Table of Contents

1. Scope
2. Conformance
3. References
4. Terms and Definitions
4.1. queryable
4.2. <portrayal> sprite
4.3. style
4.4. style encoding
4.5. stylesheet
4.6. style metadata
4.7. Web API
5. Conventions
5.1. Identifiers
5.2. Abbreviated terms
6. Introduction
6.1. Overview
6.2. Use cases
6.2.1. A map client
6.2.2. A visual style editor creating a new style
6.2.3. A visual style editor updating an existing style
6.2.4. A Web API implementing OGC API - Maps
7. The Styles API
7.1. Requirements Class "Core"
7.1.1. API landing page
7.1.2. Declaration of conformance classes
7.1.3. Fetch styles
7.1.4. Fetch style
7.1.5. Fetch style metadata
7.2. Requirements Class "Manage styles"
7.2.1. Create a new style
7.2.2. Update or create a style
7.2.3. Delete a style
7.2.4. Replace the metadata of a style
7.2.5. Update parts of the metadata of a style
7.3. Requirements Class "Validation of styles"
7.3.1. Validate a style
7.4. Requirements Class "Resources”
7.4.1. Fetch resources

10
11
11
11
11
11
11
11
11
12
12
12
13
13
13
14
14
16
16
17
18
19
20
21
25
25
29
29
31
32
32
33
35
35
36
37

7.4.2. Fetch resource
7.5. Requirements Class "Manage resources"
7.5.1. Create or replace a resource
7.5.2. Delete a resource
7.6. Requirements Class "HTML"
7.7. Requirements Class "OGC SLD 1.0"
7.8. Requirements Class "OGC SLD 1.1"
7.9. Requirements Class "Mapbox Style"
8. Extensions to the Collection resource
8.1. Requirements Class "Style information"
8.1.1. Fetch styles associated with a collection
8.1.2. Update styles associated with a collection
8.2. Requirements Class "Queryables"
8.2.1. Fetch the queryable properties of the features in a collection
9. Media Types
9.1. application/vnd.mapbox.style+json
9.2. application/vnd.ogc.sld+xml
Annex A: Conformance Class Abstract Test Suite (Normative)
A.1. Conformance Class "Core"
A.1.1. Test Case 1
A.1.2. Test Case 2
A.2. Conformance Class "Manage styles"
A.2.1. Test Case 1
A.2.2. Test Case 2
A.2.3. Test Case 3
A.2.4. Test Case 4
A.2.5. Test Case 5
A.2.6. Test Case 6
A.2.7. Test Case 7
A.2.8. Test Case 8
A.2.9. Test Case 9
A.2.10. Test Case 10
A.3. Conformance Class "Style validation"
A.3.1. Test Case 1
A.4. Conformance Class "Resources"
A.4.1.Test Case 1
A.4.2. Test Case 2
A.5. Conformance Class "Manage Resources"
A.5.1. Test Case 1
A.5.2. Test Case 2
A.5.3. Test Case 3

39
39
39
40
40
41
41
42
43
44
45
47
50
50
35
35
35
57
57
57
58
39
39
59
39
60
60
61
61
62
62
62
63
63
64
64
65
65
65
66
66

A.6. Conformance Class "HTML"
A.6.1. Test Case 1

A.7. Conformance Class "Mapbox Style"
A.7.1. Test Case 1

A.8. Conformance Class "SLD 1.0"
A.8.1. Test Case 1

A.9. Conformance Class "SLD 1.1"
A.9.1. Test Case 1

A.10. Conformance Class "Style information"
A.10.1. Test Case 1
A.10.2. Test Case 2

A.11. Conformance Class "Queryables"
A.11.1. Test Case 1

Annex B: Revision History

Annex C: Bibliography

66
66
67
67
67
67
68
68
68
68
69
69
70
71
72

Open Geospatial Consortium

Submission Date: 2019-10-30

Approval Date: 2019-11-22

Publication Date: 2019-12-12

External identifier of this OGC® document: http://www.opengis.net/doc/PER/t15-D012
Internal reference number of this OGC® document: 19-010r2

Category: OGC Public Engineering Report

Editor: Clemens Portele
OGC Testbed-15: Styles API Engineering Report

Copyright notice
Copyright © 2019 Open Geospatial Consortium

To obtain additional rights of use, visit http://www.opengeospatial.org/legal/
Warning

This document is not an OGC Standard. This document is an OGC Public
Engineering Report created as a deliverable in an OGC Interoperability Initiative
and is not an official position of the OGC membership. It is distributed for
review and comment. It is subject to change without notice and may not be
referred to as an OGC Standard. Further, any OGC Public Engineering Report
should not be referenced as required or mandatory technology in
procurements. However, the discussions in this document could very well lead
to the definition of an OGC Standard.

Recipients of this document are invited to submit, with their comments, notification of any relevant
patent rights of which they are aware and to provide supporting documentation.

Document type: OGC Public Engineering
Report

Document subtype: Interface
Document stage: Approved for public release

Document language: English

http://www.opengis.net/doc/PER/t15-D012
http://www.opengeospatial.org/legal/

License Agreement

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of charge and
subject to the terms set forth below, to any person obtaining a copy of this Intellectual Property and
any associated documentation, to deal in the Intellectual Property without restriction (except as set
forth below), including without limitation the rights to implement, use, copy, modify, merge,
publish, distribute, and/or sublicense copies of the Intellectual Property, and to permit persons to
whom the Intellectual Property is furnished to do so, provided that all copyright notices on the
intellectual property are retained intact and that each person to whom the Intellectual Property is
furnished agrees to the terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include,
in addition to the above copyright notice, a notice that the Intellectual Property includes
modifications that have not been approved or adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY
PATENTS THAT MAY BE IN FORCE ANYWHERE IN THE WORLD.

THE INTELLECTUAL PROPERTY IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NONINFRINGEMENT OF THIRD
PARTY RIGHTS. THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE DO NOT
WARRANT THAT THE FUNCTIONS CONTAINED IN THE INTELLECTUAL PROPERTY WILL MEET
YOUR REQUIREMENTS OR THAT THE OPERATION OF THE INTELLECTUAL PROPERTY WILL BE
UNINTERRUPTED OR ERROR FREE. ANY USE OF THE INTELLECTUAL PROPERTY SHALL BE MADE
ENTIRELY AT THE USER'S OWN RISK. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR ANY
CONTRIBUTOR OF INTELLECTUAL PROPERTY RIGHTS TO THE INTELLECTUAL PROPERTY BE
LIABLE FOR ANY CLAIM, OR ANY DIRECT, SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES, OR
ANY DAMAGES WHATSOEVER RESULTING FROM ANY ALLEGED INFRINGEMENT OR ANY LOSS OF
USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR UNDER ANY
OTHER LEGAL THEORY, ARISING OUT OF OR IN CONNECTION WITH THE IMPLEMENTATION, USE,
COMMERCIALIZATION OR PERFORMANCE OF THIS INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the
Intellectual Property together with all copies in any form. The license will also terminate if you fail
to comply with any term or condition of this Agreement. Except as provided in the following
sentence, no such termination of this license shall require the termination of any third party end-
user sublicense to the Intellectual Property which is in force as of the date of notice of such
termination. In addition, should the Intellectual Property, or the operation of the Intellectual
Property, infringe, or in LICENSOR’s sole opinion be likely to infringe, any patent, copyright,
trademark or other right of a third party, you agree that LICENSOR, in its sole discretion, may
terminate this license without any compensation or liability to you, your licensees or any other
party. You agree upon termination of any kind to destroy or cause to be destroyed the Intellectual
Property together with all copies in any form, whether held by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all
or part of the Intellectual Property shall not be used in advertising or otherwise to promote the sale,
use or other dealings in this Intellectual Property without prior written authorization of LICENSOR
or such copyright holder. LICENSOR is and shall at all times be the sole entity that may authorize

you or any third party to use certification marks, trademarks or other special designations to
indicate compliance with any LICENSOR standards or specifications. This Agreement is governed by
the laws of the Commonwealth of Massachusetts. The application to this Agreement of the United
Nations Convention on Contracts for the International Sale of Goods is hereby expressly excluded.
In the event any provision of this Agreement shall be deemed unenforceable, void or invalid, such
provision shall be modified so as to make it valid and enforceable, and as so modified the entire
Agreement shall remain in full force and effect. No decision, action or inaction by LICENSOR shall
be construed to be a waiver of any rights or remedies available to it.

i. Abstract

This document is a proof of concept of a draft specification of the OGC Styles Application
Programming Interface (API) that defines a Web API that enables map servers and clients as well as
visual style editors to manage and fetch styles.

Web APIs are software interfaces that use an architectural style that is founded on the technologies
of the Web. Styles consist of symbolizing instructions that are applied by a rendering engine on
features and/or coverages.

The Styles API supports several types of consumers, mainly:

 Visual style editors that create, update and delete styles for datasets that are shared by other
Web APIs implementing the OGC API - Features - Part 1: Core standard or the draft OGC API -
Coverages or draft OGC API - Tiles specifications;

* Web APIs implementing the draft OGC API - Maps specification fetch styles and render spatial
data (features or coverages) on the server;

* Map clients that fetch styles and render spatial data (features or coverages) on the client.

Feature data is either accessed directly or organized into spatial partitions such as a tiled data store
(aka "vector tiles").

The Styles API is consistent with the emerging OGC API family of standards.

The Styles API implements the conceptual model for style encodings and style metadata as
documented in chapter 6 of the "OGC Testbed-15: Encoding and Metadata Conceptual Model for
Styles Engineering Report".

The model defines three main concepts:

1. The style is the main resource.

2. Each style is available in one or more stylesheets - the representation of a style in an encoding
like OGC SLD 1.0 or Mapbox Style. Clients will use the stylesheet of a style that fits best based on
the capabilities of available tools and their preferences.

3. For each style there is style metadata available, with general descriptive information about the
style, structural information (e.g., layers and attributes), and so forth to allow users to discover
and select existing styles for their data.

This model directly maps to the resources and documents in the Styles API, which supports the
resources and operations listed in the Table below.

Table 1. Styles API - overview of resources and applicable HTTP methods

Resource Path HTTP Document reference
method
Landing page / GET API landing page
Conformance /conformance GET Declaration of conformance classes
declaration

https://portal.opengeospatial.org/wiki/pub/Testbed15/ConvertDocsOutputTestbed15/testbed15/T-15-D011-Concept_Model_for_Style_Encoding_Metadata_Model_ER.html#Metadata

Resource Path HTTP Document reference
method

Styles /styles GET Fetch styles
POST Create a new style
Validate a style
Style /styles/{styleld} GET Fetch style
PUT Update or create a style
Validate a style
DELETE Delete a style
Style metadata /styles/{styleld}/metadata GET Fetch style metadata

PUT Replace the metadata of a style

PATCH Update parts of the metadata of a style
Resources /resources GET Fetch resources
Resource /resources/{resourceld} GET Fetch resource

PUT Create or replace a resource

DELETE Delete a resource

In order to support styles, data APIs (for example, supporting OGC API Features and/or the draft
OGC API Tiles) require additional capabilities, too. These are:

» List and manage the applicable styles per feature collection (path /collections/{collectionId}).

* Add a queryables resource (path /collections/{collectionId}/queryables) to support clients such
as visual style editors to construct expressions for selection criteria in queries on features in the
collection. "Queryable" means that the property may be used in styling rules or other filter
expressions.

To support styling of coverage data, other additional capabilities in the data API may be required,
but have not been investigated by Testbed 15.

This document uses OpenAPI 3.0 to specify the building blocks of the API.

http://spec.openapis.org/oas/v3.0.2

The OpenAPI Specification (OAS) defines a standard, language-agnostic
interface to RESTful APIs which allows both humans and computers to
discover and understand the capabilities of the service without access to
source code, documentation, or through network traffic inspection. When
properly defined, a consumer can understand and interact with the remote
service with a minimal amount of implementation logic.

An OpenAPI definition can then be used by documentation generation tools
to display the API, code generation tools to generate servers and clients in
various programming languages, testing tools, and many other use cases.

— OpenAPI Specification, Introduction
ii. Keywords
The following are keywords to be used by search engines and document catalogues.
ogcdoc, OGC document, OpenAPI, OGC AP, style, style encoding, style metadata, Styles API
iii. Preface

OGC is currently missing a robust conceptual model and APIs capable of supporting styles with
multiple style encodings (for example OGC SLD and Mapbox Style). The Open Portrayal Framework
(OPF) task in Testbed-15 investigated this issue, building on previous portrayal activities in the OGC.
This document specifies building blocks for Web APIs consistent with the OGC API series to manage
and fetch styles.

Attention is drawn to the possibility that some of the elements of this document may be the subject
of patent rights. The Open Geospatial Consortium shall not be held responsible for identifying any
or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any
relevant patent claims or other intellectual property rights of which they may be aware that might
be infringed by any implementation of the draft specification set forth in this document, and to
provide supporting documentation.

iv. Submitting organizations
The following organizations submitted this Document to the Open Geospatial Consortium (0OGC):

» Ecere Corporation

GeoSolutions
e interactive instruments GmbH
e Leidos

* Reinventing Geospatial, Inc.

US Army Geospatial Center (AGC)

v. Submitters

All questions regarding this submission should be directed to the editor or the submitters:

Name

Clemens Portele (editor)
Andrea Aime

Jeff Harrison

Jéréme Jacovella-St-Louis

Richard Kim

Affiliation

interactive instruments GmbH
GeoSolutions

US Army Geospatial Center (AGC)
Ecere Corporation

Reinventing Geospatial, Inc.

Chapter 1. Scope

The Styles Application Programming Interface (API) is a Web API that enables map servers and
clients as well as visual style editors to manage and fetch styles.

The API is consistent with the emerging OGC API family of standards. The API complements the
current and emerging OGC API specifications for features, maps and tiles and builds on the
conceptual model for the encoding of styles and their metadata developed in OGC Testbed-15.

The building blocks of the API are specified using OpenAPI 3.0.

Chapter 2. Conformance

This draft specification defines five requirements/conformance classes for the Styles API:
 "core" provides access to styles and their metadata. JSON is a mandatory encoding in requests
and responses where JSON schemas have been specified for the Styles API.

* "manage-styles" adds the capabilities for creating, updating and deleting styles and their
metadata.

* "style-validation" adds the capability to validate a stylesheet.

* "resources" add the capabilities to provide access to resources referenced from stylesheets
(symbols, sprites) or style metadata (thumbnails).

* "manage-resources" add the capabilities for creating, updating and deleting resources.
In addition, there are four requirements/conformance classes for additional encodings supported
by resources of the API:

* "html" supports HTML in responses to GET requests for all requests to the Styles APIL

* "mapbox-styles" supports Mapbox Styles as a style encoding.

* "sld-10" supports OGC SLD 1.0 as a style encoding.

 "sld-11" supports OGC SLD 1.1 as a style encoding.
Finally, there are two requirements/conformance classes extending the information about
Collection resources specified in OGC API - Features - Part 1: Core:

* "style-info" adds information about available styles for each collection.

* "queryables" adds information about the feature properties that may be used in styling rules.
The standardization target for all classes is: Web API.

Conformance with this draft specification shall be checked using all the relevant tests specified in
Annex A (normative) of this document. The framework, concepts, and methodology for testing, and
the criteria to be achieved to claim conformance are specified in the OGC Compliance Testing
Policies and Procedures and the OGC Compliance Testing web site.

In order to conform to this draft specification, a software implementation has to implement "core".

Chapter 3. References

The following normative documents contain provisions that, through reference in this text,
constitute provisions of this document. For dated references, subsequent amendments to, or
revisions of, any of these publications do not apply. For undated references, the latest edition of the
normative document referred to applies.

IETF: RFC 7396, JSON Merge Patch (2014)
OGC: OGC 02-070, Styled Layer Descriptor, Version 1.0 (2002)
OGC: OGC 05-078r4, Styled Layer Descriptor, Version 1.1 (2007)

OGC: OGC 17-069r3, OGC API - Features - Part 1: Core (2019)
If "OGC API - Common" would be available and consistent with "OGC API - Features -
NOTE Part 1: Core", "OGC API - Common" would be a normative reference instead of "OGC

API - Features - Part 1: Core".

WhatWG: HTML (Living Standard)

10

https://tools.ietf.org/rfc/rfc7396.txt
http://portal.opengeospatial.org/files/?artifact_id=1188
http://portal.opengeospatial.org/files/?artifact_id=22364
http://docs.opengeospatial.org/is/17-069r3/17-069r3.html
https://html.spec.whatwg.org/

Chapter 4. Terms and Definitions

This document uses the terms defined in Sub-clause 5.3 of [OGC 06-121r8], which is based on the
ISO/IEC Directives, Part 2, Rules for the structure and drafting of International Standards. In
particular, the word “shall” (not “must”) is the verb form used to indicate a requirement to be
strictly followed to conform to this draft specification.

For the purposes of this document, the following additional terms and definitions apply.

4.1. queryable

a property that can be queried

4.2. <portrayal> sprite

an image containing a collection of uniformly-sized symbols as sub-images

4.3. style

a sequence of rules of symbolizing instructions to be applied by a rendering engine on one or more
features and/or coverages

4.4. style encoding

specification to express a style as one or more files

NOTE In Testbed-15 Mapbox Styles, OGC SLD versions 1.0 and 1.1 are used.

4.5. stylesheet

representation of a style in a style encoding

4.6. style metadata

essential information about a style in order to support users in discovering and selecting styles for
rendering their data and for visual style editors to create user interfaces for editing a style

4.7. Web API

API using an architectural style that is founded on the technologies of the Web [source: OGC API -
Features - Part 1: Core]

See Best Practice 24: Use Web Standards as the foundation of APIs (W3C Data on the

NOTE . .
Web Best Practices) for more detail.

11

https://www.w3.org/TR/dwbp/#APIHttpVerbs

Chapter 5. Conventions

This section provides details and examples for any conventions used in the document. Examples of
conventions are symbols, abbreviations, use of XML schema, or special notes regarding how to read
the document.

5.1. Identifiers

The normative provisions in this draft specification are denoted by the URI
http://www.opengis.net/t15/opf-styles-1/1.0

All requirements and conformance tests that appear in this document are denoted by partial URIs
which are relative to this base.

5.2. Abbreviated terms

API

Application Programming Interface

NGA
US National Geospatial Intelligence Agency

0GC

Open Geospatial Consortium

SLD
OGC Styled Layer Descriptor

TDS
Topographic Data Store (an NGA specification)

12

http://www.opengis.net/t15/opf-styles-1/1.0

Chapter 6. Introduction

6.1. Overview

This document specifies draft building blocks for Web APIs to manage and fetch styles supporting
multiple style encodings and metadata to describe and discover styles.

The Styles API supports several types of consumers, mainly:

 Visual style editors that create, update and delete styles for datasets that are shared by other
Web APIs implementing the OGC API - Features - Part 1: Core standard or the draft OGC API -
Coverages or draft OGC API - Tiles specifications;

* Web APIs implementing the draft OGC API - Maps specification fetch styles and render spatial
data (features or coverages) on the server;

* Map clients that fetch styles and render spatial data (features or coverages) on the client.

Feature data is either accessed directly or organized into spatial partitions such as a tiled data store
(aka "vector tiles").

The Styles API is consistent with the emerging OGC API family of standards.
The remainder of this Clause illustrates use cases and workflows that the Styles API could support.
Clause 7 specifies the Styles API.

Clause 8 specifies extensions to OGC API - Features - Part 1: Core standard (or the emerging OGC API
- Common specification) to support the use cases.

6.2. Use cases
This section describes expectations of how clients will interact with the Styles API.
The following use cases assume that:

» Some feature dataset that is structured according to a data specification, such as the NGA
Topographic Data Store 6.1 (TDS), is available via an API that implements the OGC API - Features
- Part 1: Core and draft OGC API - Tiles specifications;

* Roads are included in the data in a collection transportationgroundcrv as features with a
property f code with a value of AP030;

» The URI of the landing page is http://example.org/data-api;
» A style repository is available via an API that implements the Styles API specification;

* The URI of the landing page of the Styles API is http://example.org/styles-api.
The URIs in the use case descriptions are examples and use the domain example.org,

NOTE a reserved domain maintained by IANA for illustrative examples in documents
without prior coordination with IANA.

13

http://example.org/data-api
http://example.org/data-api
http://example.org/data-api
http://example.org/styles-api
http://example.org/styles-api
http://example.org/styles-api
https://www.iana.org/domains/reserved

6.2.1. A map client

A map client that wants to visualize data for features or tiled feature data for the collection
http://example.org/data-api/collections/transportationgroundcrv will look for a styles member in
the response. The client will probably select one of the styles from the list taking the media types of
the supported stylesheets into account and provide a capability so that users can change the style.
The stylesheet returned based on the href member of the link will be used to render the data.

In addition to feature data, the map client might also fetch a hillshade style to apply to an elevation
coverage accessed from a Web API supporting the Testbed-15 Image API or OGC API Coverages.

6.2.2. A visual style editor creating a new style

A user wants to create a new style for TDS roads using a visual style editor. The user knows the
dataset and the data access APIL

A user creates the style in the visual style editor, selects the native stylesheet language for the style
and identifies the transportationgroundcrv collection in the dataset as a sample data source. The
visual style editor executes a request to the landing page (http://example.org/data-api) and the
conformance declaration (http://example.org/data-api/conformance) of the data access API to
determine the API capabilities. Note that alternatively the OpenAPI definition may be inspected, but
for a client that supports the OGC API standards in general, using the API resources directly is often
simpler and, therefore, used in this example.

If the visual style editor supports, for example, both the styling of GeoJSON features or Mapbox
Vector Tile data, the editor would require support for at least one of the two following sets of
conformance classes:

» http://www.opengis.net/spec/ogcapi-features-1/1.0/conf/core and http://www.opengis.net/
spec/ogcapi-features-1/1.0/conf/geojson or

o http://www.opengis.net/spec/ogcapi-tiles-1/1.0/conf/core (with URI templates referencing tiles
of media type application/vnd.mapbox-vector-tile).

The first option provides access to GeoJSON features via http://example.org/data-api/collections/
transportationgrounderv/items, the second one provides access to Mapbox Vector Tiles (MVT)
encoded data via http://example.org/data-api/collections/transportationgroundcrv/tiles.

In addition, the visual style editor will look for the following conformance classes:

» http://www.opengis.net/t15/opf-styles-1/1.0/conf/queryables: If this conformance class is
supported, the visual style editor can specify styling rules that make use of feature properties.
Otherwise all styling rules will apply to all features in each collection.

o http://www.opengis.net/t15/opf-styles-1/1.0/conf/style-info: If this conformance class is
supported, the visual style editor will be able to create a link from the collection to the newly
created style.

The editor will also request information about the features in the collection via a request to
http://example.org/data-api/collections/transportationgroundecrv.

14

http://example.org/data-api/collections/transportationgroundcrv
http://example.org/data-api/collections/transportationgroundcrv
http://example.org/data-api/collections/transportationgroundcrv
http://example.org/data-api/collections/transportationgroundcrv
http://example.org/data-api/collections/transportationgroundcrv
http://example.org/data-api/collections/transportationgroundcrv
http://example.org/data-api/collections/transportationgroundcrv
http://example.org/data-api
http://example.org/data-api
http://example.org/data-api
http://example.org/data-api/conformance
http://example.org/data-api/conformance
http://example.org/data-api/conformance
http://example.org/data-api/conformance
http://example.org/data-api/conformance
http://www.opengis.net/spec/ogcapi-features-1/1.0/conf/core
http://www.opengis.net/spec/ogcapi-features-1/1.0/conf/core
http://www.opengis.net/spec/ogcapi-features-1/1.0/conf/core
http://www.opengis.net/spec/ogcapi-features-1/1.0/conf/core
http://www.opengis.net/spec/ogcapi-features-1/1.0/conf/core
http://www.opengis.net/spec/ogcapi-features-1/1.0/conf/core
http://www.opengis.net/spec/ogcapi-features-1/1.0/conf/core
http://www.opengis.net/spec/ogcapi-features-1/1.0/conf/core
http://www.opengis.net/spec/ogcapi-features-1/1.0/conf/core
http://www.opengis.net/spec/ogcapi-features-1/1.0/conf/core
http://www.opengis.net/spec/ogcapi-features-1/1.0/conf/core
http://www.opengis.net/spec/ogcapi-features-1/1.0/conf/geojson
http://www.opengis.net/spec/ogcapi-features-1/1.0/conf/geojson
http://www.opengis.net/spec/ogcapi-features-1/1.0/conf/geojson
http://www.opengis.net/spec/ogcapi-features-1/1.0/conf/geojson
http://www.opengis.net/spec/ogcapi-features-1/1.0/conf/geojson
http://www.opengis.net/spec/ogcapi-features-1/1.0/conf/geojson
http://www.opengis.net/spec/ogcapi-features-1/1.0/conf/geojson
http://www.opengis.net/spec/ogcapi-features-1/1.0/conf/geojson
http://www.opengis.net/spec/ogcapi-features-1/1.0/conf/geojson
http://www.opengis.net/spec/ogcapi-features-1/1.0/conf/geojson
http://www.opengis.net/spec/ogcapi-features-1/1.0/conf/geojson
http://www.opengis.net/spec/ogcapi-tiles-1/1.0/conf/core
http://www.opengis.net/spec/ogcapi-tiles-1/1.0/conf/core
http://www.opengis.net/spec/ogcapi-tiles-1/1.0/conf/core
http://www.opengis.net/spec/ogcapi-tiles-1/1.0/conf/core
http://www.opengis.net/spec/ogcapi-tiles-1/1.0/conf/core
http://www.opengis.net/spec/ogcapi-tiles-1/1.0/conf/core
http://www.opengis.net/spec/ogcapi-tiles-1/1.0/conf/core
http://www.opengis.net/spec/ogcapi-tiles-1/1.0/conf/core
http://www.opengis.net/spec/ogcapi-tiles-1/1.0/conf/core
http://www.opengis.net/spec/ogcapi-tiles-1/1.0/conf/core
http://www.opengis.net/spec/ogcapi-tiles-1/1.0/conf/core
http://example.org/data-api/collections/transportationgroundcrv/items
http://example.org/data-api/collections/transportationgroundcrv/items
http://example.org/data-api/collections/transportationgroundcrv/items
http://example.org/data-api/collections/transportationgroundcrv/items
http://example.org/data-api/collections/transportationgroundcrv/items
http://example.org/data-api/collections/transportationgroundcrv/items
http://example.org/data-api/collections/transportationgroundcrv/items
http://example.org/data-api/collections/transportationgroundcrv/items
http://example.org/data-api/collections/transportationgroundcrv/items
http://example.org/data-api/collections/transportationgroundcrv/tiles
http://example.org/data-api/collections/transportationgroundcrv/tiles
http://example.org/data-api/collections/transportationgroundcrv/tiles
http://example.org/data-api/collections/transportationgroundcrv/tiles
http://example.org/data-api/collections/transportationgroundcrv/tiles
http://example.org/data-api/collections/transportationgroundcrv/tiles
http://example.org/data-api/collections/transportationgroundcrv/tiles
http://example.org/data-api/collections/transportationgroundcrv/tiles
http://example.org/data-api/collections/transportationgroundcrv/tiles
http://www.opengis.net/t15/opf-styles-1/1.0/conf/queryables
http://www.opengis.net/t15/opf-styles-1/1.0/conf/queryables
http://www.opengis.net/t15/opf-styles-1/1.0/conf/queryables
http://www.opengis.net/t15/opf-styles-1/1.0/conf/queryables
http://www.opengis.net/t15/opf-styles-1/1.0/conf/queryables
http://www.opengis.net/t15/opf-styles-1/1.0/conf/queryables
http://www.opengis.net/t15/opf-styles-1/1.0/conf/queryables
http://www.opengis.net/t15/opf-styles-1/1.0/conf/queryables
http://www.opengis.net/t15/opf-styles-1/1.0/conf/queryables
http://www.opengis.net/t15/opf-styles-1/1.0/conf/queryables
http://www.opengis.net/t15/opf-styles-1/1.0/conf/queryables
http://www.opengis.net/t15/opf-styles-1/1.0/conf/style-info
http://www.opengis.net/t15/opf-styles-1/1.0/conf/style-info
http://www.opengis.net/t15/opf-styles-1/1.0/conf/style-info
http://www.opengis.net/t15/opf-styles-1/1.0/conf/style-info
http://www.opengis.net/t15/opf-styles-1/1.0/conf/style-info
http://www.opengis.net/t15/opf-styles-1/1.0/conf/style-info
http://www.opengis.net/t15/opf-styles-1/1.0/conf/style-info
http://www.opengis.net/t15/opf-styles-1/1.0/conf/style-info
http://www.opengis.net/t15/opf-styles-1/1.0/conf/style-info
http://www.opengis.net/t15/opf-styles-1/1.0/conf/style-info
http://www.opengis.net/t15/opf-styles-1/1.0/conf/style-info
http://example.org/data-api/collections/transportationgroundcrv
http://example.org/data-api/collections/transportationgroundcrv
http://example.org/data-api/collections/transportationgroundcrv
http://example.org/data-api/collections/transportationgroundcrv
http://example.org/data-api/collections/transportationgroundcrv
http://example.org/data-api/collections/transportationgroundcrv
http://example.org/data-api/collections/transportationgroundcrv

If http://www.opengis.net/t15/opf-styles-1/1.0/conf/queryables is supported, the queryables are
retrieved via a request to http://example.org/data-api/collections/transportationgroundcrv/
queryables.

Based on this information, the visual style editor is able to configure its user interface and guide the
user through the creation of the style for road features and visualize the draft style using the
sample data. Once the user has finished the style, the style is published on a Style repository that
supports the Styles APIL.

If the user requests the use of a Style repository that the editor interacts with for the first time, the
editor will again inspect the capabilities of the repository by fetching the conformance declaration
at http://example.org/styles-api/conformance.

At least the following conformance classes must be supported in order for sharing the new style via
the repository.

o http://www.opengis.net/t15/opf-styles-1/1.0/conf/core
o http://www.opengis.net/t15/opf-styles-1/1.0/conf/manage-styles

In addition, if the style includes symbols or sprites, the repository also has to support the following
conformance classes:

o http://www.opengis.net/t15/opf-styles-1/1.0/conf/resources
o http://www.opengis.net/t15/opf-styles-1/1.0/conf/manage-resources

Finally, the repository has to support the native stylesheet language that the user has selected for
the style definition, i.e. one of:

o http://www.opengis.net/t15/opf-styles-1/1.0/conf/mapbox-styles
o http://www.opengis.net/t15/0pf-styles-1/1.0/conf/s1d-10
o http://www.opengis.net/t15/opf-styles-1/1.0/conf/sld-11

The visual style editor will ask the user for her credentials (username and password) in the style
repository and use the credentials in any of the following POST/PUT/PATCH requests.

If http://www.opengis.net/t15/0pf-styles-1/1.0/conf/style-validation is supported, the visual style
editor can also offer validation of the draft style any time during the drafting process using POST
requests with the draft stylesheet to http://example.org/styles-api/styles?validate=only.

To create the new style either a POST request with the stylesheet to http://example.org/styles-api/
styles or a PUT request to http://example.org/styles-api/styles/{styleld} (where {styleld} is the
identifier of the style specified by the user) is sent. ?validate=true may also be added to the request
URI to trigger validation in this step if the style validation conformance class is supported. If PUT is
used, the visual style editor should check that no existing style {styleld} exists.

After a successful creation of the style (in case of a POST request, the URI of the new style
http://example.org/styles-api/styles/{styleld} is returned in an HTTP header Location), the visual
style editor will update the style metadata using a PUT or PATCH request to http://example.org/
styles-api/styles/{styleId}/metadata.

If the data access API supports the conformance class http://www.opengis.net/t15/0gcapi-features-

15

http://www.opengis.net/t15/opf-styles-1/1.0/conf/queryables
http://www.opengis.net/t15/opf-styles-1/1.0/conf/queryables
http://www.opengis.net/t15/opf-styles-1/1.0/conf/queryables
http://www.opengis.net/t15/opf-styles-1/1.0/conf/queryables
http://www.opengis.net/t15/opf-styles-1/1.0/conf/queryables
http://www.opengis.net/t15/opf-styles-1/1.0/conf/queryables
http://example.org/data-api/collections/transportationgroundcrv/queryables
http://example.org/data-api/collections/transportationgroundcrv/queryables
http://example.org/data-api/collections/transportationgroundcrv/queryables
http://example.org/data-api/collections/transportationgroundcrv/queryables
http://example.org/data-api/collections/transportationgroundcrv/queryables
http://example.org/data-api/collections/transportationgroundcrv/queryables
http://example.org/data-api/collections/transportationgroundcrv/queryables
http://example.org/data-api/collections/transportationgroundcrv/queryables
http://example.org/data-api/collections/transportationgroundcrv/queryables
http://example.org/styles-api/conformance
http://example.org/styles-api/conformance
http://example.org/styles-api/conformance
http://example.org/styles-api/conformance
http://example.org/styles-api/conformance
http://www.opengis.net/t15/opf-styles-1/1.0/conf/core
http://www.opengis.net/t15/opf-styles-1/1.0/conf/core
http://www.opengis.net/t15/opf-styles-1/1.0/conf/core
http://www.opengis.net/t15/opf-styles-1/1.0/conf/core
http://www.opengis.net/t15/opf-styles-1/1.0/conf/core
http://www.opengis.net/t15/opf-styles-1/1.0/conf/core
http://www.opengis.net/t15/opf-styles-1/1.0/conf/core
http://www.opengis.net/t15/opf-styles-1/1.0/conf/core
http://www.opengis.net/t15/opf-styles-1/1.0/conf/core
http://www.opengis.net/t15/opf-styles-1/1.0/conf/core
http://www.opengis.net/t15/opf-styles-1/1.0/conf/core
http://www.opengis.net/t15/opf-styles-1/1.0/conf/manage-styles
http://www.opengis.net/t15/opf-styles-1/1.0/conf/manage-styles
http://www.opengis.net/t15/opf-styles-1/1.0/conf/manage-styles
http://www.opengis.net/t15/opf-styles-1/1.0/conf/manage-styles
http://www.opengis.net/t15/opf-styles-1/1.0/conf/manage-styles
http://www.opengis.net/t15/opf-styles-1/1.0/conf/manage-styles
http://www.opengis.net/t15/opf-styles-1/1.0/conf/manage-styles
http://www.opengis.net/t15/opf-styles-1/1.0/conf/manage-styles
http://www.opengis.net/t15/opf-styles-1/1.0/conf/manage-styles
http://www.opengis.net/t15/opf-styles-1/1.0/conf/manage-styles
http://www.opengis.net/t15/opf-styles-1/1.0/conf/manage-styles
http://www.opengis.net/t15/opf-styles-1/1.0/conf/resources
http://www.opengis.net/t15/opf-styles-1/1.0/conf/resources
http://www.opengis.net/t15/opf-styles-1/1.0/conf/resources
http://www.opengis.net/t15/opf-styles-1/1.0/conf/resources
http://www.opengis.net/t15/opf-styles-1/1.0/conf/resources
http://www.opengis.net/t15/opf-styles-1/1.0/conf/resources
http://www.opengis.net/t15/opf-styles-1/1.0/conf/resources
http://www.opengis.net/t15/opf-styles-1/1.0/conf/resources
http://www.opengis.net/t15/opf-styles-1/1.0/conf/resources
http://www.opengis.net/t15/opf-styles-1/1.0/conf/resources
http://www.opengis.net/t15/opf-styles-1/1.0/conf/resources
http://www.opengis.net/t15/opf-styles-1/1.0/conf/manage-resources
http://www.opengis.net/t15/opf-styles-1/1.0/conf/manage-resources
http://www.opengis.net/t15/opf-styles-1/1.0/conf/manage-resources
http://www.opengis.net/t15/opf-styles-1/1.0/conf/manage-resources
http://www.opengis.net/t15/opf-styles-1/1.0/conf/manage-resources
http://www.opengis.net/t15/opf-styles-1/1.0/conf/manage-resources
http://www.opengis.net/t15/opf-styles-1/1.0/conf/manage-resources
http://www.opengis.net/t15/opf-styles-1/1.0/conf/manage-resources
http://www.opengis.net/t15/opf-styles-1/1.0/conf/manage-resources
http://www.opengis.net/t15/opf-styles-1/1.0/conf/manage-resources
http://www.opengis.net/t15/opf-styles-1/1.0/conf/manage-resources
http://www.opengis.net/t15/opf-styles-1/1.0/conf/mapbox-styles
http://www.opengis.net/t15/opf-styles-1/1.0/conf/mapbox-styles
http://www.opengis.net/t15/opf-styles-1/1.0/conf/mapbox-styles
http://www.opengis.net/t15/opf-styles-1/1.0/conf/mapbox-styles
http://www.opengis.net/t15/opf-styles-1/1.0/conf/mapbox-styles
http://www.opengis.net/t15/opf-styles-1/1.0/conf/mapbox-styles
http://www.opengis.net/t15/opf-styles-1/1.0/conf/mapbox-styles
http://www.opengis.net/t15/opf-styles-1/1.0/conf/mapbox-styles
http://www.opengis.net/t15/opf-styles-1/1.0/conf/mapbox-styles
http://www.opengis.net/t15/opf-styles-1/1.0/conf/mapbox-styles
http://www.opengis.net/t15/opf-styles-1/1.0/conf/mapbox-styles
http://www.opengis.net/t15/opf-styles-1/1.0/conf/sld-10
http://www.opengis.net/t15/opf-styles-1/1.0/conf/sld-10
http://www.opengis.net/t15/opf-styles-1/1.0/conf/sld-10
http://www.opengis.net/t15/opf-styles-1/1.0/conf/sld-10
http://www.opengis.net/t15/opf-styles-1/1.0/conf/sld-10
http://www.opengis.net/t15/opf-styles-1/1.0/conf/sld-10
http://www.opengis.net/t15/opf-styles-1/1.0/conf/sld-10
http://www.opengis.net/t15/opf-styles-1/1.0/conf/sld-10
http://www.opengis.net/t15/opf-styles-1/1.0/conf/sld-10
http://www.opengis.net/t15/opf-styles-1/1.0/conf/sld-10
http://www.opengis.net/t15/opf-styles-1/1.0/conf/sld-10
http://www.opengis.net/t15/opf-styles-1/1.0/conf/sld-11
http://www.opengis.net/t15/opf-styles-1/1.0/conf/sld-11
http://www.opengis.net/t15/opf-styles-1/1.0/conf/sld-11
http://www.opengis.net/t15/opf-styles-1/1.0/conf/sld-11
http://www.opengis.net/t15/opf-styles-1/1.0/conf/sld-11
http://www.opengis.net/t15/opf-styles-1/1.0/conf/sld-11
http://www.opengis.net/t15/opf-styles-1/1.0/conf/sld-11
http://www.opengis.net/t15/opf-styles-1/1.0/conf/sld-11
http://www.opengis.net/t15/opf-styles-1/1.0/conf/sld-11
http://www.opengis.net/t15/opf-styles-1/1.0/conf/sld-11
http://www.opengis.net/t15/opf-styles-1/1.0/conf/sld-11
http://www.opengis.net/t15/opf-styles-1/1.0/conf/style-validation
http://www.opengis.net/t15/opf-styles-1/1.0/conf/style-validation
http://www.opengis.net/t15/opf-styles-1/1.0/conf/style-validation
http://www.opengis.net/t15/opf-styles-1/1.0/conf/style-validation
http://www.opengis.net/t15/opf-styles-1/1.0/conf/style-validation
http://www.opengis.net/t15/opf-styles-1/1.0/conf/style-validation
http://www.opengis.net/t15/opf-styles-1/1.0/conf/style-validation
http://www.opengis.net/t15/opf-styles-1/1.0/conf/style-validation
http://www.opengis.net/t15/opf-styles-1/1.0/conf/style-validation
http://www.opengis.net/t15/opf-styles-1/1.0/conf/style-validation
http://www.opengis.net/t15/opf-styles-1/1.0/conf/style-validation
http://example.org/styles-api/styles?validate=only
http://example.org/styles-api/styles?validate=only
http://example.org/styles-api/styles?validate=only
http://example.org/styles-api/styles?validate=only
http://example.org/styles-api/styles?validate=only
http://example.org/styles-api/styles?validate=only
http://example.org/styles-api/styles?validate=only
http://example.org/styles-api/styles
http://example.org/styles-api/styles
http://example.org/styles-api/styles
http://example.org/styles-api/styles
http://example.org/styles-api/styles
http://example.org/styles-api/styles/{styleId}
http://example.org/styles-api/styles/{styleId}
http://example.org/styles-api/styles/{styleId}
http://example.org/styles-api/styles/{styleId}
http://example.org/styles-api/styles/{styleId}
http://example.org/styles-api/styles/{styleId}
http://example.org/styles-api/styles/{styleId}
http://example.org/styles-api/styles/{styleId}
http://example.org/styles-api/styles/{styleId}
http://example.org/styles-api/styles/{styleId}
http://example.org/styles-api/styles/{styleId}
http://example.org/styles-api/styles/{styleId}
http://example.org/styles-api/styles/{styleId}
http://example.org/styles-api/styles/{styleId}
http://example.org/styles-api/styles/{styleId}/metadata
http://example.org/styles-api/styles/{styleId}/metadata
http://example.org/styles-api/styles/{styleId}/metadata
http://example.org/styles-api/styles/{styleId}/metadata
http://example.org/styles-api/styles/{styleId}/metadata
http://example.org/styles-api/styles/{styleId}/metadata
http://example.org/styles-api/styles/{styleId}/metadata
http://example.org/styles-api/styles/{styleId}/metadata
http://example.org/styles-api/styles/{styleId}/metadata
http://www.opengis.net/t15/ogcapi-features-m/1.0/conf/style-links
http://www.opengis.net/t15/ogcapi-features-m/1.0/conf/style-links
http://www.opengis.net/t15/ogcapi-features-m/1.0/conf/style-links
http://www.opengis.net/t15/ogcapi-features-m/1.0/conf/style-links
http://www.opengis.net/t15/ogcapi-features-m/1.0/conf/style-links

m/1.0/conf/style-links, the visual style editor will add a link to the new style using a PATCH request
to http://example.org/data-api/collections/transportationgroundcrv.

6.2.3. A visual style editor updating an existing style
The process is quite similar to the previous example with the following changes:

* The user will start from an existing style, not with a new style. In other words, the user will
open/load the style from the style repository and the editor will fetch a stylesheet of the style
from http://example.org/styles-api/styles/{styleld} (in the style encoding of choice) and the
styles metadata from http://example.org/styles-api/styles/{styleld}/metadata.

o If the style metadata includes links to sample data (e.g., http://example.org/data-api/
collections/transportationgroundcrv), the editor may use that data for sample visualizations
and perhaps to determine changes to queryables. The user may also select other data sources
for these purposes.

* Since an existing style is updated, the style definition will always be updated with a PUT request
to http://example.org/styles-api/styles/{styleld} (no POST request to http://example.org/
styles-api/styles, which would create a new style).

6.2.4. A Web API implementing OGC API - Maps

A Web API that implements the conformance class "Map tile" of the OGC API Maps specification

returns geo-referenced bitmap images showing maps. The URI template for the map tiles is
/collections/{collectionld}/map/{styleld}/tiles/{tileMatrixSetId}/{tileMatrix}/{tileRow}/{tileC

ol} and includes a query parameter styleld. If a client requests a map tile for the collection
transportationgroundcrv the API will use the requested style to render the map. The stylesheet may
be fetched from the same Web API or another Web API that supports the Styles API.

16

http://www.opengis.net/t15/ogcapi-features-m/1.0/conf/style-links
http://www.opengis.net/t15/ogcapi-features-m/1.0/conf/style-links
http://www.opengis.net/t15/ogcapi-features-m/1.0/conf/style-links
http://www.opengis.net/t15/ogcapi-features-m/1.0/conf/style-links
http://example.org/data-api/collections/transportationgroundcrv
http://example.org/data-api/collections/transportationgroundcrv
http://example.org/data-api/collections/transportationgroundcrv
http://example.org/data-api/collections/transportationgroundcrv
http://example.org/data-api/collections/transportationgroundcrv
http://example.org/data-api/collections/transportationgroundcrv
http://example.org/data-api/collections/transportationgroundcrv
http://example.org/styles-api/styles/{styleId}
http://example.org/styles-api/styles/{styleId}
http://example.org/styles-api/styles/{styleId}
http://example.org/styles-api/styles/{styleId}
http://example.org/styles-api/styles/{styleId}
http://example.org/styles-api/styles/{styleId}
http://example.org/styles-api/styles/{styleId}
http://example.org/styles-api/styles/{styleId}/metadata
http://example.org/styles-api/styles/{styleId}/metadata
http://example.org/styles-api/styles/{styleId}/metadata
http://example.org/styles-api/styles/{styleId}/metadata
http://example.org/styles-api/styles/{styleId}/metadata
http://example.org/styles-api/styles/{styleId}/metadata
http://example.org/styles-api/styles/{styleId}/metadata
http://example.org/styles-api/styles/{styleId}/metadata
http://example.org/styles-api/styles/{styleId}/metadata
http://example.org/data-api/collections/transportationgroundcrv
http://example.org/data-api/collections/transportationgroundcrv
http://example.org/data-api/collections/transportationgroundcrv
http://example.org/data-api/collections/transportationgroundcrv
http://example.org/data-api/collections/transportationgroundcrv
http://example.org/data-api/collections/transportationgroundcrv
http://example.org/data-api/collections/transportationgroundcrv
http://example.org/styles-api/styles/{styleId}
http://example.org/styles-api/styles/{styleId}
http://example.org/styles-api/styles/{styleId}
http://example.org/styles-api/styles/{styleId}
http://example.org/styles-api/styles/{styleId}
http://example.org/styles-api/styles/{styleId}
http://example.org/styles-api/styles/{styleId}
http://example.org/styles-api/styles
http://example.org/styles-api/styles
http://example.org/styles-api/styles
http://example.org/styles-api/styles
http://example.org/styles-api/styles

Chapter 7. The Styles API

NOTE This clause specifies the Styles API as designed and implemented in the Open
Portrayal Framework task of OGC Testbed 15.

Stylesheets often reference external resources, especially symbols and fonts to be used in the
rendering process. Symbols are either managed as a single file for each symbol or they are
organized in a sprite. In a sprite, all symbols are combined into a single bitmap image to reduce
memory and the number of http requests. Single symbols and sprites are both supported by the
Styles API. Further, they may be stored in the Styles APIL. For example, this approach would avoid
issues with cross-origin requests. Of course, existing external symbol libraries may also be
referenced from stylesheets. The Styles API currently does not support font resources. If external
fonts / glyphs are used in a stylesheet, an existing font library has to be referenced.

The API supports the resources and operations listed in the Table below with the associated
conformance class and the link to the document section that specifies the requirements.

Table 2. Overview of resources and applicable HTTP methods

Resource Path HTTP Conformance Document reference
metho class
d
Landing page / GET core API landing page
Conformance /conformance GET core Declaration of
declaration conformance classes
Styles /styles GET core Fetch styles
POST manage-styles Create a new style
style-validation Validate a style
Style /styles/{styleld} GET core Fetch style
PUT manage-styles Update or create a style
style-validation Validate a style
DELET manage-styles Delete a style
E
Style metadata { styles/{styleld}/metada GET core Fetch style metadata
a
PUT manage-styles Replace the metadata of a
style
PATCH manage-styles Update parts of the
metadata of a style
Resources /resources GET resources Fetch resources
Resource /resources/{resourceld} GET resources Fetch resource
PUT manage-resources Create or replace a
resource
DELET manage-resources Delete a resource
E

17

The conceptual model and this draft specification support multiple style encodings (stylesheets) per
style. For example, a Styles API may publish a "night" style in the style encodings OGC SLD 1.0, OGC
SLD 1.1 and Mapbox Style. The client will select the stylesheet that fits best based on its capabilities
and preferences.

This version of the Styles API was written with the following assumptions:
* When a new style is created using POST /styles or PUT /styles/{styleld}, the submitted

stylesheet is the reference.

* A server may derive stylesheets in other style encodings from the reference stylesheet, but there
is no requirement to support such a capability. If one or more stylesheets are derived, they will
be automatically be added to the style metadata.

* When an existing style is updated using PUT /styles/{styleld}, the submitted stylesheet
becomes the new reference and all other stylesheets for the style are removed. New stylesheets
may be derived from the new reference stylesheet. The style metadata is updated.

7.1. Requirements Class "Core"

Requirements Class
http://www.opengis.net/t15/opf-styles-1/1.0/req/core
Target type Web API

Dependency OGC API - Common (Core)

An "OGC API - Common" specification is under development (October 1, 2019). The
current draft of Common is based on the generic concepts of the OGC API - Features
- Part 1: Core standard. However, the work is in the earliest stages of the
standardization process. In order to avoid duplicating content, this document does
not copy the basic requirements, recommendations and permissions from OGC API
Common/Features. If "OGC API - Common" is not available as a normative reference,
the alternative would be to remove the dependency and to specify the following
normative statements are part of this requirements class:
* Landing page
o Requirement /regq/core/root-op

o Requirement /regq/core/root-success

= Change: No data link to /collections is required, but a styles link has to
point to the /styles resource

* API definition
o Requirement /req/core/api-definition-op
o Permission /per/core/api-definition-uri
o Requirement /req/core/api-definition-success
- Recommendation /rec/core/api-definition-oas

e Conformance declaration

18
NTOTT

http://www.opengis.net/t15/opf-styles-1/1.0/req/core
http://docs.opengeospatial.org/is/17-069r3/17-069r3.html#req_core_root-op
http://docs.opengeospatial.org/is/17-069r3/17-069r3.html#req_core_root-success
http://docs.opengeospatial.org/is/17-069r3/17-069r3.html#req_core_api-definition-op
http://docs.opengeospatial.org/is/17-069r3/17-069r3.html#per_core_api-definition-uri
http://docs.opengeospatial.org/is/17-069r3/17-069r3.html#req_core_api-definition-success
http://docs.opengeospatial.org/is/17-069r3/17-069r3.html#rec_core_api-definition-oas

o Requirement /req/core/conformance-op
> Requirement /req/core/conformance-success
* Web API

o Requirement /req/core/http

- Recommendation /rec/core/head

o Permission /per/core/additional-status-codes

o Requirement /req/core/query-param-unknown

o Requirement /req/core/query-param-invalid

o Recommendation /rec/core/etag

- Recommendation /rec/core/cross-origin

o Recommendation /rec/core/link-header
The recommendation /rec/core/cross-origin is in particular relevant to support
browser-based visual style editors. It is recommended to support CORS. It is
important to declare all relevant headers in the response. For APIs that support the
"manage-styles” conformance class especially the Location header needs to be

declared (for example, "access-control-expose-headers: Location, Link") to allow
clients access to the URI of a newly created style.

The recommendation /rec/core/string-i18n is mainly implemented by the Content-
Language header in the response to requests, in particular to those returning a
stylesheet or style metadata.

The requirement /reqg/core/crs84 is not applicable to the Styles API since no
geometries are used in the APIL.

7.1.1. API landing page

The following is an example of the landing page of a Styles API. This implementation supports the
"json" conformance class, but not the "html" conformance class.

19

http://docs.opengeospatial.org/is/17-069r3/17-069r3.html#req_core_conformance-op
http://docs.opengeospatial.org/is/17-069r3/17-069r3.html#req_core_conformance-success
http://docs.opengeospatial.org/is/17-069r3/17-069r3.html#req_core_http
http://docs.opengeospatial.org/is/17-069r3/17-069r3.html#rec_core_head
http://docs.opengeospatial.org/is/17-069r3/17-069r3.html#per_core_additional-status-codes
http://docs.opengeospatial.org/is/17-069r3/17-069r3.html#req_core_query-param-unknown
http://docs.opengeospatial.org/is/17-069r3/17-069r3.html#req_core_query-param-invalid
http://docs.opengeospatial.org/is/17-069r3/17-069r3.html#rec_core_etag
http://docs.opengeospatial.org/is/17-069r3/17-069r3.html#rec_core_cross-origin
http://docs.opengeospatial.org/is/17-069r3/17-069r3.html#rec_core_link-header
http://docs.opengeospatial.org/is/17-069r3/17-069r3.html#rec_core_cross-origin
http://docs.opengeospatial.org/is/17-069r3/17-069r3.html#rec_core_string-i18n
http://docs.opengeospatial.org/is/17-069r3/17-069r3.html#req_core_crs84

Example 1. Landing page in J[SON

{
"links": [

{
"href": "https://example.org/api/v1",
"rel": "self",
"type": "application/json",
"title": "this document"

¥

{
"href": "https://example.org/api/v1/api”,
"rel": "service-desc",
"type": "application/vnd.oai.openapi+json;version=3.0",
"title": "the API definition in OpenAPI JSON"

b

{
"href": "https://example.org/api/v1/api.html",
"rel": "service-doc",
"type": "text/html",
“title": "the API documentation in HTML"

¥

{
"href": "https://example.org/api/v1/conformance”,
"rel": "conformance",
“type": "application/json",
"title": "list of conformance classes implemented by this API"

b

{
"href": "https://example.org/api/v1/styles",
"rel": "styles",
"type": "application/json",
"title": "the styles shared via this API"

}

]
}

7.1.2. Declaration of conformance classes

The following is an example of the conformance declaration of a Styles API that implements all
requirements classes except "html".

20

Example 2. Conformance declaration in J[SON

{
"conformsTo": [

"http://www.opengis.net/t15/opf-styles-1/1.0/conf/core",
"http://www.opengis.net/t15/opf-styles-1/1.0/conf/manage-styles"”,
"http://www.opengis.net/t15/opf-styles-1/1.0/conf/style-validation",
"http://www.opengis.net/t15/opf-styles-1/1.0/conf/resources”,
"http://www.opengis.net/t15/opf-styles-1/1.0/conf/manage-resources",
"http://www.opengis.net/t15/opf-styles-1/1.0/conf/mapbox-styles"”,
"http://www.opengis.net/t15/opf-styles-1/1.0/conf/sld-10",
"http://www.opengis.net/t15/opf-styles-1/1.0/conf/sld-11"

7.1.3. Fetch styles

This operation returns a list of styles that are currently available.

Requirement1 /req/core/styles-op

A The server SHALL support the HTTP GET operation at the path
/styles.

Requirement 2 /req/core/styles-success

A A successful execution of the operation SHALL be reported as a
response with an HTTP status code 200.

21

22

The content of that response SHALL be based upon the following
OpenAPI 3.0 schema:

type: object
required:
- styles
properties:
styles:
type: array
nullable: true
items:
type: object
nullable: true
required:
- id
- links
properties:
id:
type: string
nullable: true
title:
type: string
nullable: true

links:
type: array
nullable: true
minItems: 1
items:
$ref:

"http://schemas.opengis.net/ogcapi/features/part1/1.0/op
enapi/ogcapi-features-1.yaml#/components/schemas/link’

The styles member SHALL include one item for each style
currently on the server.

The id member of each style SHALL be unique.

Each style SHALL have at least one link to a style encoding
supported for the style (link relation: stylesheet) with the type
attribute stating the media type of the style encoding.

Each style SHALL have a link to the style metadata (link relation:
describedBy) with the type attribute stating the media type of the
metadata encoding.

NOTE

Currently the links to the thumbnails of a style are available only as part of the style
metadata (see recommendation "/rec/core/style-md-preview"). To display an
overview of the styles with a thumbnail image, a client needs to send multiple
requests, the first one for the list of styles and then a request for each style
metadata to get the thumbnail links. Whether the preview should also be included
for each style in the Styles resource should be discussed.

Recommendation 1 /rec/core/style-title

A

If a style has a title, it SHOULD be included in the title member
of the style.

23

Example 3. J[SON encoding of styles

{
"styles": [
{
"id": "night",
"title": "Topographic night style",
"links": [
{
"href": "https://example.com/api/v1/styles/night?f=mapbox",
"type": "application/vnd.mapbox.style+json",
"rel": "stylesheet"
b
{
"href": "https://example.com/api/v1/styles/night?f=s1d10",
"type": "application/vnd.ogc.sld+xml;version=1.0",
"rel": "stylesheet"
b
{
"href": "https://example.com/api/v1/styles/night/metadata?f=json",
"type": "application/json",
"rel": "describedBy"
}
]
b
{
"id": "topographic",
"title": "Regular topographic style",
"links": [
{
“href": "https://example.com/api/v1/styles/topographic?f=mapbox",
"type": "application/vnd.mapbox.style+json",
"rel": "stylesheet"
I
{
"href": "https://example.com/api/v1/styles/topographic?f=s1d10",
"type": "application/vnd.ogc.sld+xml;version=1.0",
"rel": "stylesheet"
I#
{
"href": "https://example.com/api/v1/styles/topographic/metadata?f=json",
"type": "application/json",
"rel": "describedBy"
}
]
}
]
}

24

7.1.4. Fetch style

This operation returns the stylesheet of a style.

Requirement3 /req/core/style-op

A The server SHALL support the HTTP GET operation at the path
/style/{styleld} for each style referenced from the Styles
resource at /styles.

Requirement 4 /req/core/style-success

A A successful execution of the operation SHALL be reported as a
response with an HTTP status code 200.

B The content of that response SHALL conform to the media type
stated in the Content-Type header.

C The language used in linguistic text in the response SHALL be
consistent with the language stated in the Content-Language
header.

The Content-Language header in a HTTP response is used to describe the language(s)
NOTE intended for the audience. If no Content-Language is specified, the default is that
the content is intended for all language audiences.

7.1.5. Fetch style metadata

This operation returns the metadata of a style.

Requirement 35 /req/core/style-md-op

A The server SHALL support the HTTP GET operation at the path
/style/{styleld}/metadata for each style metadata referenced
from the Styles resource at /styles.

Requirement 6 /req/core/style-md-success

A A successful execution of the operation SHALL be reported as a
response with an HTTP status code 200.

25

B The content of that response SHALL be based upon the following
OpenAPI 3.0 schema:

type: object
required:
- id
properties:
id:
type: string
title:
type: string
nullable: true
description:
type: string
nullable: true
keywords:
type: array
nullable: true
items:
type: string
pointOfContact:
type: string
nullable: true
accessConstraints:
type: string
nullable: true
enum:
- unclassified
- confidential
- restricted
- secret
- topSecret
dates:
type: object
nullable: true
properties:
creation:
type: string
format: date-time
nullable: true
publication:
type: string
format: date-time
nullable: true
revision:
type: string
format: date-time
nullable: true
validTill:
type: string

26

C The language used in linguistic text in the response SHALL be
consistent with the language stated in the Content-Language
header.

TOrmat. daate-time

The elements of the schema are 88Ek#d&n tO48C Testbed-15: Encoding and Metadata Conceptual
Model for Styles Engineering‘RBport".
type: string

Recommendation 2 /rec/core/style-md-sample-data

A Sample data that can be used to illustrate the style SHOULD be
represented as links with the following link relation types:

* enclosure for links to sample data that may be downloaded
(e.g. a GeoPackage);

* collection for links to a Collection resource according to OGC
API Common (e.g. /collections/{collectionld}; the collection
may be available as features (tiled or not) or as gridded data);

» start for links to a Features resource according to OGC API
Features (e.g. /collections/{collectionId}/items; the response
may contain a next link to additional features);

* tiles for a link to a Tile Collection resource (e.g.
/collections/{collectionId}/tiles).

Lypt- oLl Illg
nullable: true

NOTE Additional rules may he needed for links to coverage data.
tvpe: strina
Recommendation 3 /rec/core/style-md-preview

A A link to a thumbnail SHOULD be included with link relation
preview (specified by RFC 6903) and the appropriate media type in
the type parameter.

Lype. vuuLEall

The thumbnail may be an image t_l’?é_ftuig fib1{EH as a resource in the APL The thumbnail can

reference an appropriate raster tilEz] %11{}9&155 r%mq?ifest, etc.

type: string
Example 4. Style metadata in JsoN ~ Mullable: true

Tanls

{

"id": "night",

"title": "Topographic night style",

"description": "This topographic basemap style is designed to be used in
situations with low ambient light. The style supports datasets based on the TDS
6.1 specification.",

"keywords": [

"basemap",

27

"TDS",
"TDS 6.1",
"0GC API"
1],
"pointOfContact": "John Doe",
"accessConstraints": "unclassified",
"dates": {
"creation": "2019-01-01T710:05:00Z",
"publication": "2019-01-01T711:05:00Z",
"revision": "2019-02-01711:05:00Z",
"validTill": "2019-02-01T11:05:002",
"receivedOn": "2019-02-01711:05:002"
s
"scope": "style",
"version": "1.0.0",
"stylesheets": [
{
"title": "Mapbox Style",
"version": "8",
"specification": "https://docs.mapbox.com/mapbox-gl-js/style-spec/",
"native": true,
"tilingScheme": "GoogleMapsCompatible",
"Tink": {
"href": "https://example.org/api/v1/styles/night?f=mapbox",
"rel": "stylesheet",
"type": "application/vnd.mapbox.style+json”

}

"title": "0GC SLD",
"version": "1.0",
"native": false,
"link": {
"href": "https://example.org/api/v1/styles/night?f=s1d10",
"rel": "stylesheet",
"type": "application/vnd.ogc.sld+xml;version=1.0"
}
}
1,
"layers": [
{
"id": "vegetationsrf",
"type": "polygon",
"sampleData": {
"href": "https://services.interactive-
instruments.de/vtp/daraa/collections/vegetationsrf/items?f=json&limit=100",
"rel": "data",
"type": "application/geo+json”
}
I
{

"id": "hydrographycrv",
"type": "line",
"sampleData": {
"href": "https://services.interactive-
instruments.de/vtp/daraa/collections/hydrographycrv/items?f=json&limit=100",
"rel": "data",
"type": "application/geo+json”

I
"attributes": [
{
"id": "f_code",
"type": "string"
}
]
}
1],
"links": [
{
"href": "https://example.org/api/v1/resources/night-thumbnail.png",
"rel": "preview",
"type": "image/png",
"title": "thumbnail of the night style applied to OSM data from Daraa,
Syria"
}

7.2. Requirements Class "Manage styles"

Requirements Class
http://www.opengis.net/t15/opf-styles-1/1.0/req/manage-styles
Target type Web API

Dependency Requirements Class "Core"

Dependency RFC 7396 (JSON Merge Patch)

7.2.1. Create a new style

This operation creates a new style. The payload of the request is a stylesheet of the style in one of
the supported style encodings.

If the style submitted in the request body includes an identifier (this depends on the style
encoding), that identifier will be used. If a style with that identifier already exists, an error is
returned.

EXAMPLE

For Mapbox Styles use the value of the name member and for OGC SLD use the value of the Name
child element, if these are provided.

29

http://www.opengis.net/t15/opf-styles-1/1.0/req/manage-styles
https://tools.ietf.org/rfc/rfc7396.txt

Note that such identifiers may result in URIs that include encoded characters. To avoid this, use PUT
/styles/{styleld} instead and specify the desired styleld explicitly.

If no identifier can be determined from the submitted style, the server will assign a new identifier
to the style.

The URI of the new style is returned in the header Location.

Requirement7 /req/manage-styles/create-style-op

A The server SHALL support the HTTP POST operation at the path
/styles.
B The server SHALL accept a stylesheet in one of the style

encodings supported by the API.

Requirement 8 /req/manage-styles/create-style-success

A A successful execution of the operation SHALL be reported as a
response with an HTTP status code 201.

B The response SHALL include a header Location with the URI of
the new style.

C A minimal style metadata resource SHALL be created at
/styles/{styleld}/metadata.

Note that the metadata will be incomplete and should be updated by the client to keep the style
metadata consistent with the style definition.

Requirement9 /req/manage-styles/create-style-error

A If the request does not conform to the requirements (e.g., the
stylesheet is invalid) a response with status code 400 SHALL be
returned.

Recommendation 4 /rec/manage-styles/id-exists

A If the request is valid, but the server already has a style with the
identifier stated in the stylesheet, a response with status code 409
SHOULD be returned.

30

Example 5. New style response

The URI of the new style is https://example.org/api/v1/styles/night.

HTTP/1.1 201 Created
Date: Sun, 28 Jul 2019 12:32:34 GMT
Location: https://example.org/api/v1/styles/night

7.2.2. Update or create a style

This operation updates the style with the id styleld. If no such style exists, a new style with that id
is added.

For updated styles, the style metadata resource at /styles/{styleld}/metadata is not updated. For
new styles a minimal style metadata resource is created, too. Please update the metadata using a
PUT request to keep the style metadata consistent with the style definition.

Requirement 10 /req/manage-styles/update-style-op

A The server SHALL support the HTTP PUT operation at the path
/styles/{styleld}.
B The server SHALL accept a stylesheet in one of the style

encodings supported by the API.

Requirement 11 /req/manage-styles/update-style-success

A A successful execution of the operation SHALL be reported as a
response with an HTTP status code 204.

B If a new style is created, a minimal style metadata resource
SHALL be created at /styles/{styleld}/metadata.

Note that the metadata should be updated by the client, too, to keep the style metadata consistent
with the style definition.

Requirement 12 /req/manage-styles/update-style-error

A If the request does not conform to the requirements (e.g., the
stylesheet is invalid) a response with status code 400 SHALL be
returned.

31

https://example.org/api/v1/styles/night
https://example.org/api/v1/styles/night
https://example.org/api/v1/styles/night
https://example.org/api/v1/styles/night
https://example.org/api/v1/styles/night
https://example.org/api/v1/styles/night
https://example.org/api/v1/styles/night
https://example.org/api/v1/styles/night
https://example.org/api/v1/styles/night

7.2.3. Delete a style

This operation deletes the style with the id styleld. If no such style exists, an error is returned.

Deleting a style also deletes the subordinate resources, i.e., the style metadata.

Requirement 13 /req/manage-styles/delete-style-op

A The server SHALL support the HTTP DELETE operation at the
path /styles/{styleld}.

Requirement 14 /req/manage-styles/delete-style-success

A A successful execution of the operation SHALL be reported as a
response with an HTTP status code 204.

B All subordinate resources including the style metadata at
/styles/{styleld}/metadata SHALL be deleted, too.

Requirement 15 /req/manage-styles/delete-style-error

A If the style does not exist, a response with status code 404 SHALL
be returned.

7.2.4. Replace the metadata of a style

This operation replaces the metadata of the style with the id styleld. If no such style exists, an error
is returned.

Requirement 16 /req/manage-styles/update-style-md-op

A The server SHALL support the HTTP PUT operation at path
/styles/{styleld}/metadata.

B The server SHALL accept style metadata based on the schema
requirement /reqg/core/style-md-success, item B in all encodings
supported by the API.

Requirement 17 /req/manage-styles/update-style-md-success

A A successful execution of the operation SHALL be reported as a
response with an HTTP status code 204.

32

B The style metadata SHALL be replaced by the content submitted
in the request.

Requirement 18 /req/manage-styles/update-style-md-error

A If the style does not exist, a response with status code 404 SHALL
be returned.

7.2.5. Update parts of the metadata of a style

This operation updates the metadata of the style with the id styleId. If no such style exists, an error
is returned.

Requirement 19 /req/manage-styles/patch-style-md-op

A The server SHALL support the HTTP PATCH operation at path
/styles/{styleld}/metadata.

B The server SHALL accept style metadata based on the schema
requirement /req/core/style-md-success, item B in all encodings
supported by the APIL.

Requirement 20 /req/manage-styles/patch-style-md-success

A A successful execution of the operation SHALL be reported as a
response with an HTTP status code 204.

B The style metadata SHALL be updated by the content submitted in
the request as specified by RFC 7396 (JSON Merge Patch).

From the RFC 7396 (JSON Merge Patch) specification:

A JSON merge patch document describes changes to be made to a target
JSON document using a syntax that closely mimics the document being
modified. Recipients of a merge patch document determine the exact set of
changes being requested by comparing the content of the provided patch
against the current content of the target document. If the provided merge
patch contains members that do not appear within the target, those
members are added. If the target does contain the member, the value is
replaced. Null values in the merge patch are given special meaning to
indicate the removal of existing values in the target.

33

A more flexible, but more complex option for JSON-based PATCH operations is
NOTE specified by RFC 6902. JSON Merge Patch is used because of its simpler and more
intuitive design. An XML-based PATCH operation is specified by RFC 5261.

Some examples using JSON Merge Patch include:

To add or update the point of contact, the access constraint and the revision date, just send:

"pointOfContact": "Jane Doe",
"accessConstraints": "restricted",
"dates": {

"revision": "2019-05-17T711:46:12Z2"

}
}

To remove the point of contact, the access constraint and the revision date, send:

"pointOfContact": null,
"accessConstraints": null,
"dates": {

"revision": null

}
}

For arrays the complete array needs to be sent. To add a keyword to the example style metadata
object, send:

{
"keywords": ["basemap", "TDS", "TDS 6.1", "0GC API", "new keyword"]

}

To remove the "TDS" keyword, send:

{
"keywords": ["basemap", "TDS 6.1", "0GC API", "new keyword"]

}

To remove the keywords, send:

{

"keywords": null

}

34

The same applies to stylesheets, layers and links. To update these members, the complete new
array value has to be sent.

Requirement 21 /req/manage-styles/patch-style-md-error

A If the request does not conform to the requirements (e.g., the
patch document is invalid) a response with status code 400 SHALL
be returned.

B If the style does not exist, a response with status code 404 SHALL
be returned.

C If the patch document appears to be valid, but the server is
incapable of processing the request, a response with status code
422 SHALL be returned.

D If the media type of the patch document is not supported by the
API, a response with status code 415 and an Accept-Patch header
with the supported media types SHALL be returned.

7.3. Requirements Class "Validation of styles"

Requirements Class

http://www.opengis.net/t15/opf-styles-1/1.0/req/style-validation

Target type Web API
Dependency Requirements Class "Manage styles"
7.3.1. Validate a style

Requirement 22 /req/style-validation/input

35

http://www.opengis.net/t15/opf-styles-1/1.0/req/style-validation

A The server SHALL support a parameter with the name "validate"
in POST requests to the path /styles and in PUT requests to the
path /styles/{styleld} with the following schema:

name: validate
in: query
required: false
style: form
explode: false
schema:
type: string
enum:
- yes
- no
- only
default: no

Requirement 23 /req/style-validation/output

A If the validate parameter has been provided in the request with
the value 'yes', the server SHALL validate the submitted stylesheet
for conformance with the style encoding. If an error is identified,
a response with status code 400 shall be returned.

A If the validate parameter has been provided in the request with
the value 'only', the server SHALL validate the submitted
stylesheet for conformance with the style encoding. If an error is
identified, a response with status code 400 SHALL be returned. If
no error is identified, a response with status code 204 SHALL be
returned and no style SHALL be created or updated.

If no parameter validate is provided or the parameter has the value 'no', the standard response is
returned (for a POST on /styles a 201 response with the Location header pointing to the new Style
resource, for a PUT request on /styles/{styleld} a 204 response).

7.4. Requirements Class "Resources"

Requirements Class
http://www.opengis.net/t15/opf-styles-1/1.0/req/resources
Target type Web API

Dependency Requirements Class "Core"

36

http://www.opengis.net/t15/opf-styles-1/1.0/req/resources

7.4.1. Fetch resources

A GET request returns a list of resources that are currently available. The resources can be
referenced from stylesheets. Resources in the Styles API are symbols, sprites and thumbnails.

For each resource the id and a link to the resource is provided.

Testbed-15 required only support for a limited number of the resources. Therefore,
NOTE the currently simple approach is sufficient, but in general the operation could
support paging (using a parameter limit and links to the next page in responses).

Requirement 24 /req/resources/resources-op

A The server SHALL support the HTTP GET operation at the path
/resources.

Requirement 25 /req/resources/resources-success

A A successful execution of the operation SHALL be reported as a
response with an HTTP status code 200.

B The content of that response SHALL be based upon the following
OpenAPI 3.0 schema:

type: object
required:
- resources
properties:
resources:
type: array
items:
type: object
required:
- id
properties:
id:
type: string
link:
$ref:
"http://schemas.opengis.net/ogcapi/features/part1/1.0/op
enapi/ogcapi-features-1.yaml#/components/schemas/1link’

C The resources member SHALL include one item for each resource
currently on the server.

37

D The id member of each resource SHALL be unique.

E Each resource SHALL have a link to the resource (link relation:
item) with the type attribute stating the media type of the
resource.

Example 6. J[SON encoding of resources

{
"resources": [
{
"id": "sprite.json",
"link": {
"href": "https://example.com/api/v1/resources/sprite.json",
"type": "application/json",
"rel": "item"
}
)
{
"id": "sprite.png",
"link": {
"href": "https://example.com/api/v1/resources/sprite.png",
"type": "image/png",
"rel": "item"
}
1
{
"id": "sprite.@2x.png",
"link": {
"href": "https://example.com/api/v1/resources/sprite.@2x.png",
"type": "image/png",
"rel": "item"
}
b
{
"id": "building.svg",
"link": {
"href": "https://example.com/api/v1/resources/building.svg",
"type": "image/svg+xml",
"rel": "item"
}
}
]
by

38

7.4.2. Fetch resource

A GET request returns a single resource.

Requirement 26 /req/resources/resource-op

A The server SHALL support the HTTP GET operation at the path
/resources/{resourceld} for each resource referenced from
/resources.

Requirement 27 /req/resources/resource-success

A A successful execution of the operation SHALL be reported as a
response with an HTTP status code 200.

B The content of that response SHALL conform to the media type
stated in the Content-Type header.

7.5. Requirements Class "Manage resources"

Requirements Class
http://www.opengis.net/t15/opf-styles-1/1.0/req/manage-resources
Target type Web API

Dependency Requirements Class "Resources"

Dependency RFC 7396 (JSON Merge Patch)

7.5.1. Create or replace a resource

This operation creates or replaces the resource with id resourceld.

Requirement 28 /req/manage-resources/update-resource-op

A The server SHALL support the HTTP PUT operation at path
/resources/{resourceld}.

Requirement 29 /req/manage-resources/update-resource-success

A A successful execution of the operation SHALL be reported as a
response with an HTTP status code 204.

B The resource SHALL be the content submitted in the request.

39

http://www.opengis.net/t15/opf-styles-1/1.0/req/manage-resources
https://tools.ietf.org/rfc/rfc7396.txt

7.5.2. Delete a resource

This operation deletes the resource with the id resourceld. If no such resource exists, an error is
returned.

Requirement 30 /req/manage-resources/delete-resource-op

A The server SHALL support the HTTP DELETE operation at the
path /resources/{resourceld}.

Requirement 31 /req/manage-resources/delete-resource-success

A A successful execution of the operation SHALL be reported as a
response with an HTTP status code 204.

Requirement 32 /req/manage-resources/delete-resource-error

A If the style does not exist, a response with status code 404 SHALL
be returned.

7.6. Requirements Class "HTML"

Requirements Class
http://www.opengis.net/t15/opf-styles-1/1.0/req/html
Target type Web API

Dependency Requirements Class "Core"

Dependency HTML
Requirement 33 /req/html/get

A Every 200-response of a GET operation of the server that supports
the media type application/json SHALL support the media type
text/html.

That is, all resources are expected to have a HTML representation except the stylesheets and the
resources (symbols, etc.).

Requirement 34 /req/html/content

40

http://www.opengis.net/t15/opf-styles-1/1.0/req/html
https://html.spec.whatwg.org/

A Every 200-response of the server with the media type text/html
SHALL be a HTML 5 document that includes the following
information in the HTML body:

* all information identified in the schemas of the Response
Object in the HTML <body>, and
* all links in HTML <a> elements in the HTML <body>.

7.7. Requirements Class "OGC SLD 1.0"

Requirements Class
http://www.opengis.net/t15/opf-styles-1/1.0/req/sld-10
Target type Web API

Dependency Requirements Class "Core"

Dependency 0OGC 02-070, Styled Layer Descriptor, Version 1.0
Requirement 35 /req/sld-10/media-type

A Every POST or PUT operation of the server that accepts a
stylesheet document as content SHALL support the media type
application/vnd.ogc.sld+xml;version=1.0.

Requirement 36 /req/sld-10/content

A Every POST or PUT operation of the server that accepts a
stylesheet document as content SHALL accept valid OGC SLD 1.0
documents without errors.

The list of operations in a server implementing all conformance classes of this draft specification is:

* POST /styles
o PUT /styles/{styleld}

7.8. Requirements Class "OGC SLD 1.1"

Requirements Class
http://www.opengis.net/t15/opf-styles-1/1.0/req/sld-11
Target type Web API

Dependency Requirements Class "Core"

Dependency OGC 05-078r4, Styled Layer Descriptor, Version 1.1

41

https://www.w3.org/TR/html5/
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.2.md#responseObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.2.md#responseObject
http://www.opengis.net/t15/opf-styles-1/1.0/req/sld-10
http://portal.opengeospatial.org/files/?artifact_id=1188
http://www.opengis.net/t15/opf-styles-1/1.0/req/sld-11
http://portal.opengeospatial.org/files/?artifact_id=22364

Requirement 37 /req/sld-11/media-type

A Every POST or PUT operation of the server that accepts a
stylesheet document as content SHALL support the media type
application/vnd.ogc.sld+xml;version=1.1.

Requirement 38 /req/sld-11/content

A Every POST or PUT operation of the server that accepts a
stylesheet document as content SHALL accept valid OGC SLD 1.1
documents without errors.

The list of operations in a server implementing all conformance classes of this draft specification is:

* POST /styles
o PUT /styles/{styleld}

7.9. Requirements Class "Mapbox Style"

Requirements Class
http://www.opengis.net/t15/opf-styles-1/1.0/req/mapbox-style
Target type Web API

Dependency Requirements Class "Core"

Dependency Mapbox Style Specification, Version 8
Requirement 39 /req/mapbox-style/media-type

A Every POST or PUT operation of the server that accepts a
stylesheet document as content SHALL support the media type
application/vnd.mapbox.style+json.

Requirement 40 /req/mapbox-style/content

A Every POST or PUT operation of the server that accepts a
stylesheet document as content SHALL accept valid Mapbox Style
documents (version 8) without errors.

The list of operations in a server implementing all conformance classes of this draft specification is:

* POST /styles
* PUT /styles/{styleld}

42

http://www.opengis.net/t15/opf-styles-1/1.0/req/mapbox-style
https://docs.mapbox.com/mapbox-gl-js/style-spec/

Chapter 8. Extensions to the Collection
resource

The previous clause specifies the Styles APIL In order to support portrayal workflows, data APIs
(supporting OGC API Features and/or Tiles) should provide additional information about the data to
support styling.

This clause specifies the extensions to the Collection as additional requirements/conformance
classes to OGC API Features.

In the future, these classes could extend an OGC API Common
NOTE requirements/conformance class that supports feature collections, but as no mature
draft for OGC API Common exists, this document extends OGC API Features.

The extensions are the following:

* The feature collection (path /collections/{collectionId}) is extended by the set of applicable
styles (member styles, same value as in /styles in the Styles API) and a default style (member
defaultStyle, the style id).

* The PATCH operation on the same resource (path /collections/{collectionId}) is added. Only
styles and defaultStyle may be updated.

* The queryables resource (path /collections/{collectionId}/queryables) has been added to
support clients like visual style editors to construct expressions for selection criteria in queries
on features in the collection.

There is planned work on an extension for queryables for the OGC API Features
standard and the draft OGC API Catalogues specification. The requirements for

NOTE stating the queryables for the use by a visual style editor should be brought into this
work activity. Once that extension is available, the requirements class for
queryables can be dropped from this document.

This resulting Features API has the resources listed in the Table below.

Table 3. Overview of resources, applicable HTTP methods

Resource Path HTTP Changes

method
Landing page / GET unchanged
Conformance /conformance GET unchanged, except for returning
declaration additional conformance classes
Feature collections /collections GET unchanged

43

http://docs.opengeospatial.org/is/17-069r3/17-069r3.html#core-overview

Resource Path HTTP Changes
method

Feature collection /collections/{collectionId} GET include links to styles in the
response, see Fetch styles
associated with a collection

PATCH new, see Update styles associated
with a collection

Queryables /collections/{collectionld}/quer GET new, see Fetch the queryable
yables properties of the featuresin a
collection
Features /collections/{collectionld}/item GET unchanged
S
Feature /collections/{collectionId}/item GET unchanged
s/{featureld}

The following is an example of the conformance declaration of a Styles API that implements all
requirements classes except "html".

Example 7. Updated conformance declaration

{

"conformsTo": [
"http://www.opengis.net/spec/ogcapi-features-1/1.0/conf/core",
"http://www.opengis.net/spec/ogcapi-features-1/1.0/conf/0as30",
"http://www.opengis.net/spec/ogcapi-features-1/1.0/conf/html",
"http://www.opengis.net/spec/ogcapi-features-1/1.0/conf/geojson",
"http://www.opengis.net/t15/opf-styles-1/1.0/conf/style-info",
"http://www.opengis.net/t15/opf-styles-1/1.0/conf/queryables”

To support styling of coverage data, other additional capabilities in the relevant
NOTE OGC API specifications supporting coverage data may be required, but have not
been investigated by Testbed 15.

8.1. Requirements Class "Style information"

Requirements Class

http://www.opengis.net/t15/opf-styles-1/1.0/req/style-info

Target type Web API
Dependency OGC API - Features - Part 1: Core, conformance class "Core"
Dependency OGC API - Features - Part 1: Core, conformance class "GeoJSON"

Dependency RFC 7396 (JSON Merge Patch)

44

http://www.opengis.net/t15/opf-styles-1/1.0/req/style-info
http://docs.opengeospatial.org/is/17-069r3/17-069r3.html#rc_core
http://docs.opengeospatial.org/is/17-069r3/17-069r3.html#rc_geojson
https://tools.ietf.org/rfc/rfc7396.txt

8.1.1. Fetch styles associated with a collection

The description of the collection includes additional information related to styles:

* The styles array lists styles that can be used to render features in this collection.

» The defaultStyle is the id of a recommended style to use for this collection.

Requirement 41

A

[req/style-info/success

A successful execution of the operation GET on
/collections/{collectionId} SHALL include two members (with
name styles and defaultStyle), if style information is available
for the collection (for example, the style information may be set
using a PATCH operation as described below).

The styles member SHALL be based on the following OpenAPI 3.0
schema:

type: array
items:
type: object
nullable: true
required:
- id
- links
properties:
id:
type: string
nullable: true

title:
type: string
nullable: true
links:
type: array
nullable: true
minItems: 1
items:
$ref:

"http://schemas.opengis.net/ogcapi/features/part1/1.0/op
enapi/ogcapi-features-1.yaml#/components/schemas/link’

The defaultStyle member SHALL be based on the following

OpenAPI 3.0 schema:

type: string

Recommendation 5 /rec/style-info/consistency

A Each style SHOULD have a link for each style encoding supported
for the style (link relation: stylesheet) with the type attribute
stating the media type of the style encoding.

B Each style SHOULD have a link to the style metadata (link
relation: describedBy) with the type attribute stating the media
type of the metadata encoding.

C The value of the defaultStyle member SHOULD be an id included
in the styles array.

Example 8. J[SON encoding of style information

This example links to two styles, "night" and "topographic". Each is available in two style
encodings. The "topographic" style is identified as the recommended default style for
rendering the features on a map.

"id": "address",
"title": "address",

h

"itemType": "feature",
"styles": [
{
"id": "night",
"title": "Topographic night style",
"links": [
{
"href": "https://example.com/api/1.0/styles/night?f=mapbox",
"type": "application/vnd.mapbox.style+json",
"rel": "stylesheet"
Iy
{
"href": "https://example.com/api/1.0/styles/night?f=s1d10",
"type": "application/vnd.ogc.sld+xml;version=1.0",
"rel": "stylesheet"
Iy,
{
"href": "https://example.com/api/1.0/styles/night/metadata?f=json",
"type": "application/json",
"rel": "describedBy"
}
]
I
{

46

"id": "topographic",
"title": "Regular topographic style",
"links": [
{
"href": "https://example.com/api/1.0/styles/topographic?f=mapbox",
"type": "application/vnd.mapbox.style+json",
"rel": "stylesheet"

b

{
"href": "https://example.com/api/1.0/styles/topographic?f=s1d10",
"type": "application/vnd.ogc.sld+xml;version=1.0",
"rel": "stylesheet"

b

{

"href":
"https://example.com/api/1.0/styles/topographic/metadata?f=json",
"type": "application/json",
"rel": "describedBy"
}
]
}

1,
"defaultStyle": "topographic"

}

8.1.2. Update styles associated with a collection

In the previous section the additional style information for each feature collection is described. This
operation can be used to update the style information.

The PATCH request updates the metadata of the style with the id styleId. If no such style exists, an
error is returned.

Requirement 42 /req/style-info/patch-style-info-op

A The server SHALL support the HTTP PATCH operation at path
/collection/{collectionId}

47

B The server SHALL accept content based on the following OpenAPI
3.0 schema:

type: object
properties:
styles:
type: array
nullable: true
items:
type: object
nullable: true
required:
- 1id
- links
properties:
id:
type: string
nullable: true
title:
type: string
nullable: true

links:
type: array
nullable: true
minItems: 1
items:
$ref:

"http://schemas.opengis.net/ogcapi/features/part1/1.0/op
enapi/ogcapi-features-1.yaml#/components/schemas/1link’
defaultStyle:

type: string
nullable: true

The only members that may be updated at this time are styles and defaultStyle. This specification
does not specify how servers have to respond to additional content in the request content.

Requirement 43 /req/style-info/patch-style-info-success

A A successful execution of the operation SHALL be reported as a
response with a HTTP status code 204.

B The style information SHALL be updated by the content
submitted in the request as specified by RFC 7396 (JSON Merge
Patch).

In other words, a GET request to /collections/{collectionId} after the PATCH operation has to

48

reflect the updated style information.

See the explanations in the operation to update style metadata for more information about about
RFC 7396 (JSON Merge Patch).

Some examples requests and their effect on the Collection resource:

To add or update the default style, just send:

{
"defaultStyle": "night"

}

To remove the default style, send:

{
"defaultStyle": null

}

For arrays the complete array needs to be sent. Le., to update the list of styles, send the complete
new array value.

To remove all styles, send:

{
"styles": null

}

Requirement 44 /req/style-info/patch-style-info-error

A If the request does not conform to the requirements (e.g., the
patch document is invalid or includes additional members) a
response with status code 400 SHALL be returned.

B If the collection does not exist, a response with status code 404
SHALL be returned.
C If the patch document appears to be valid, but the server is

incapable of processing the request, a response with status code
422 SHALL be returned.

D If the media type of the patch document is not supported by the
API], a response with status code 415 and an Accept-Patch header
with the supported media types SHALL be returned.

49

8.2. Requirements Class "Queryables"

Requirements Class
http://www.opengis.net/t15/opf-styles-1/1.0/req/queryables
Target type Web API

Dependency OGC API - Features - Part 1: Core, conformance class "Core"

8.2.1. Fetch the queryable properties of the features in a collection

This operation returns the list of queryable properties that can be used to filter features in a
collection and supports clients in constructing expressions for selection criteria in queries on
features in the collection.

The response is an object with a member queryables, which contains an array with a description of
the queryable properties of the feature collection. "Queryable" means that the property may be
used in query expressions, such as in a query extension to OGC API - Features or as part of a
selection criteria in an OGC SLD/SE or Mapbox styling rule.

Often the list of queryables for a collection will be a subset of all available properties in the features
and be restricted to those properties that are, for example, indexed in the backend datastore to
support performant queries.

For each queryable property the following information is or may be provided:

* id (required) - the property name for use in expressions.

* type (required) - the data type of the property, one of
. string
o Uri
- enum
o number
. integer
. date
o dateTime

o boolean
* description (optional) - a description of the property.
* required (optional) - indicator whether the property is always present in features.

* mediaTypes (optional) - in general, the representation of the queryables is meant to be
independent of the feature encoding. However, this is not always the case. For example, length
restrictions or namespace prefixes may result in different property identifiers for the same
property. To support this, the definition of a queryable may be restricted to one or more feature
encodings (media types).

* pattern (optional, only for "string" and "uri") - a regular expression to validate the values of the
property.

* values (required, only for "enum") - an array of valid values of the property.

50

http://www.opengis.net/t15/opf-styles-1/1.0/req/queryables
http://docs.opengeospatial.org/is/17-069r3/17-069r3.html#rc_core

* range (optional, only for "number", "integer", "date" and "dateTime") - the range of valid values
expressed as an array with two items. Open ranges can be expressed using null for the
minimum or maximum value.

Note that this is not about providing a schema for the features in the collection. A schema provides
a complete syntactic definition of a specific feature encoding, typically for validation purposes.
Schema languages like XML Schema or JSON Schema are much richer and support more complex
syntactic rules, but are also more complex to parse.

Requirement 45 /req/queryables/op

A The server SHALL support the HTTP GET operation at the path
/collection/{collectionId}/queryables for each collection.

Requirement 46 /req/queryables/success

A A successful execution of the operation SHALL be reported as a
response with a HTTP status code 200.

51

52

The content of that response SHALL be based upon the OpenAPI
3.0 schema component "queryables", if the itemType of the
collection is feature:

queryables

type: object
required:
- queryables
properties:
queryables:
type: array
nullable: true
items:
one0f:
- $ref: 'queryable-string'
- $ref: 'queryable-enum'
- $ref: 'queryable-number'
- $ref: 'queryable-boolean'
- $ref: 'queryable-date'
- $ref: 'queryable-dateTime'

queryable

type: object
nullable: true
required:
- id
- type
properties:
id:
type: string
nullable: true
description: |-
the property name for use in expressions
title:
type: string
nullable: true
description: |-
the title of the property for presentation to a
human user
description:
type: string
nullable: true
description: |-
a description of the property
required:
type: boolean
nullable: true
default: false

C The id member of each queryable SHALL be unique.

in features
Note that this requirementsediiadsypses not specify any requirements on collections that are not

feature collections. type: array
nullable: true

Example 9. JSON encoding of quéesdrieption: |-

{
"queryables": [
{
"id": "name",
"description"”: "the name of the vegetation area",
"required": true,
"type": "string",
"example": "[A-Z0-9]{5}"

"id": "type",
"description”: "the dominant characteristic of the vegetation area",
"type": "enum",
"values": [
"grassland",
"forest",
"farmland"

]

"id": "count",
"description": "the number of cattle",
"type": "integer",

"range": [
0,
null
]
Iy,
{
"id": "fenced",
"description": "indicator whether the area is walled or fenced",
"type": "boolean"
}
{
"id": "inspectionDate",
"description”: "the date of the last inspection”,
"type": "date",
"range": [
"2010-01-01",
null
]
Iy

53

54

}

]

}

"id": "lastUpdate",
"description": "the date of the last update of the feature",
"type": "dateTime",

"range": [
"2018-01-01T00:00:007",
null

]

da 1eyuLal ©ApPIEsS>IvIl LU vdlLludgle Liic valLuces

of the property

queryable-enum

all0f:

- $ref: 'queryable'

- type: object
nullable: true
required:

- values
properties:
values:
type: array
nullable: true
description: |-
the list of values of the property
items:
type: string

queryable-number

allof:

- $ref: 'queryable'

- type: object
nullable: true

properties:
range:
type: array
nullable: true
minltems: 2
maxItems: 2
items:

type: number
nullable: true
description: |-
a range of valid values; open range can be
expressed using ‘null’

Chapter 9. Media Types

application/json is the JSON media type used for all content except the stylesheets and the symbol
resources.

text/html is the HTML media type for all "web pages" provided by the API.

No media types have been formally registered with IANA for the style encodings (Mapbox Styles
and OGC SLD). Temporary media types in the vnd-branch as specified below are used for now.

9.1. application/vnd.mapbox.style+json

Type name: application

Subtype name: vnd.mapbox.style+json
Required parameters: n/a

Optional parameters: n/a

Encoding considerations: See RFC 8259, The JavaScript Object Notation (JSON) Data Interchange
Format

Security considerations: See Section 12 of RFC 8259
Interoperability considerations: n/a
Published specification: Mapbox Style Specification, Version 8
Applications that use this media type: Geographic information systems (GIS)
Additional information:

o Deprecated alias names for this type: n/a

o Magic number(s): n/a

o File extension(s): .json

- Macintosh file type code(s): n/a
Person to contact for further information: n/a
Intended usage: COMMON
Restrictions on usage: none
Author: n/a

Change controller: Mapbox

9.2. application/vnd.ogc.sld+xml

Type name: application
Subtype name: vnd.ogc.sld+xml
Required parameters: n/a

Optional parameters:

55

https://docs.mapbox.com/mapbox-gl-js/style-spec/

56

o "charset": See S%M@fggg@ago&

o "version": If provided, this parameter indicates the major and the first minor version

number of the SLI VEH§ion used in the document, e.g. "1.1",
- $ref: '#/components/schemas/queryable’

= Syntax: version = 1*DIGIT "." 1*DIGIT. The first group of digits is the major version
number, the second group is the minor version number.
queryable-date

= The parameter can be used to provide protocol-specific operations, such as version-
based contentgnggetiation in HTTP. The parameter is a hint, if used in HTTP content
negotiation. Le.$elient' gagrgapeatations should be prepared to receive content in a
different versientyipan néquested and server implementations should honor the version

parameter duringwdateet nepegiation, if possible.

. . . _properties: . | .
Encoding conmderaﬂongz ér)%r?g% as application/xml - see section 9.1 of RFC 7303.
Security considerations: OGEype.D asraygeneric XML grammar, but application designers must
not assume that it providesngéhelrie pitotection against security threats. RFC 7303, Section 10,
discusses security concerns fofkeefsicXML, which are also applicable to SLD. Xlink references
inSLD documents may caus@‘%t’flﬁ?ﬁhi‘y URIs to be dereferenced. In this case, the security issues

of RFC 3986, section 7, shoul&%@‘%bnsidered. SLD documents do not contain active or executable
content. type: string

format: date
Interoperability considerationgyfifble: true

Published specification: 0GAEeSERLIBHD, kt led Layer Descriptor, Version 1.0 (2002) and OGC:

0GC 05-078r4, Styled Layer Defctip198, ¢brii ‘1‘.’!?}6@% open range can be
expressed using "null

Applications that use this media type: Geographic information systems (GIS)

Additional informagjgswable-dateTime

o Deprecated alias names for this type: n/a
queryable-dateTime:
> Magic number(s): /3110t

> File extension(s): .sld, .&f&f: 'queryable’
)] - type: object
o Macintosh file type coq] ﬁ'agﬂ. T

Person to contact for furthRiopefoliaation: n/a

range:
Intended usage: COMMON type: array
Restrictions on usage: none nullable: true
minltems: 2
Author: n/a maxItems: 2
Change controller: OGC items:

type: string
format: date-time
nullable: true
description: |-
a range of valid values; open range can be
expressed using ‘null’

http://portal.opengeospatial.org/files/?artifact_id=1188
http://portal.opengeospatial.org/files/?artifact_id=22364
http://portal.opengeospatial.org/files/?artifact_id=22364

Annex A: Conformance Class Abstract Test
Suite (Normative)

A.1. Conformance Class "Core"

A.1.1. Test Case 1

Test id: /conf/core/1

Requirement(s): /req/core/styles-op, /req/core/styles-success, /req/core/style-op, /req/core/style-
success, /req/core/style-md-op, /req/core/style-md-success

Test purpose: Verify that the style resources can be fetched.

57

Test method: 1.

10.

A.1.2. Test Case 2

Issue an HTTP GET request to the path /styles with header Accept:
application/json.

Validate that the response has a status code 200.

Validate the contents of the returned document against the schema in
/req/core/styles-success, item B.

Verify that each style id #/styles/{i}/id (where {i} is the index of the style
in the array) is unique.

Verify that each style has at least one link with rel=stylesheet.

Verify that for each link with rel=stylesheet that the href value links to a
resource at the path /styles/{styleld} where {stylelId} is the id member
of the style.

For each link with rel=stylesheet send a GET request to the URI in href
using the value of type in the Accept header. Verify that the response has a
status code 200 and the requested content type (header Content-Type). If
the response has as Content-Language header, try to verify that linguistic
text in the response in the stated language.

Verify that each style has at least one link with rel=describedBy.

Verify that for each link with rel=describedBy that the href value links to a
resource at the path /styles/{styleld}/metadata where {styleld} is the id
member of the style.

For each link with rel=describedBy send a GET request to the URI in href
using the value of type in the Accept header. Verify that the response has a
status code 200 and the requested content type (header Content-Type). If
the response has as Content-Language header, try to verify that linguistic
text in the response in the stated language. Validate the contents of the
returned document against the schema in /req/core/style-md-success, item
B.

Test id: /conf/core/2

Requirement(s): /req/core/styles-success

Test purpose: Verify that /styles list all styles on the server.

Test method: Use manage-styles operations or some other way to add and delete styles. Issue
an HTTP GET request to the path /styles with header Accept:
application/json before and after each change and verify that added styles are
included and deleted styles have been removed.

If no mechanism for adding/deleting styles is available, skip the test.

58

A.2. Conformance Class "Manage styles"

A.2.1. Test Case 1

Testid: /conf/manage-styles/1

Requirement(s): /req/manage-styles/create-style-op, /req/manage-styles/create-style-success

Test purpose: Verify that styles can be created using POST requests

Test method: 1. Send a POST request to /styles with a valid stylesheet in one of the

A.2.2. Test Case 2

supported style encodings (inspect the API definition of the path) with the
Content-Type header sent to the media type of the style encoding.

Validate that the response has an HTTP status code 201 and a header
Location with a URI to path /styles/{styleld}.

Send a GET request to the URI in Location using the media type of the
submitted stylesheet in the Accept header. Verify that the response has a
status code 200 and the requested content type (header Content-Type).

Send a GET request to the URI in Location with /metadata appended to the
path. Use application/json in the Accept header. Verify that the response
has a status code 200 and the requested content type (header Content-
Type). Validate the contents of the returned document against the schema
in /req/core/style-md-success, item B.

Test id: /conf/manage-styles/2

Requirement(s): /req/manage-styles/create-style-error

Test purpose: Verify that POSTing invalid requests returns an error

Test method: 1. Send a POST request to /styles with empty payload and verify that the

response has an HTTP status code 400.

2. Send a POST request to /styles with payload in an unsupported media

A.2.3. Test Case 3

type in the header Content-Type (inspect the API definition of the path) and
verify that the response has an HTTP status code 400.

Test id: /conf/manage-styles/3

59

Requirement(s): /req/manage-styles/update-style-op, /req/manage-styles/update-style-success
Test purpose: Verify that styles can be created or updated using PUT requests

Test method: 1. Send a PUT request to /styles/{styleId} with a valid stylesheet in one of
the supported style encodings (inspect the API definition of the path) with
the Content-Type header sent to the media type of the style encoding.

2. Validate that the response has an HTTP status code 204.

3. Send a GET request to /styles/{styleId} using the media type of the
submitted stylesheet in the Accept header. Verify that the response has a
status code 200 and the requested content type (header Content-Type).

4. Send a GET request to the URI in Location with /metadata appended to the
path. Use application/json in the Accept header. Verify that the response
has a status code 200 and the requested content type (header Content-
Type). Validate the contents of the returned document against the schema
in /req/core/style-md-success, item B.

A.2.4. Test Case 4

Test id: /conf/manage-styles/4
Requirement(s): /req/manage-styles/update-style-error
Test purpose: Verify that PUTting invalid requests returns an error

Test method: 1. Send a PUT request to /styles/{styleld} with empty payload and verify
that the response has an HTTP status code 400.

2. Send a POST request to /styles/{styleld} with payload in an unsupported
media type in the header Content-Type (inspect the API definition of the
path) and verify that the response has an HTTP status code 400.

A.2.5. Test Case 5

Testid: /conf/manage-styles/5
Requirement(s): /req/manage-styles/delete-style-op, /req/manage-styles/delete-style-success

Test purpose: Verify that styles can be deleted using DELETE requests

60

Test method: 1. Send a DELETE request to /styles/{styleld} where {styleld} is one of the
style identifiers in the Styles resource.

2. Validate that the response has an HTTP status code 204.

3. Send a GET request to /styles/{styleld}. Verify that the response has a
status code 404.

4. Send a GET request to /styles/{styleld}/metadata. Verify that the response
has a status code 404.

A.2.6. Test Case 6

Testid: /conf/manage-styles/6
Requirement(s): /req/manage-styles/delete-style-error
Test purpose: Verify that deleting a non-existent style returns an error

Test method: 1. Send a DELETE request to /styles/{styleld} where {styleId} is NOT one of
the style identifiers in the Styles resource.

2. Validate that the response has an HTTP status code 404.

A.2.7. Test Case 7

Test id: /conf/manage-styles/7

Requirement(s): /req/manage-styles/update-style-md-op, /req/manage-styles/update-style-md-
success

Test purpose: Verify that style metadata can be updated using PUT requests

Test method: 1. Send a PUT request to /styles/{styleld}/metadata with a valid style
metadata document (validate the metadata document against the schema
in /req/core/style-md-success, item B) with the Content-Type header set to
application/json.

2. Validate that the response has an HTTP status code 204.

3. Send a GET request to /styles/{styleld}/metadata with an Accept:
application/json header. Verify that the response has a status code 200
and the requested content type (header Content-Type). Verify that the
retrieved document has the same content as the submitted document
(formatting changes are allowed).

61

A.2.8. Test Case 8

Testid: /conf/manage-styles/8

Requirement(s): /req/manage-styles/update-style-md-error

Test purpose: Verify that sending a metadata PUT request to a non-existing style returns an
error

Test method: 1. Send a PUT request to /styles/{styleld} where {styleId} is NOT one of the

style identifiers in the Styles resource.

2. Validate that the response has an HTTP status code 404.

A.2.9. Test Case 9

Test id: /conf/manage-styles/9

Requirement(s): /req/manage-styles/patch-style-md-op, /reg/manage-styles/patch-style-md-
success, /req/manage-styles/patch-style-md-error

Test purpose: Verify that style metadata can be updated using PATCH requests

Test method: 1. Send a PATCH request to /styles/{styleld}/metadata with a valid style

metadata document (validate the metadata document against the schema
in /req/core/style-md-success, item B) with the Content-Type header set to
application/json.

Validate that the response has an HTTP status code 204 or 422.

If the status code is 204, send a GET request to /styles/{styleld}/metadata
with an Accept: application/json header. Verify that the response has a
status code 200 and the requested content type (header Content-Type).
Verify that the retrieved document includes all the changes in the patch
document (formatting changes are allowed). For example, retrieve the
metadata document before the PATCH request and execute the patch
locally and then compare the document with the API response after the
PATCH.

A.2.10. Test Case 10

Test id: /conf/manage-styles/10

Requirement(s): /req/manage-styles/patch-style-md-error

62

Test purpose: Verify that sending invalid PATCH requests returns an error

Test method: 1. Send a PATCH request to /styles/{styleld}/metadata where {styleld} is
NOT one of the style identifiers in the Styles resource. Validate that the
response has an HTTP status code 404.

2. Send a PATCH request to /styles/{styleId}/metadata with an invalid style
metadata document (validating the metadata document against the
schema in /req/core/style-md-success, item B, returns an error) with the
Content-Type header set to application/json. Validate that the response has
an HTTP status code 400.

3. Send a PATCH request to /styles/{styleld}/metadata with empty payload
and verify that the response has an HTTP status code 400.

4. Send a PATCH request to /styles/{styleld}/metadata with payload in an
unsupported media type in the header Content-Type (inspect the API
definition of the path) and verify that the response has an HTTP status
code 415 and an Accept-Patch header with the supported media types as
stated in the API definition.

A.3. Conformance Class "Style validation"

A.3.1. Test Case 1

Test id: /conf/style-validation/1
Requirement(s): /req/style-validation/input, /req/style-validation/output

Test purpose: Verify that styles are properly validated, if requested

63

Test method: 1.

10.

Repeat test case /conf/manage-styles/1, but with a query parameter
validate=true in the POST request URL

Repeat test case /conf/manage-styles/1, but with a query parameter
validate=no in the POST request URL

Send a POST request to /styles?validate=true with an invalid stylesheet
and verify that the response has an HTTP status code 400.

Send a POST request to /styles?validate=only with the same stylesheet and
verify that the response has an HTTP status code 400.

Send a POST request to /styles?validate=only with a valid stylesheet and
verify that the response has an HTTP status code 204.

Repeat test case /conf/manage-styles/3, but with a query parameter
validate=true in the PUT request URIL.

Repeat test case /conf/manage-styles/3, but with a query parameter
validate=no in the PUT request URIL.

Send a PUT request to /styles/{styleld}?validate=true with an invalid
stylesheet and verify that the response has an HTTP status code 400.

Send a PUT request to /styles/{styleId}?validate=only with the same
stylesheet and verify that the response has an HTTP status code 400.

Send a PUT request to /styles/{styleld}?validate=only with a valid
stylesheet and verify that the response has an HTTP status code 204.

A.4. Conformance Class "Resources"

A.4.1. Test Case 1

Test id: /conf/resources/1

Requirement(s): /req/resources/resources-op, /req/resources/resources-success,
/req/resources/resource-op, /req/resources/resource-success

Test purpose: Verify that the resources can be fetched.

64

Test method: 1. Issue an HTTP GET request to the path /resources with header Accept:
application/json.

2. Validate that the response has a status code 200.

3. Validate the contents of the returned document against the schema in
/req/core/resources-success, item B.

4. Verify that each resources id #/resources/{i}/id (where {i} is the index of
the resources in the array) is unique.

5. Verify that each resource has a link with rel=item.

6. Verify that for each link with rel=item that the href value links to a
resource at the path /resources/{resourceld} where {resourceld} is the id
member of the resource.

7. For each link with rel=item send a GET request to the URI in href using the
value of type in the Accept header. Verify that the response has a status
code 200 and the requested content type (header Content-Type).

A.4.2. Test Case 2

Test id: /conf/resources/2
Requirement(s): /req/resources/resources-success
Test purpose: Verify that /resources list all resources on the server.

Test method: Use manage-resources operations or some other way to add and delete
resources. Issue an HTTP GET request to the path /resources with header
Accept: application/json before and after each change and verify that added
resources are included and deleted resources have been removed.

If no mechanism for adding/deleting resources is available, skip the test.

A.5. Conformance Class "Manage Resources"

A.5.1. Test Case 1

Testid: /conf/manage-resources/1

Requirement(s): /req/manage-resources/update-resources-op, /req/manage-resources/update-
resources-success

Test purpose: Verify that resources can be created or updated using PUT requests

65

Test method: 1. Send a PUT request to /resources/{resourceld}.
2. Validate that the response has an HTTP status code 204.

3. Send a GET request to /resources/{resourceld} using the media type of the
submitted resource in the Accept header. Verify that the response has a
status code 200 and the requested content type (header Content-Type).

A.5.2. Test Case 2

Test id: /conf/manage-styles/2

Requirement(s): /req/manage-resources/delete-resource-op, /req/manage-resources/delete-
resource-success

Test purpose: Verify that resources can be deleted using DELETE requests

Test method: 1. Send a DELETE request to /resources/{resourceld} where {resourceld} is
one of the resource identifiers in the Resources resource.

2. Validate that the response has an HTTP status code 204.

3. Send a GET request to /resources/{resourceld}. Verify that the response
has a status code 404.

A.5.3. Test Case 3

Test id: /conf/manage-styles/6
Requirement(s): /req/manage-resources/delete-resource-error
Test purpose: Verify that deleting a non-existent resource returns an error

Test method: 1. Send a DELETE request to /resources/{resourceld} where {resourceld} is
NOT one of the resource identifiers in the Resources resource.

2. Validate that the response has an HTTP status code 404.

A.6. Conformance Class "HTML"

A.6.1. Test Case 1

Testid: /conf/html/1

Requirement(s): /req/html/get, /req/html/content

66

Test purpose: Verify that all resources support HTML

Test method: 1. Issue HTTP GET requests to the path /styles once with header Accept:

application/json and once with Accept: text/html. Verify that both
responses have a status code 200 and the requested content type (header
Content-Type). Verify to the extent possible that the HTML response
document is a HTML 5 document where all information identified in the
JSON response is included in the HTML <body>, and all links are included
in HTML <a> elements in the HTML <body>.

For each link with rel=describedBy in the JSON response document send
again two GET requests to the URI in href using the headers Accept:
application/json and Accept: text/html respectively. Verify that both
responses have a status code 200 and the requested content type (header
Content-Type). Verify to the extent possible that the HTML response
document is a HTML 5 document where all information identified in the
JSON response is included in the HTML <body>, and all links are included
in HTML <a> elements in the HTML <body>.

A.7. Conformance Class "Mapbox Style"

A.7.1. Test Case 1

Testid: /conf/mapbox-style/1

Requirement(s): /req/mapbox-style/media-type, /req/mapbox-style/content

Test purpose: Verify that Mapbox style is supported as a style encoding

Test method: If the API supports the conformance classes "Manage styles" or "Style
validation", execute all test cases of the supported conformance classes using
stylesheets that are Mapbox Style documents (version 8) using the media type
application/vnd.mapbox.style+json.

Otherwise skip the test.

A.8. Conformance Class "SLD 1.0"

A.8.1. Test Case 1

Test id: /conf/sld-10/1

Requirement(s): /req/sld-10/media-type, /req/sld-10/content

67

Test purpose: Verify that SLD 1.0 is supported as a style encoding

Test method: If the API supports the conformance classes "Manage styles" or "Style
validation", execute all test cases of the supported conformance classes using
stylesheets that are OGC SLD 1.0 documents using the media type
application/vnd.ogc.sld+xml;version=1.0.

Otherwise skip the test.

A.9. Conformance Class "SLD 1.1"

A.9.1. Test Case 1

Test id: /conf/sld-11/1
Requirement(s): /req/sld-11/media-type, /req/sld-11/content
Test purpose: Verify that SLD 1.1 is supported as a style encoding

Test method: If the API supports the conformance classes "Manage styles" or "Style
validation", execute all test cases of the supported conformance classes using
stylesheets that are OGC SLD 1.1 documents using the media type
application/vnd.ogc.sld+xml;version=1.0.

Otherwise skip the test.

A.10. Conformance Class "Style information"

A.10.1. Test Case 1

Test id: /conf/style-info/9

Requirement(s): /req/style-info/patch-style-info-op, /req/style-info/patch-style-info-success,
[req/style-info/success, /req/style-info/patch-style-info-error

Test purpose: Verify that style information can be updated using PATCH requests

68

Test method: 1.

A.10.2. Test Case 2

Send a PATCH request to /collection/{collectionId} with a wvalid
document (validate the document against the schema in /req/style-
info/patch-style-info-op, item B) with the Content-Type header set to
application/json for each collection listed in /collections.

Validate that the response has an HTTP status code 204 o 422.

If the status code is 204, send a GET request to /collection/{collectionId}
with an Accept: application/json header. Verify that the response has a
status code 200 and the requested content type (header Content-Type).
Verify that the retrieved document includes all the changes in the patch
document (formatting changes are allowed). For example, retrieve the
collection document before the PATCH request and execute the patch
locally and then compare the document with the API response after the
PATCH.

Test id: /conf/style-info/2

Requirement(s): /req/style-info/patch-style-info-error

Test purpose: Verify that sending invalid PATCH requests returns an error

Test method: 1.

Send a PATCH request to /collection/{collectionId} where {collectionId}
is NOT one of the collection identifiers in the Collections resource. Validate
that the response has an HTTP status code 404.

Send a PATCH request to /collection/{collectionId} with an invalid patch
document (validating the metadata document against the schema in
[req/style-info/patch-style-info-op, item B, returns an error) with the
Content-Type header set to application/json. Validate that the response has
an HTTP status code 400.

Send a PATCH request to /collection/{collectionId} with empty payload
and verify that the response has an HTTP status code 400.

Send a PATCH request to /collection/{collectionId} with payload in an
unsupported media type in the header Content-Type (inspect the API
definition of the path) and verify that the response has an HTTP status
code 415 and an Accept-Patch header with the supported media types as
stated in the API definition.

A.11. Conformance Class "Queryables"

69

A.11.1. Test Case 1

Test id: /conf/queryables/1
Requirement(s): /req/queryables/op, /req/queryables/success
Test purpose: Verify that the queryables can be fetched.

Test method: 1. Issue an HTTP GET request to the path
/collection/{collectionId}/queryables with header Accept:
application/json for each collection listed in /collections.

2. Validate that the response has a status code 200.

3. Validate the contents of the returned document against the schema in
/reqg/queryables/success, item B, if the itemType is feature.

4. Verify that each queryable id #/queryables/{i}/id (where {i} is the index
of the queryable in the array) is unique.

70

Annex B: Revision History

Date

April 11, 2019
July 28, 2019

August 6, 2019

August 28, 2019

September 24,
2019

October 1, 2019

October 3, 2019

October 24, 2019
October 30, 2019

December 4,
2019

Editor

C.

C.

C.

C.

C.

C.

. Portele

. Portele

Portele

Portele

Portele

Portele

Portele

. Portele
C.

Portele

Reed

Release

0.1
0.2

0.3

0.4

0.5

0.6 (19-010)

0.7

0.8 (19-010r1)
0.9 (19-010r2)

0.95

Primary
clauses
modified

all
all

all

all

all

all

all

all
all

Various

Description

initial version

transfer content
from
SwaggerHub to
ER

transfer content
from
SwaggerHub to
ER, part 2

added link to
GeoPackage
content, update
summary

changed from
ER to Draft
Specification,
edits based on
the review by
Gobe Hobana

edits based on
the review by
Carl Reed

document type
changed back to
ER (using the
document
template for
standards)

submission to TC

comments by
Matt Sorensen,
other
discussions from
TIEs, re-submit
to TC

FInal small edits
prior to
publication.

71

Annex C: Bibliography
1. IETF: RFC 7946 - The GeoJSON Format

2. OGC: OGC Testbed-15: Encoding and Metadata Conceptual Model for Styles Engineering Report.
OGC 19-023, Open Geospatial Consortium (2019)

3. Mapbox: Mapbox Style Specification, Version 8

72

https://tools.ietf.org/html/rfc7946
http://docs.opengeospatial.org/per/19-023r1.html
http://docs.opengeospatial.org/per/19-023r1.html
https://docs.mapbox.com/mapbox-gl-js/style-spec/

	Scope
	Table of Contents
	Chapter 1. Scope
	Chapter 2. Conformance
	Chapter 3. References
	Chapter 4. Terms and Definitions
	4.1. queryable
	4.2. <portrayal> sprite
	4.3. style
	4.4. style encoding
	4.5. stylesheet
	4.6. style metadata
	4.7. Web API

	Chapter 5. Conventions
	5.1. Identifiers
	5.2. Abbreviated terms

	Chapter 6. Introduction
	6.1. Overview
	6.2. Use cases
	6.2.1. A map client
	6.2.2. A visual style editor creating a new style
	6.2.3. A visual style editor updating an existing style
	6.2.4. A Web API implementing OGC API - Maps

	Chapter 7. The Styles API
	7.1. Requirements Class "Core"
	7.1.1. API landing page
	7.1.2. Declaration of conformance classes
	7.1.3. Fetch styles
	7.1.4. Fetch style
	7.1.5. Fetch style metadata

	7.2. Requirements Class "Manage styles"
	7.2.1. Create a new style
	7.2.2. Update or create a style
	7.2.3. Delete a style
	7.2.4. Replace the metadata of a style
	7.2.5. Update parts of the metadata of a style

	7.3. Requirements Class "Validation of styles"
	7.3.1. Validate a style

	7.4. Requirements Class "Resources"
	7.4.1. Fetch resources
	7.4.2. Fetch resource

	7.5. Requirements Class "Manage resources"
	7.5.1. Create or replace a resource
	7.5.2. Delete a resource

	7.6. Requirements Class "HTML"
	7.7. Requirements Class "OGC SLD 1.0"
	7.8. Requirements Class "OGC SLD 1.1"
	7.9. Requirements Class "Mapbox Style"

	Chapter 8. Extensions to the Collection resource
	8.1. Requirements Class "Style information"
	8.1.1. Fetch styles associated with a collection
	8.1.2. Update styles associated with a collection

	8.2. Requirements Class "Queryables"
	8.2.1. Fetch the queryable properties of the features in a collection

	Chapter 9. Media Types
	9.1. application/vnd.mapbox.style+json
	9.2. application/vnd.ogc.sld+xml

	Annex A: Conformance Class Abstract Test Suite (Normative)
	A.1. Conformance Class "Core"
	A.1.1. Test Case 1
	A.1.2. Test Case 2

	A.2. Conformance Class "Manage styles"
	A.2.1. Test Case 1
	A.2.2. Test Case 2
	A.2.3. Test Case 3
	A.2.4. Test Case 4
	A.2.5. Test Case 5
	A.2.6. Test Case 6
	A.2.7. Test Case 7
	A.2.8. Test Case 8
	A.2.9. Test Case 9
	A.2.10. Test Case 10

	A.3. Conformance Class "Style validation"
	A.3.1. Test Case 1

	A.4. Conformance Class "Resources"
	A.4.1. Test Case 1
	A.4.2. Test Case 2

	A.5. Conformance Class "Manage Resources"
	A.5.1. Test Case 1
	A.5.2. Test Case 2
	A.5.3. Test Case 3

	A.6. Conformance Class "HTML"
	A.6.1. Test Case 1

	A.7. Conformance Class "Mapbox Style"
	A.7.1. Test Case 1

	A.8. Conformance Class "SLD 1.0"
	A.8.1. Test Case 1

	A.9. Conformance Class "SLD 1.1"
	A.9.1. Test Case 1

	A.10. Conformance Class "Style information"
	A.10.1. Test Case 1
	A.10.2. Test Case 2

	A.11. Conformance Class "Queryables"
	A.11.1. Test Case 1

	Annex B: Revision History
	Annex C: Bibliography

