployed and provided as part of OGC Testbed 15 was used as a base
to assess similarities or distinct qualities when compared to the EOC approach. Furthermore, this
Engineering Report documents Scale's overall setup and generic use with best practices,
highlighting benefits, limitations or general points to consider when deploying into a Scale
environment.

Both approaches are reviewed and compared in Chapter 7.

14

Chapter 7. EOC, SCALE and SEED
One of the goals of this Engineering Report is to document the exploratory work carried out in
Testbed 15 and put it into relation with the results achieved in the Earth Observation Clouds (EOC)
thread of Testbed 14. The goal is to identify commonalities, differences and synergies between the
EOC approach and Scale/SEED, in light of the existing OGC standards for Processing.

In order to put the two approaches into context, the aforementioned commonalities in terms of
technology and philosophy need to be discussed. The following section provides a high-level
overview of both and closes with a mapping of concepts and the terms used in the respective
approaches.

7.1. Earth Observation Clouds (EOC) Approach
The EOC thread of the OGC Testbed-14 project addressed among other topics the packaging,
deployment and chaining of processes in a reusable manner.

The following elements in particular are relevant for this ER:

• OGC Testbed-14: Application Package Engineering Report [4]

• OGC Testbed-14: ADES & EMS Results and Best Practices Engineering Report [5].

The relevant concepts of that Testbed are the process orchestration (ADES & EMS) and the
encapsulation of workloads into an Application Package that describes the inputs, outputs and
other metadata for a particular process.

7.1.1. Application Package

The Application Package (WPS-T DeployProcess) defines a deployment descriptor for a WPS-
compliant job into a WPS server.

This descriptor contains the following information about:

• The Process:

◦ Inputs, including mime type or applicable schema;

◦ Outputs, including mime type or applicable schema;

◦ Context information, as needed;

◦ Metadata, such as name, version, description, and so forth.

• The Execution Unit, which can be one or many of:

◦ A specific Docker container to be executed. Based on the context information provided with
the processor, the execution can be parameterized or tailored.

◦ A specific workflow script that can be invoked on the processor directly.

During Testbed 14, the Common Workflow Language (CWL) [5] was used as the base
implementation for creating workflows and to model the data flow through a processing pipeline.

15

Using the clear definition of inputs and outputs defined by each process, a workflow can be
validated to ensure compatibility.

While CWL was used for prototype implementations [4], it is not mandated or prescribed. CWL is
one of the feasible languages. Other experiments in Testbed 14 utilized the Business Process Model
and Notation (BPMN) [6] [1], an XML based language, which allows modelling workflows and
processing graphs. Various graphical editors for BPMN are also available, making the workflows
easier to visualize, grasp and design. BPMN is published by the International Organization for
Standardization as ISO/IEC 19510:2013.

A process in the "Application Package" is defined using the WPS-T descriptor, containing the
metadata and referencing one or multiple Docker containers or workflow scripts, providing
specific functionality and outputs for a well-defined set of input data and metadata types. An
example Application Package manifest taken from Testbed 14 [4] is shown below.

Application Package (WPS-T DeployProcess) Example

{
 "processDescription": {
 "process": {
 "id": "GeomatysNDVIStacker",
 "title": "NDVIStacker",
 "owsContext": {
 "offering": {
 "code": "http://www.opengis.net/eoc/applicationContext/cwl",
 "content": {
 "href":
"https://raw.githubusercontent.com/Geomatys/Testbed14/master/application-
packages/NDVIStacker/NDVIStacker.cwl"
 }
 }
 },
 "abstract": "",
 "inputs": [
 {
 "id": "files",
 "title": "Input NDVI Image",
 "formats": [
 {
 "mimeType": "image/tiff",
 "default": true
 }
],
 "minOccurs": "1",
 "maxOccurs": "unbounded",
 "additionalParameters": [
 {
 "role":
"http://www.opengis.net/eoc/applicationContext/inputMetadata",
 "parameters": [
 {

16

 "name": "EOImage",
 "values": [
 "true"
]
 }
]
 }
]
 }
],
 "outputs": [
 {
 "id": "output",
 "title": "NDVI Image",
 "formats": [
 {
 "mimeType": "image/tiff",
 "default": true
 }
]
 }
]
 },
 "processVersion": "1.0.0",
 "jobControlOptions": [
 "async-execute"
],
 "outputTransmission": [
 "reference"
]
 },
 "immediateDeployment": true,
 "executionUnit": [{
 "href": "images.geomatys.com/ndvis:latest"
 }],
 "deploymentProfileName":
"http://www.opengis.net/profiles/eoc/dockerizedApplication"
}

This Application Package example shows the deployment of a process encapsulated in a Docker
container, referencing the profile http://www.opengis.net/profiles/eoc/dockerizedApplication and
the Docker image name images.geomatys.com/ndvis:latest respectively.

An Application Package can also reference a workflow, as mentioned before. The snippet below
demonstrates how a CWL workflow can be referenced.

17

http://www.opengis.net/profiles/eoc/dockerizedApplication
http://www.opengis.net/profiles/eoc/dockerizedApplication
http://www.opengis.net/profiles/eoc/dockerizedApplication
http://www.opengis.net/profiles/eoc/dockerizedApplication
http://www.opengis.net/profiles/eoc/dockerizedApplication
http://www.opengis.net/profiles/eoc/dockerizedApplication
http://www.opengis.net/profiles/eoc/dockerizedApplication

Application Package fragment referencing a CWL Workflow

{
 [...]
 "executionUnit": [
 {
 "href": "https://raw.githubusercontent.com/spacebel/testbed14/master/cwl-
examples/multiSensorNDVIStacker_2collections/multiSensorNDVIStacker_2collections-
v4.cwl"
 }
],
 "deploymentProfileName": "http://www.opengis.net/profiles/eoc/workflow"
}

A CWL workflow will then contain various procedure steps to be executed. Those procedure steps
can of course also be calls to other processes on the same or on a different WPS-compliant
processing environment.

Compared to a SEED manifest, which is discussed in section 8.3, an Application Package provides
more information and various modes of operation. A more detailed discussion of both formats is
presented in section 7.4.

7.1.2. Specific Workloads (ADES & EMS)

Processes are usually integrated into workflows that consist of multiple steps. In the OGC
environment, processes are traditionally exposed via WPS, which defines the interfaces for inputs
and outputs and other metadata. Calling a process is then handled by another request that provides
the required data or URLs to said data. WPS does not enforce any particular deployment or
encapsulation of the processes.

In the EOC thread of OGC Testbeds 13 and 14 a series of tasks was executed to encapsulate
processes into Docker containers. Docker containers are transferable to other environments and
bring all of the necessary dependencies with them. Docker images, the base for Docker containers,
can also be exchanged very easily via Docker registries that allow retrieval of Docker images to the
right environment and processing node.

The role of the Application Deployment and Execution Service (ADES) [4] [7] in this scenario is to
provide a runtime environment for dockerized processes, augmenting the underlying Docker
engine. Most importantly, the ADES provides the WPS-compliant interface that allows deploying,
controlling, monitoring and un-deploying processes according to the WPS requests and using the
Docker engine. Additionally, the final provisioning of inputs and retrieval of outputs are in the
domain of ADES.

The Execution Management Service (EMS) can be understood as a coordinator or orchestrator of a
workflow that may be executed across different ADES instances. The prime example of such a
workflow would be a deployment of ADES instances at different processing centers, which are
made available for a unified workflow. Each process deployed on the respective ADES instance has
the benefit of being close to the data hosted in that particular data center.

18

Complex and overarching workflows as described above will eventually require data to be
transferred from one data center to another. The EMS is responsible for coordinating this data
transfer and to continue the execution of a workflow once the input conditions are met, that is all
of the necessary data for the next processing steps is accessible by the process.

7.2. Scale and SEED
Scale and SEED are both developed for the National Geospatial Intelligence Agency [8] of the United
States.

Scale is an execution and task orchestration engine that utilizes Docker containers. The containers
are provided with input data, execute their work and Scale extracts the resulting output data.

SEED is a specification that allows expressing a unit of work, its inputs, outputs and resource
requirements in a generalized and reusable fashion. SEED was originally developed for use in
Scale, but is agnostic to the execution environment.

Compared to the overall approach of a full WPS and WPS-T implementation, Scale and SEED are
much more limited in scope and flexibility.

The following sections provide more details about Scale and SEED, demonstrating how they fit
together and how they fit into the landscape of existing OGC standards.

7.2.1. Scale

Scale is essentially an execution engine that uses and orchestrates Docker containers to execute
specific workloads. Scale provides a full Representational State Transfer (REST) API for controlling
various processes, monitoring resource utilization, and managing workflows. By default, Scale
executes configured workflows once data becomes available in a workspace.

The Docker containers represent the units of work, encapsulating all software that is necessary to
execute a specific algorithm implementation. The use of Docker provides a simple and transferable
means to package, annotate, distribute, reuse and retrieve specific algorithm implementations.

Scale is by default a data-driven platform. Scale monitors the files in its workspaces and allows the
creation of triggers on the arrival of new files or metadata, which can then be used to trigger the
execution of a series of algorithms on the data.

Algorithms are encapsulated as Job Types, which act as templates for jobs and define the required
input data, possible auxiliary data and the expected outputs of the algorithm. Various jobs can be
tied to a workflow, called a Recipe in Scale, which starts with input data and allows passing outputs
of one job to the input of other jobs. Outputs can be defined as optional, and will be picked up by
the system only when they were produced. Depending on the existence of such optional outputs,
subsequent jobs are conditionally launched when their respective input data is available. This
allows creating generally applicable recipes that execute common tasks on a variety of data and
more specialized tasks depending on the effective data types of results.

Scale orchestrates multiple processing nodes (i.e. independent computers) and is responsible for
providing the prerequisites to the Docker container execution. The data for specific workspaces is

19

in a location accessible by all nodes, such as a shared network drive. This avoids moving the output
data to specific nodes, as is done in other work orchestration engines such as Hadoop or Spark.

Resources of the respective nodes in terms of memory, CPU, and so forth are monitored and taken
into consideration when scheduling tasks on a specific node.

Scale provides and supports two ways to define Job Types: via a simplified form that is specific to
Scale; and via SEED, which is a specification attempt for generally reusable workloads. Both ways
were explored during Testbed 15 and are described in this ER. The experience gathered is discussed
in Chapter 8.

7.2.2. SEED

SEED is a specification of the Job Type description and metadata as utilized by Scale, but designed
in a fashion that makes it useful and usable in other environments as well.

The main purpose of SEED is to enable discovery of Docker images that can be used in Scale and
other systems. Discovery in this case includes a machine-readable specification of acceptable inputs
and provided outputs, resource requirements and additional information that is useful for
operators.

A SEED image has essentially the following characteristics:

• It is a Docker Image

• It follows a naming convention of [name]-[version]-seed, e.g. orthorectification-1.2.4-seed

• It contains a SEED manifest as Docker label (com.ngageoint.seed.manifest)

This information can then be used to query a Docker registry for images that end with -seed and
contain the SEED manifest. Once that information is retrieved, the manifest can be further
analyzed to determine whether that image contains a suitable task for the job at hand.

A support tool, the seed-cli is available for packaging an algorithm into an appropriate SEED-
compatible Docker image.

7.2.3. Discovery of SEED Compliant Docker Images

The seed-cli tool mentioned in the previous section allows searching for and retrieving metadata
about SEED compliant images from Docker registries.

In its current incarnation (v1 and v2 alike), the Docker Registry API does not provide means to
search for the existence or content of labels on Docker images.

The SEED CLI works around this limitation by using the following approach [9]:

• Retrieve the names of all images in a particular repository, using the _catalog endpoint or
search API on Docker Hub

• Filter all images that match the naming convention *-seed.

• For each of the retrieved images, query the tags and labels individually.

20

Once images are pulled into the local Docker engine, they can be queried and filtered for the
existence of a label and its value, using the following command:

docker images -f label=com.ngageoint.seed.manifest

7.3. Commonality Analysis and Conclusions
Both discussed approaches have similar objectives and achieve their particular goals with
components or elements for which a counterpart can be found in the respective other. However, a
direct comparison is not entirely possible because of two main reasons.

1. From a strategic point of view, the EOC work aims at making use of OGC standards to define two
main building blocks of an Exploitation Platform, the ADES and the EMS, as well as the main
functionalities allocated to each of them. EOC also prescribes the OGC interface between the
two, which is currently based on WPS(-T).
Scale and SEED have no such aim and currently do not make use of OGC interface standards.

2. From a technical point of view, EOC has a strict requirement to be ICT and even platform-
agnostic. All the addressed concerns are a level above the actual processing infrastructure. Due
to their nature and target environment (a computer cluster), Scale and SEED instead explicitly
address concerns at a lower level and necessarily closer to the ICT aspects.

Both approaches are to a large extent complementary, not competing or interchangeable. They can
indeed work together and possible integrations are discussed in sections 8.5 and 9.3.

The remainder of this section provides a cursory glance and high-level comparison of the
information handled by the different systems and the resulting possibilities for supported
workflows.

The table below contains this mapping and provides an overview of the used terminology in both
approaches.

Table 1. Conceptual Mapping between EOC and Scale/SEED

Purpose EOC Scale/SEED

Executable Unit Packaging Application Package (AP) SEED, Scale Job

Execution management Application Deployment and
Execution Service (ADES),
Execution Management Service
(EMS)

Scale

Process Chaining (Workflow) Common Workflow Language
(CWL)

Scale Recipe, Scale Strike

The EOC approach and its use of WPS and WPS-T for deployment of workloads is primarily an
interface description and not an implementation. Consequently, implementations providing the
interfaces should be interoperable. Scale is primarily a self-contained system that provides an end-
to-end processing environment and takes control of all processing, providing all of the necessary
functionality for it.

At first glance, the metadata processed by the EOC approach is more complex and extensive,

21

compared to SEED and Scale. This complexity adds flexibility in the types of supported workloads
and allows a very precise specification of supported inputs and expected outputs, beyond a simple
claim to support a particular mime type. When processing EO data, the raw data products received
from spacecraft usually differ significantly between missions and require very specialized
processing. Being able to express the exact format that is supported is consequently crucial for this
scenario.

Scale on the other hand provides a system that is easier to understand and requires less complexity
for integrating new algorithms. A Docker image that encapsulates the process and produces the
appropriate result metadata is already sufficient. Scale provides the input data and arguments for
the configured application, and extracts results from the container autonomously. Error handling,
status reporting and runtime management are fully covered by the Scale environment.

22

Chapter 8. Knowledge Gained in Testbed 15
SCALE was examined in detail in the OGC Testbed 15 Federated Cloud Analytics (FCA) thread. The
thread tackled various topics, ranging from federation for processes and content exchange, to the
exploration of new data center management software [10].

The primary aspect for documenting the knowledge gained in Testbed 15 in this ER was to capture
emerging best practices, issues or constraints that have been observed while using the Scale
environment in general or deploying processes or workflows specifically.

In order to support the Testbed 15 activities, the thread participants had to first become familiar
with the overall concepts of Scale before starting to utilize the specific environment for exploratory
work and interfacing with existing other components and OGC standards.

Based on the work carried out during Testbed 15, this section describes the observations, lessons
learned, strengths and caveats of Scale as runtime environment and SEED as unit of work
description and packaging standard.

8.1. The Scale Environment at George Mason
University (GMU)
GMU deployed a Scale environment, spanning a total of 4 nodes, which could be used by Scale to
execute workloads.

Overall, the standard environment for Scale deployments is a Mesosphere DC/OS Server, which
provides access control, deployment orchestration for distributed applications, including those
deployed in Docker. Mesosphere also provides convenient installers for various popular software
packages that benefit from a distributed environment - among them also Scale.

At the time of writing, the latest available installer for Scale in the software repository for
Mesosphere DC/OS was 5.4.0 and this version was used for the majority of the Testbed’s duration. In
collaboration with the Scale developers, GMU managed to install and upgrade Scale to version 5.9.7,
which allowed testing of SEED-compliant images towards the end of the project.

Version 7.0.0 of Scale was nearing completion at the same time, but the Scale developers
recommended to stay on the 5.x branch as it was the stable release.

8.1.1. Input Data and Workspaces

Scale jobs process data that is contained in Workspaces. These can be named folders, mounted
network shares or AWS S3 buckets.

There is no API in Scale to upload or download files in a workspace. Instead it is expected that the
mounted folders are accessible by other means. Fortunately, a base URL can be defined for each
workspace, which is used by Scale to compute the absolute URL of a particular file in a workspace
when it is exposed via HTTP. The full URL is then contained in processing results and can be used to
directly retrieve result files.

23

For uploading files into the workspace as part of a processing workflow, typically the URL of a file
or service, such as a WMS or WFS server, would be provided. Solenix developed a Scale job and
corresponding Docker container that can download data via HTTP into a workspace and provide
the downloaded files to other tasks. This allowed further exploring the capabilities and possibilities
of Scale as runtime environment for distributed tasks.

8.2. Scheduling Work on Scale
Scale is primarily designed as a file-driven processing environment that executes its workloads on
incoming files. Applicable jobs or recipes are scheduled based on the file’s type, name or other
criteria, which allows cascading work beyond jobs or recipes and to create more complex
workflows purely by defining jobs for subsequent output types or file names. It is also possible to
manually trigger workloads via the REST API. Both possibilities are discussed in the subsequent
sections.

8.2.1. Automatic Workflow Execution with Ingest Jobs and Triggers

Scale recipes and jobs can be activated in two ways: automatic and manual. Recipes and jobs are
activated automatically when Scale detects new input data for processing. Automatic processing
requires configuring trigger conditions for data inputs. Jobs and recipes can also be triggered
manually using the Scale RESTful HTTP API.

Figure 1: Scale Concept Overview

Automatic recipe and job execution has two steps. First, data files must be ingested into Scale, then
recipes or jobs are triggered provided chosen conditions are met. Ingestion and triggers are
configured using the Scale RESTful HTTP API. Ingestion is performed by special built-in Scale jobs
called Scan and Strike. Scan is used to ingest pre-existing data files from a specified location. Strike
is a continuously running job that watches specified locations for newly added files. Both Scan and
Strike are configured to detect files that match specified name patterns. After they ingest a file, Scan
or Strike will tag the new file with data type labels. Once a file is ingested and tagged, Scale is able

24

to use triggers on that file.

There are 3 types of triggers: input (also called ingest), parse and clock. Input/ingest triggers are
defined to match file path location and data type labels. When Scale detects that a new file was
ingested it will find all triggers whose conditions match. Each trigger has a recipe type or a job type
attached. Scale will launch a job or a recipe for each matching trigger for each newly ingested file.
Parse triggers are configured to match results' manifest files that are created by jobs once they are
done processing files. Using parse triggers, it is possible to chain jobs or recipes via output products
of other jobs and recipes. Finally, clock triggers can be used to launch jobs or recipes at regularly
scheduled intervals.

8.2.2. Manual Workflow Execution

Scale jobs and recipes can be launched manually using the RESTful HTTP API. The API user
specifies job type id or recipe type id. They also provide input and output data parameters, such as
input file name or output directory path.

In Scale version 5.9.7 the POST /queue/new-job and POST /queue/new-recipe API endpoints are used.
In versions 6.0 and higher, the /queue API is deprecated - instead POST /jobs and POST /recipes are
used.

Manually executed jobs or recipes respond with a descriptor, which also contains an ID. This ID can
be used to query the status and to retrieve job results.

In order to demonstrate the different types of workflow outputs, in particular also simple outputs,
such as single parameters instead of full files, another test job was created, which uses
ImageMagick to provide statistical parameters as output. Scale jobs only support file-based results,
while SEED-compliant jobs also allow JSON-based results, where individual keys of a JSON
document can be mapped as simple results.

8.3. Anatomy of a Job
A Scale job is an abstract elementary unit of work - a single task to be performed on input data. A
job produces some output data and a results manifest. Jobs are simple units of work designed to be
chainable into workflows of work called recipes. The processing algorithm that a job performs is
defined by a Docker image.

In Scale, jobs are defined by API objects called job types. A job type specifies the Docker image
which can do the task and it defines input, output and configuration parameters that are supplied
to the Docker container during job execution.

This definition object tells Scale which Docker image to use to execute the task, the resources
required to run the container, the mounted volumes for the Docker container, optional
environmental variables and other settings for the algorithm in the Docker image and expected
error behavior. This definition also includes the interface specification.

The interface specification tells Scale that this job type takes specific inputs and produces specific
outputs. The interface specification allows Scale to connect discrete jobs into workflows called
recipes.

25

Figure 2: Scale Job Execution

Scale supports two formats for describing job interfaces. The original interface configuration and
the new SEED-compatible interface specification. The SEED compatible format is only supported in
versions 5.6 and higher. Some parts of the SEED specification, such as JSON based results, are only
supported on Scale 6.x and higher.

Both the original and the SEED job interface specifications serve the same task, to define job inputs
and outputs, but their syntax is slightly different. A SEED manifest can be packaged together with
the container it is describing. This is discussed in section 8.7.

An example of a SEED-compatible job as result of executing a SEED-compliant job type is shown
below:

seed.manifest.json

{
 "seedVersion": "1.0.0",
 "job": {
 "name": "curl",
 "jobVersion": "1.0.0",
 "packageVersion": "1.0.0",
 "title": "CURL Downloader (SEED)",
 "description": "A SEED compliant CURL downloader",
 "tags": ["curl"],
 "maintainer": {
 "name": "Alexander Lais",
 "organization": "Solenix Deutschland GmbH",

26

 "email": "alexander.lais@solenix.ch ",
 "url": "https://www.solenix.ch",
 "phone": ""
 },
 "timeout": 3600,
 "interface": {
 "command": "${URL} ${OUTPUT_DIR}",
 "inputs": {
 "files": [],
 "json": [
 {
 "name": "URL",
 "type": "string",
 "required": true
 }
]
 },
 "outputs": {
 "files": [
 {
 "name": "output_file_pngs",
 "mediaType": "image/png",
 "multiple": true,
 "pattern": "*.png"
 },
 {
 "name": "output_file_csv",
 "mediaType": "text/csv",
 "pattern": "*.csv",
 "required": false
 }
],
 "json": [
 {
 "name": "num_files",
 "key": "numFiles",
 "type": "integer"
 }
]
 },
 "mounts": [],
 "settings": []
 },
 "resources": {
 "scalar": [
 {
 "name": "cpus",
 "value": 1
 },
 {
 "name": "mem",

27

 "value": 64
 },
 {
 "name": "sharedMem",
 "value": 64
 },
 {
 "name": "disk",
 "value": 512,
 "inputMultiplier": 4
 }
]
 },
 "errors": [
 {
 "code": 1,
 "name": "error-name-one",
 "title": "Error Name",
 "description": "Error Description",
 "category": "data"
 }
]
 }
}

The manifest follows the SEED specification [https://ngageoint.github.io/seed/seed.html].

The manifest contains the following information:

• seedVersion: Declares the applicable version of the SEED specification. At the moment there is
only version 1.0.0.

• job: Contains job metadata, similar to a Scale job

• errors: Defines the meaning for Docker process exit codes during failure

• resources: Cpu, memory and disk resources required for this job

• interface: Specifies how this job will consume and produce data

• interface.command: A string passed to a Docker container at runtime via the Docker CMD
interface

• interface.inputs.files: A list of input files

• interface.inputs.json: A list of keys passed in a JSON object for the job

• interface.outputs.files: A list of output files

• interface.outputs.json: A list of keys returned by the job in a JSON object

• interface.mounts: Optional volumes to be mounted into the Docker container

• interface.settings: Environmental variables passed to the Docker container

When the job runs it must produce output files that are specified in the interface, some of which

28

https://ngageoint.github.io/seed/seed.html

may be declared as optional. Two additional files must also be written to the root of the output
directory contained in the Docker container:

• seed.outputs.json: Containing JSON output keys and values from SEED interface.outputs.json

• results_manifest.json: Listing output files produced and their paths. This file is only required
when defining a Scale job, as the SEED manifest contains all expected output file name patterns.

8.4. Definition of Workflows via Scale Recipes
Jobs in Scale can be combined into a larger processing workflow, called a Recipe. The Recipe is
essentially a wrapper for a group of Jobs that pass their outputs to subsequent jobs. When a job
creates multiple outputs, one or more subsequent jobs can consume outputs in parallel.

Figure 3: Scale Recipe Graph

In addition to Jobs, a Recipe defines inputs and outputs itself, which can be passed on or taken from
the containing jobs. Recipe-level inputs are defined on the Start node and allow distribution of
inputs to jobs, to define static parameter values passed to a job and aggregated outputs provided by
different jobs. Recipe outputs can be bound via the End node respectively.

8.5. Integration into WPS Processes and Workflows
With the demonstrated ability to trigger individual jobs and recipes, Scale’s capabilities can be
wrapped to be utilized in a WPS server as well.

The following steps for integration were demonstrated during Testbed 15:

• Execute individual jobs, with status monitoring (started, done)

• Execute recipes and capture their output.

29

For the execution via WPS it was not relevant whether the job was defined as a Scale job or via a
SEED manifest.

The integration of Scale workloads into WPS is discussed in detail in the Federated Cloud Analytics
ER [10] of OGC Testbed 15.

8.6. Identified Limitations and Challenges
Testbed 15 presented the first opportunity for European players to explore the Scale environment
in the context of an OGC Testbed. This posed some challenges particularly during setup, which are
briefly summarized below:

• Input data must be in workspaces, which are managed by the Scale environment.

◦ Adding files to the workspace requires configuration outside of Scale or a job that places
data into the workspace.

◦ For result retrieval, the workspace can be exposed via HTTP. A Base URL can be provided as
configuration to each workspace, which allows Scale to construct appropriate URLs, which
are placed into the job result information.

• The default installation of Scale in Mesosphere DC/OS does not support persistent databases.
When the container hosting Scale is recreated, the data is also removed. The recommendation is
of course to set up persistence appropriately.

• Installation instructions were outdated and have been extended and updated in response to
requests and questions raised in this activity. The developer team of Scale was responsive and
helpful via their Gitter channel.

• Only file-based results can be provided in Scale jobs and SEED jobs with Scale versions older
than 6.x. Creating an additional file as job output that contains arbitrary metadata in JSON
format proved to be a suitable workaround.

• Different versions of the Scale API place various of the utilized tasks into different endpoints.
Scale 5.9.x supports version v5 and v6 of the API, allowing a smooth transition to the new v6 API,
while reducing the use of the now deprecated v5 API that is planned to be removed in Scale 6.x
and 7.x. In general, the deprecation of API versions seems rapid. On one hand this makes the
software simpler, more robust and easier to maintain, while on the other hand backwards
compatibility cannot be guaranteed for longer time spans.

8.7. Use of SEED in Testbed 15
During the majority of the Testbed 15 activity, Scale was available in version 5.4.0, which as of yet
does not support SEED. Scale was later updated to 5.9.7, which does support SEED. SEED is not
critical for the understanding of how Scale works, as it is another means to define the metadata for
job types and to discover appropriate Docker containers containing the job’s logic.

In order to assess the potential and utility of SEED-compliant workload packaging, the
aforementioned containers (for cURL and ImageMagick) were augmented with SEED manifests and
SEED-compliant output metadata artifacts, which were created in addition to the standard
results_manifest.json required for regular Scale Jobs.

30

SEED has been tested initially with the seed-cli, which allows running SEED-compliant tasks
locally. The seed-cli tool allows building, inspecting and running SEED compliant images, searching
for images in Docker registries and various other functions surrounding SEED images. Following
those initial tests, the SEED compliant images were also deployed on the Scale instance provided by
GMU.

The behavior of jobs was in line with the expectations discussed in section 8.3.

31

Chapter 9. Evaluation, Conclusion and
Recommendations for Future Work
The main goal of this Engineering Report was to discuss, compare and assess the OGC WPS-based
approach adopted in previous Testbeds in their EOC threads with the capabilities provided by the
Scale environment and the SEED packaging standard. Both approaches are similar in various points
but differ in others. The following section provides an evaluation, summarizing the results for the
different criteria and highlighting particular strengths or weaknesses of the respective approach.

Following the evaluation, subsequent sections provide an overall conclusion and recommendations
for future work.

9.1. Evaluation Criteria and Results
This section provides an overview of similarities and differences as well as strengths and
weaknesses for those two approaches. In order to provide a systematic and fair assessment, a set of
evaluation criteria was selected, summarizing points of similarities and differences between both
approaches. Each criterion is presented with a short description of its purpose and impact, followed
by the applicable comments for EOC vs. Scale/SEED.

For the purpose of this section, the OGC WPS standard as used in the frame of the Testbed 13 and 14
Earth Observation Clouds (EOC) threads' work is referred to as "EOC".

• Algorithm Encapsulation and Packaging
Defines how easy it is to create or adapt a program to run in the desired environment.

◦ EOC allows a variety of implementations to be wrapped into an Application Package
descriptor. Docker-based images are supported and can be used in combination with a
workflow description language. It is up to the user and execution environment to define
whether a new process will spawn a new container or use a provided service that happens
to be deployed as container.

◦ Scale/SEED are strictly focused on disposable Docker containers, which provide the
implementation and are instantiated on demand for each job execution. The container for a
job is created, mounting a volume for the input data and the appropriate entry point and
communicates the availability and location of results via a file that is extracted from the
container by Scale.

• Workflow Definition
Describes how a workflow - that is the chaining or branching of multiple processors -, can be
specified and how outputs of the predecessor can be used as inputs for the next processor.

◦ EOC allows the declaration of workflow scripts. The exact supported language or format
depend on the execution environment, but different ones are possible. It is expected that
future versions of the standards will define a preferred, or even mandatory, workflow
language that must be used.

◦ Scale defines workflows as "Recipes", which act as a "compound job" that also provides
inputs and outputs. Recipes then contain chained jobs that either take a predecessor’s
output as input, or an input that has been provided to the recipe. Accordingly, job outputs

32

can be declared as recipe outputs. A recipe can be used in place of a job to achieve more
complex workflows, but following similar semantics. Recipes are declared as JSON objects,
binding specific jobs and inputs as well as their outputs to recipe inputs and outputs,
without additional logic.

• Flexibility of Packaged Algorithms
Defines which types of programs can be encapsulated, and whether limitations apply.

◦ EOC uses dockerized processes with defined interface for inputs, which contain all of the
necessary data or locations where data can be retrieved. Additional logic can be provided
with the workflow language that ties different processes into a larger workflow.

◦ Scale and SEED allow packaging arbitrary algorithms in Docker containers. Auxiliary data
can also be provided via volume mounts to containers directly and does not need to be
provided as input.

• Error Reporting
Considers the handling of errors, error reporting and behavior when errors occur

◦ EOC uses the standard error reporting mechanisms of WPS by providing an exception
report. Capturing and creating this report is the responsibility of the WPS runtime
environment.

◦ Scale and SEED use the return code of a process to determine possible error conditions. The
return code is mapped to an error description that can then be shown to the user and is
propagated with a job’s status.

• Process Discoverability
Determines how processes can be discovered, assessed, evaluated and utilized.

◦ EOC requires processes to be registered with the WPS server. Processes can then be
discovered via WPS. Dynamically deployed workloads are registered on demand with an
appropriate manifest, which is to be provided in addition to the Docker image name.

◦ Scale jobs are defined with similar constraints as EOC jobs, i.e. the manifest is provided
separately from the Docker image. SEED-compliant containers can carry their job
description in the SEED manifest that is attached to the Docker image’s metadata.

• Platform Independence
Defines whether the execution environment requires a specific platform or runtime
environment to function, and how well it can adapt to or utilize other environments.

◦ EOC primarily defines a series of interfaces, calling conventions and metadata formats,
which are then used by the implementers of a compliant system to the standards. EOC
allows any type of service and container to be used. There is a specific profile for dockerized
workloads, but it is not mandatory. Execution targets may include workflow scripts to
control the execution engine, which again may involve dockerized workloads but is not
limited to them.

◦ Scale/SEED require the use of Docker and heavily rely on Mesosphere DC/OS for the
container orchestration, i.e. the scheduling, distribution, creation, monitoring and teardown
of Docker containers used for execution.

• Main mode of operation
Considers the designed mode of operation, even when other modes can be achieved as well.

33

◦ EOC is primarily request-driven. A client that wants data processed will usually issue the
processing request, which initiates the provisioning of data and process containers,
execution of the algorithms, collection of output data and provision of said output data to
the client, e.g. via download link.

◦ Scale/SEED are primarily data-driven systems more akin to a batch processing system. The
primary mode of operation is the monitoring of a workspace for the availability of files or
metadata matching a specific type. When data is available, registered jobs or recipes are
then launched automatically, usually placing the outputs into a workspace again. Cascading
processing can thus be achieved based on the availability of data alone, without the use of
explicitly scripted workflows.

9.2. Conclusion
The EOC approach and the Scale/SEED approach have been developed for a similar set of tasks: the
efficient processing of large amounts of data with user provided algorithms. Both approaches have
embraced the use of dockerized workloads as means to define reproducible, disposable and easily
transferable execution environments for such algorithms.

EOC

• EOC is in an experimental stage with different approaches that have not been established as
best practices for implementations.

• EOC is more flexible and allows different vendors to contribute elements to the overall systems.
APIs and interfaces are more versatile, allowing a wider spectrum of workloads.

• EOC supports more flexible and more complex workflows due to the use of a workflow
language.

• EOC is designed for interactive and non-interactive processing alike.

Scale

• Scale is an operational system with a more narrow focus aimed at mostly unsupervised and
automated processing

• Workflows can be achieved via recipes and by cascading the production of files that trigger
subsequent jobs

• Interactive processing can be achieved with workarounds but is not the primary focus of Scale.

• SEED and Scale jobs provide a more simplistic way to define inputs and outputs and don’t
provide means for more complex input data validation.

• Scale is tied to Mesosphere DC/OS and Docker as execution environment, while EOC does not
strictly prescribe an execution environment.

9.3. Recommendations for Future Work
Following the assessment, evaluation and experiments with the Scale software and its strengths,
the points below were identified as potential inspiration for the next generation of OGC WPS APIs
and for the possible integration of OGC WPS-based processing with Scale jobs or use of the Scale

34

execution environment:

• Metadata for jobs and workflows in Docker image metadata
The SEED specification allows embedding the interface definition in the Docker image’s
metadata. Embedding the interface definition allows a wider and more automated discovery
and reuse of process implementations. This is particularly important to avoid the mismatch
when metadata and Docker image are maintained separately. With the move to dockerized
workloads, the process doesn’t have to be hosted by a particular entity anymore but can instead
be transferred to the environment closest to the data.
Metadata that is embedded in the container only requires a Docker registry and helps with
discovering, integrating and using such processes with the appropriate input validation.

• Provide guidance on the mapping of SEED manifests to WPS process descriptions
The SEED specification is designed to be agnostic to the execution environment and does not
depend on Scale. Processes for WPS and for Scale are similar in scope, and integrating support
for SEED-compliant processes could be interesting for WPS-compliant servers. By creating a best
practice on how to wrap and use SEED-compliant containers in a WPS environment, SEED-
compliant images could be discovered and reused following the aforementioned semantics, but
integrated into WPS-compliant workflows.

• Consider using Scale as backend for ADES instances
ADES instances are responsible for deploying and managing processes in a particular
environment. OGC WPS does not prescribe a particular implementation for the scheduling of
work, actual deployment of processes or data transfer. Those tasks could be solved to a large
part by wrapping existing Scale functionality with an appropriate facade that implements the
OGC WPS standards and mediates between WPS clients and Scale environment. Other
alternatives instead of Scale would be to use Mesosphere DC/OS directly, or utilise the more
complex and more flexible Kubernetes.

35

Appendix A: Revision History
Table 2. Revision History

Date Editor Release Primary
clauses
modified

Descriptions

October 30, 2019 A. Lais 1.0 all issue for
submission as
pending to OGC
TC Meeting

May 29, 2019 A. Lais .1 all Initial
Engineering
Report

36

Appendix B: Bibliography
1. Pross, B., Cauchy, A.: OGC Testbed-14: WPS-T Engineering Report. Open Geospatial Consortium,

http://docs.opengeospatial.org/per/18-036r1.html (2019).

2. National Geospatial Intelligence Agency: Scale Web Site, http://ngageoint.github.io/scale/, (2019).

3. National Geospatial Intelligence Agency: SEED Specification, https://ngageoint.github.io/seed/
seed.html, (2019).

4. Sacramento, P.: OGC Testbed-14: Application Package Engineering Report. Open Geospatial
Consortium, http://docs.opengeospatial.org/per/18-049r1.html (2018).

5. Sacramento, P.: OGC Testbed-14: ADES & EMS Results and Best Practices Engineering Report.
Open Geospatial Consortium, http://docs.opengeospatial.org/per/18-050r1.html (2018).

6. Pross, B., Stasch, C.: OGC Testbed-13: Workflows Engineering Report. Open Geospatial
Consortium, http://docs.opengeospatial.org/per/17-029r1.html (2018).

7. Gonçalves, P.: OGC Testbed-13: Application Deployment and Execution Service ER. Open
Geospatial Consortium, http://docs.opengeospatial.org/per/17-024.html (2017).

8. National Geospatial Intelligence Agency: National Geospatial Intelligence Agency Home Page,
https://www.nga.mil/, (2019).

9. National Geospatial Intelligence Agency: Discovering SEED Images in a Docker Registry,
https://ngageoint.github.io/seed/seed.html, (2019).

10. Gonçalves, P.: OGC Testbed-15: Federated Cloud Analytics Engineering Report. Open Geospatial
Consortium, http://docs.opengeospatial.org/per/19-026.html (2019).

37

http://docs.opengeospatial.org/per/18-036r1.html
http://ngageoint.github.io/scale/
https://ngageoint.github.io/seed/seed.html
https://ngageoint.github.io/seed/seed.html
http://docs.opengeospatial.org/per/18-049r1.html
http://docs.opengeospatial.org/per/18-050r1.html
http://docs.opengeospatial.org/per/17-029r1.html
http://docs.opengeospatial.org/per/17-024.html
https://www.nga.mil/
https://ngageoint.github.io/seed/seed.html
http://docs.opengeospatial.org/per/19-026.html

	{title}
	Table of Contents
	Chapter 1. Subject
	Chapter 2. Executive Summary
	2.1. Document contributor contact points
	2.2. Foreword

	Chapter 3. References
	Chapter 4. Terms and definitions
	4.1. Abbreviated terms

	Chapter 5. Overview
	Chapter 6. Overview of Distributed Processing Approaches
	6.1. Challenges for Improving Distributed Processing
	6.2. New Approaches to Distributed Processing

	Chapter 7. EOC, SCALE and SEED
	7.1. Earth Observation Clouds (EOC) Approach
	7.1.1. Application Package
	7.1.2. Specific Workloads (ADES & EMS)

	7.2. Scale and SEED
	7.2.1. Scale
	7.2.2. SEED
	7.2.3. Discovery of SEED Compliant Docker Images

	7.3. Commonality Analysis and Conclusions

	Chapter 8. Knowledge Gained in Testbed 15
	8.1. The Scale Environment at George Mason University (GMU)
	8.1.1. Input Data and Workspaces

	8.2. Scheduling Work on Scale
	8.2.1. Automatic Workflow Execution with Ingest Jobs and Triggers
	8.2.2. Manual Workflow Execution

	8.3. Anatomy of a Job
	8.4. Definition of Workflows via Scale Recipes
	8.5. Integration into WPS Processes and Workflows
	8.6. Identified Limitations and Challenges
	8.7. Use of SEED in Testbed 15

	Chapter 9. Evaluation, Conclusion and Recommendations for Future Work
	9.1. Evaluation Criteria and Results
	9.2. Conclusion
	9.3. Recommendations for Future Work

	Appendix A: Revision History
	Appendix B: Bibliography

