OGC Testbed-13

Portrayal Engineering Report

Table of Contents

1. Summary
1.1. Requirements
1.2. Key Findings and Prior-After Comparison
1.3. What does this ER mean for the Working Group and OGC in general
1.4. Document contributor contact points
1.5. Future Work
1.5.1. Map and Layer Profile
1.5.2. Coverage Portrayal
1.5.3. Composite Symbology Semantic Portrayal Service.
1.6. Foreword
2. References
3. Terms and definitions
3.1. feature
3.2. interoperability
3.3. layer
3.4. linked data
3.5. map
3.6. model
3.7. ontology
3.8. portrayal
3.9. semantic interoperability
3.10. semantic mediation
3.11. symbol
3.12. symbology encoding
3.13. syntactic interoperability
4. Conventions
4.1. Abbreviated terms
5. Overview
6. Portrayal Ontologies
6.1. Background
6.2. Goals for Testbed 13
6.3. Findings
6.3.1. Tight Coupling of SLD/SE with XML Model
6.3.2. Identifications
6.3.3. Expression Bindings
6.3.4. Feature Type modeling
6.3.5. Layer
6.3.6. Legend

© © © O © O O g9 o U1 U U1 U U B bR

S S S Y Y
© OO OO Ul Ul R R R R R W R R, O 0O 0O O O O O

6.4. Design
6.4.1. Expression Ontology
6.4.2. Binding Ontology
6.4.3. Legend Ontology
6.4.4. Layer Model

7. Semantic Portrayal Service

7.1. Findings
7.2. Design
7.2.1. REST API Design
7.2.2. Importing Portrayal Information
7.2.3. Import SLD
7.2.4. Linked Data Import
7.2.5. Export SLD

7.2.6. Integration with Portrayal Registry

7.2.7. Rendering
7.2.8. Layer Management API

8. Portrayal Demonstration

8.1. Datasets
8.1.1. GeoJSON
8.1.2. Shapefile
8.1.3. Web Feature Service
8.1.4. GeoSPARQL endpoint

8.2. Import/Export of Portrayal Information

8.3. Portrayal Information Search
8.4. Symbolizer Editor
8.5. Layer Management
8.5.1. Layer Creation
8.5.2. Integration with Web Map Client
8.5.3. Faceted Layer Search
8.5.4. Layer Detail Page

8.6. Demonstration Workflow

Appendix A: Semantic Portrayal Ontologies

A.1 Overview
A.1.1 Namespaces
A.2 Ontologies
A.2.1 Style Ontology
A.2.1.1 Style
A.2.1.2 FeatureTypeStyle
A.2.1.3 CoverageStyle
A.2.1.4 PortrayalRuleSet
A.2.1.5 PortrayalRule

20
20
21
22
22
24
24
24
24
25
25
25
25
26
26
29
30
30
30
31
31
31
31
32
33
33
33
34
35
36
37
39
40
41
43
43
43
44
45
45
46

A.2.1.6 RuleCondition
A.2.1.7 PortrayalRuleList and Ruleltem

A.2.2 Legend Ontology

A.2.2.1 Legend Object
A.2.2.2 Legend Item

A.2.3 Symbology Ontology

A.2.3.1 SymbolSet
A.2.3.2 Symbol

A.2.4 Symbolizer Microtheory

A.2.4.1 Symbolizer Hierarchy
A.2.4.2 Symbolizer

A.2.4.3 Point Symbolizer
A.2.4.4 Line Symbolizer
A.2.4.5 Polygon Symbolizer
A.2.4.6 Text Symbolizer
A.2.4.7 Raster Symbolizer
A.2.4.8 Composite Symbolizer
A.2.4.9 Custom Symbolizer

A.2.5 Graphics Microtheory

A.2.5.1 Context

A.2.5.2 Scope

A.2.5.3 Terminology used in the Graphics Ontology
A.2.5.4 Graphics Ontology Classes

A.2.5.5 Graphic Datatypes

A.2.5.6 Graphic Properties

A.2.6 Binding Microtheory

A.2.7 Namespaces

A.2.7.1 Binding Ontology Classes

A.2.8 Binding Hierarchy

A.2.9 Binding

A.2.10 Expression Microtheory
A.2.11 Namespaces

A.2.11.1 Expression Ontology Classes

A.2.12 Expression Hierarchy
A.2.13 Expression

A.2.14 OGC Expression
A.2.15 SPARQL Expression
A.2.16 Layer Microtheory

A.2.16.1 Layer Concept
A.2.16.2 Recommended properties
A.2.16.3 DataSource Concept

47
50
51
52
53
54
35
56
57
58
58
59
39
60
60
61
61
61
62
62
62
62
63
67
68
75
75
75
76
76
77
77
77
78
78
79
79
79
79
80
82

Appendix B: Semantic Portrayal Service REST API 83

B.1 Overview 84
B.2 HTTP verbs 85
B.3 HTTP status codes 86
B.4 Headers 87
B.5 Errors 88
B.6 Paging and Sorting 89
B.6.1 Paging 89
B.6.2 Sorting 90
B.7 Search Results 91
B.7.1 HAL+JSON Search Results 91
B.7.2 JSON Search results 92
B.7.3 Aggregation JSON Schema 92
B.8 Resources Summary 94
B.9 Level 2 REST Endpoints 95
B.10 Link relation types 102
B.11 Content negotiation 104
B.12 Semantic Portrayal Resources 105
B.12.1 Service Root 105
B.12.1.1 Accessing the root endpoint 105
B.12.1.2 Request structure 105
B.12.1.3 Query Parameters 105
B.12.1.4 Response structure 105
B.12.1.5 Links 106
B.12.1.6 Example response 106
B.12.2 Capabilities 108
B.12.2.1 Query Parameters 108
B.12.2.2 Example request 108
B.12.2.3 Response structure 108
B.12.2.4 Links 109
B.12.2.5 Example response 110
B.12.3 JSON-LD Context 111
B.12.3.1 Query Parameters 112
B.12.3.2 Example request 112
B.12.3.3 Response structure 112
B.12.3.4 Example response 112
B.12.4 Portrayal Items 118
B.12.4.1 Styles 119
B.12.4.2 Style 124
B.12.4.3 Symbols 128

B.12.4.4 Symbol 133

B.12.4.5 SymbolSets
B.12.4.6 SymbolSet
B.12.4.7 Render a Layer
B.12.4.8 Symbol Renderer
B.12.4.9 Symbolizer Renderer
B.12.4.10 SPARQL Service
B.12.4.11 Layers
Appendix C: Revision History
Appendix D: Bibliography

139
144
149
151
153
155
158
159
160

Publication Date: 2018-03-05

Approval Date: 2018-03-02

Posted Date: 2018-01-31

Reference number of this document: OGC 17-045

Reference URL for this document: http://www.opengis.net/doc/PER/t13-NG008
Category: Public Engineering Report

Editor: Stephane Fellah

Title: OGC Testbed-13: Portrayal Engineering Report

OGC Engineering Report
COPYRIGHT

Copyright © 2018 Open Geospatial Consortium. To obtain additional rights of use, visit
http://www.opengeospatial.org/

WARNING

This document is not an OGC Standard. This document is an OGC Public Engineering Report created
as a deliverable in an OGC Interoperability Initiative and is not an official position of the OGC
membership. It is distributed for review and comment. It is subject to change without notice and
may not be referred to as an OGC Standard. Further, any OGC Engineering Report should not be
referenced as required or mandatory technology in procurements. However, the discussions in this
document could very well lead to the definition of an OGC Standard.

http://www.opengis.net/doc/PER/t13-NG008
http://www.opengeospatial.org/

LICENSE AGREEMENT

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of charge and
subject to the terms set forth below, to any person obtaining a copy of this Intellectual Property and
any associated documentation, to deal in the Intellectual Property without restriction (except as set
forth below), including without limitation the rights to implement, use, copy, modify, merge,
publish, distribute, and/or sublicense copies of the Intellectual Property, and to permit persons to
whom the Intellectual Property is furnished to do so, provided that all copyright notices on the
intellectual property are retained intact and that each person to whom the Intellectual Property is
furnished agrees to the terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include,
in addition to the above copyright notice, a notice that the Intellectual Property includes
modifications that have not been approved or adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY
PATENTS THAT MAY BE IN FORCE ANYWHERE IN THE WORLD. THE INTELLECTUAL PROPERTY IS
PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. THE COPYRIGHT HOLDER OR
HOLDERS INCLUDED IN THIS NOTICE DO NOT WARRANT THAT THE FUNCTIONS CONTAINED IN
THE INTELLECTUAL PROPERTY WILL MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF
THE INTELLECTUAL PROPERTY WILL BE UNINTERRUPTED OR ERROR FREE. ANY USE OF THE
INTELLECTUAL PROPERTY SHALL BE MADE ENTIRELY AT THE USER’S OWN RISK. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR ANY CONTRIBUTOR OF INTELLECTUAL PROPERTY RIGHTS
TO THE INTELLECTUAL PROPERTY BE LIABLE FOR ANY CLAIM, OR ANY DIRECT, SPECIAL,
INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM
ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
OF CONTRACT, NEGLIGENCE OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF OR IN
CONNECTION WITH THE IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF
THIS INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the
Intellectual Property together with all copies in any form. The license will also terminate if you fail
to comply with any term or condition of this Agreement. Except as provided in the following
sentence, no such termination of this license shall require the termination of any third party end-
user sublicense to the Intellectual Property which is in force as of the date of notice of such
termination. In addition, should the Intellectual Property, or the operation of the Intellectual
Property, infringe, or in LICENSOR’s sole opinion be likely to infringe, any patent, copyright,
trademark or other right of a third party, you agree that LICENSOR, in its sole discretion, may
terminate this license without any compensation or liability to you, your licensees or any other
party. You agree upon termination of any kind to destroy or cause to be destroyed the Intellectual
Property together with all copies in any form, whether held by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all
or part of the Intellectual Property shall not be used in advertising or otherwise to promote the sale,
use or other dealings in this Intellectual Property without prior written authorization of LICENSOR
or such copyright holder. LICENSOR is and shall at all times be the sole entity that may authorize
you or any third party to use certification marks, trademarks or other special designations to

indicate compliance with any LICENSOR standards or specifications.

This Agreement is governed by the laws of the Commonwealth of Massachusetts. The application to
this Agreement of the United Nations Convention on Contracts for the International Sale of Goods is
hereby expressly excluded. In the event any provision of this Agreement shall be deemed
unenforceable, void or invalid, such provision shall be modified so as to make it valid and
enforceable, and as so modified the entire Agreement shall remain in full force and effect. No
decision, action or inaction by LICENSOR shall be construed to be a waiver of any rights or
remedies available to it.

None of the Intellectual Property or underlying information or technology may be downloaded or
otherwise exported or reexported in violation of U.S. export laws and regulations. In addition, you
are responsible for complying with any local laws in your jurisdiction which may impact your right
to import, export or use the Intellectual Property, and you represent that you have complied with
any regulations or registration procedures required by applicable law to make this license
enforceable.

Chapter 1. Summary

Portrayal of geospatial information plays a crucial role in situation awareness, analysis and
decision-making. Visualizing geospatial information often requires one to portray the information
using symbology or cartographic presentation rules from a community or organization. For
example, among those in the law enforcement, fire and rescue community, various local, national
and international agencies use different symbols and terminology for the same event, location and
building, employing syntactic, structural-based and document-centric data models (e.g., eXtensible
Markup Language (XML) schemas and Style Layer Descriptors (SLD)). With this approach,
interoperability does not extend to the semantic level, which makes it difficult to share, reuse and
mediate unambiguous portrayal information between agencies.

This Engineering Report (ER) captures the requirements, solutions, models and implementations of
the Testbed 13 Portrayal Package. This effort leverages the work on Portrayal Ontology
development and Semantic Portrayal Service conducted during Testbed 10, 11 and 12. The objective
of this Testbed 13 is to identify and complete the gaps in the latest version of the portrayal ontology
defined in Testbed 12, complete the implementation of the Semantic Portrayal Service by adding
rendering capabilities and performing a demonstration of the portrayal service that showcases the
benefits of the proposed semantic-based approach.

1.1. Requirements

The Testbed 12 initiative defined and implemented a set of portrayal ontologies and a RESTful API
for a Semantic Portrayal Service. Due to time limitations, the API implementation didn’t address the
rendering aspect of the service and didn’t fully test the round-trip conversion of Style Layer
Descriptor (SLD) documents with the portrayal ontologies. The work presented in this Engineering
Report addresses the following requirements:

* Identify gaps with SLD and prior microtheories developed during Testbed 12

* Define the renderer Application Programming Interface (API) and output in image formats
Portable Network Graphic (PNG).

* Define workflow of the demonstration scenario

1.2. Key Findings and Prior-After Comparison

OGC has not previously explored an approach for representing portrayal information using
semantic-based technologies. Current OGC standards such Style Layer Description (SLD) and
Symbol Encoding (SE) are document-centric and assume that the data models are based on
Geography Markup Language (GML) encodings making it hard to share and reuse portrayal
information that is based on other data models.

1.3. What does this ER mean for the Working Group
and OGC in general

This Engineering Report (ER) is relevant to the GeoSemantics Domain Working Group (DWG) and a

possible future Portrayal DWG. Both working groups should share the objectives of enabling
semantic interoperability of geospatial-related information. The portrayal ontologies produced by
this testbed define a reusable, extensible, machine-tractable model that allow the sharing of layer
and portrayal information. The portrayal ontology provides an extensible framework to represent
style for layers working on different data models and formats such as Extensible Markup Language
(XML), JavaScript Object Notation (JSON), and others based on Linked Data. The Semantic Portrayal
API showcases how semantic information can be shared using JSON for Linked Data (JSON-LD) and
a hypermedia Representational State Transfer (REST) API combining semantic information and
hypermedia controls.

1.4. Document contributor contact points

All questions regarding this document should be directed to the editor or the contributors:

Table 1. Contacts

Name Organization
Stephane Fellah Image Matters LLC
Emily Mitchell Image Matters LLC
Simone Giannecchini Geo-Solutions

1.5. Future Work

1.5.1. Map and Layer Profile

Layers and Maps of geospatial data are very commonplace, but there is no consistent and standard
way to describe their metadata. While Layer and Map entities are derived from a Dataset entity,
they have their own specific metadata. We propose for the next testbed to investigate a profile for
Layer and Map concepts that extends the Registry Item and relates to Datasets, Services and
Portrayal Information developed for the Semantic Registry and Semantic Portrayal Service.

1.5.2. Coverage Portrayal

So far, the emphasis on developing the portrayal ontologies has been on modeling and representing
portrayal information for feature data. The proposal is that the next testbed focuses on addressing
portrayal information for coverage data (in particular grid coverage). This will close the gap of
expressiveness of the portrayal ontology with SLD and SE standards.

1.5.3. Composite Symbology Semantic Portrayal Service.

For the next Testbed, we propose to extend the ontology to accommodate more complex symbols
such as composite symbols and symbol templates to describe more advanced symbology standards
such as the family of MIL-STD-2525D symbols. It is proposed to also extend the portrayal ontology to
represent composite symbols and symbol templates. Investigation should also include other
renderer outputs such as JSON encoding of the portrayal information, so they can be handled on
the client side in HTML5 Canvas or other rendering libraries such as D3.js.

1.6. Foreword

Attention is drawn to the possibility that some of the elements of this document may be the subject
of patent rights. The Open Geospatial Consortium shall not be held responsible for identifying any
or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any
relevant patent claims or other intellectual property rights of which they may be aware that might
be infringed by any implementation of the standard set forth in this document, and to provide
supporting documentation.

Chapter 2. References

The following documents are referenced in this document. For dated references, subsequent
amendments to, or revisions of, any of these publications do not apply. For undated references, the
latest edition of the normative document referred to applies.

* OGC 16-062 - OGC® Testbed-12 Catalogue and SPARQL Engineering Report

* OGC 15-058 - OGC® Testbed-11 Symbology Mediation Engineering Report

* OGC 15-054 - OGC® Testbed-11 Implementing Linked Data and Semantically Enabling OGC
Services Engineering Report

* OGC 13-084r2, OGC I15 (ISO19115 Metadata) Extension Package of CS-W ebRIM Profile .0, 2014
* OGC 12-168r6, OGC® Catalogue Services 3.0 - General Model, 2016

* OGC 11-052r4, OGC GeoSPARQL- A Geographic Query Language for RDF Data, 2011

* OGC 09-026r2, OGC Filter Encoding 2.0 Encoding Standard - With Corrigendum

* OGC 08-125r1, KML Standard Development Practices, Version 0.6, 2009.

* OGC 07-147r2, KML Version 2.2.0.2008

* OGC 07-110r4, CSW-ebRIM Registry Service ebRIM profile of CSW (.0.1), 2009

* OGC 07-045, OGC Catalogue Services Specification 2.0.2 - ISO Metadata Application Profile (.0.0),
2007

* OGC 07-0061r1, OpenGIS Catalogue Service Implementation Specification 2.0.2, 2007
* OGC 06-129r1, FGDC CSDGM Application Profile for CSW 2.0 (0.0.12), 2006
¢ OGC 06-121r9, OGC® Web Services Common Standard

* OGC 06-121r3, OpenGIS® Web Services Common Specification, version 1.1.0 with Corrigendum
12006

* OGC 05-078r4, OpenGIS Styled Layer Descriptor Profile of the Web Map Service Implementation
Specification, Version 1.1.0, 2006

* OGC 05-077r4, OpenGIS® Symbology Encoding Implementation Specification, Version 1.1.0,
2006.

* ISO/TS 19139:2007, Geographic information — Metadata — XML schema implementation

» I1SO 19119:2005, Geographic information — Services

* ISO 19117:2012, Geographic information — Portrayal

» ISO 19115:2003, Geographic information — Metadata

* ISO 19115:2003/Cor 1:2006, Geographic information — Metadata

» ISO 19115-1:2014, Geographic information — Metadata — Part 1: Fundamentals

* Dublin Core Metadata Initiative, last visited 12-09-2016, available from http://dublincore.org/

* NSG Metadata Foundation (NMF) - Part 1: Core, version 2.2, 23 September 2014
https://nsgreg.nga.mil/doc/view?i=4123

« DGIWG 114, DGIWG Metadata Foundation (DMF)last visited 12-09-2016, available from

http://dublincore.org/
https://nsgreg.nga.mil/doc/view?i=4123

https://portal.dgiwg.org/files/?artifact_id=9189&format=pdf

DoD Discovery Metadata Specification (DDMS),last visited 12-09-2016, available from
https://metadata.ces.mil/dse-help/DDMS/index.htm

SPARQL Protocol and RDF Query Language (SPARQL)last visited 12-09-2016, available from
https://www.w3.org/TR/rdf-sparql-query

DCAT, last visited 12-09-2016, available from https://www.w3.org/TR/vocab-dcat/

National System for Geospatial Intelligence Metadata Implementation Specification (NMIS) —
Part 2: XML Exchange Schema

Project Open Data Metadata Schema v1.1 https://project-open-data.cio.gov/v1.1/schema/
Asset Description Metadata Schema (ADMS) https://www.w3.org/TR/vocab-adms/
JSON-LD 1.0 https://www.w3.org/TR/json-1d/

OWL-S: Semantic Markup for Web Services https://www.w3.org/Submission/OWL-S/

https://portal.dgiwg.org/files/?artifact_id=9189&format=pdf
https://metadata.ces.mil/dse-help/DDMS/index.htm
https://www.w3.org/TR/rdf-sparql-query
https://www.w3.org/TR/vocab-dcat/
https://project-open-data.cio.gov/v1.1/schema/
https://www.w3.org/TR/vocab-adms/
https://www.w3.org/TR/json-ld/
https://www.w3.org/Submission/OWL-S/

Chapter 3. Terms and definitions

For the purposes of this report, the definitions specified in Clause 4 of the OWS Common
Implementation Standard [OGC 06-121r9] shall apply. In addition, the following terms and
definitions apply.

3.1. feature

representation of some real world object or phenomenon

3.2. interoperability

capability to communicate, execute programs, or transfer data among various functional
units in a manner that requires the user to have little or no knowledge of the unique
characteristics of those units [ISO 19119]

3.3. layer

basic unit of geographic information that may be requested as a map from a server

3.4. linked data

a pattern for hyperlinking machine-readable data sets to each other using Semantic Web
techniques, especially via the use of RDF and URIs. Enables distributed SPARQL queries
of the data sets and a browsing or discovery approach to finding information (as
compared to a search strategy). Linked Data is intended for access by both humans and
machines. Linked Data uses the RDF family of standards for data interchange (e.qg.,
RDF/XML, RDFa, Turtle) and query (SPARQL). If Linked Data is published on the public
Web, it is generally called Linked Open Data.

3.5. map

pictorial representation of geographic data

3.6. model

abstraction of some aspects of a universe of discourse [ISO 19109]

3.7. ontology

a formal specification of concrete or abstract things, and the relationships among
them, in a prescribed domain of knowledge [ISO/IEC 19763]

3.8. portrayal

portrayal presentation of information to humans [ISO 19117]

3.9. semantic interoperability

the aspect of interoperability that assures that the content is understood in the same
way in both systems, including by those humans interacting with the systems in a given
context

3.10. semantic mediation

transformation from one or more datasets into a dataset based on a different
conceptual model.

3.11. symbol

a bitmap or vector image that is used to indicate an object or a particular property
on a map.

3.12. symbology encoding

style description to apply to the digital features being rendered

3.13. syntactic interoperability

the aspect of interoperability that assures that there is a technical connection, i.e.
that the data can be transferred between systems

10

Chapter 4. Conventions

4.1. Abbreviated terms

» API Application Programming Interface

* CRS Coordinate Reference System

* CSV Comma Separated Values

* CSW Catalog Services for the Web

* DCAT Data Catalog Vocabulary

* DCAT-AP DCAT Application Profile for Data Portals in Europe

e DCMI Dublin Core Metadata Initiative

* EARL Evaluation and Report Language EU European Union

* EuroVoc Multilingual Thesaurus of the European Union

* GEMET GEneral Multilingual Environmental Thesaurus

* GML Geography Markup Language

* GeoDCAT-AP Geographical extension of DCAT-AP

* GeoJSON Geospatial JavaScript Object Notation

* JANA Internet Assigned Numbers Authority

» INSPIRE Infrastructure for Spatial Information in the European Community
* ISO International Organization for Standardization

* JSON JavaScript Object Notation

* JRC European Commission - Joint Research Centre MDR Metadata Registry
* N3 Notation 3 format

* NAL Named Authority Lists

* OGC Open Geospatial Consortium

* OWL Web Ontology Language

* RDF Resource Description Framework

* RFC Request for Comments

* SE Symbology Encoding

» SLD Style Layer Descriptor

» SKOS Simple Knowledge Organization System

* SPARQL SPARQL Protocol and RDF Query URI Uniform Resource Identifier
» SVG Scalable Vector Graphics

* TTL Turtle Format

e URI Uniform Resource Identifier

11

12

URL Uniform Resource Locator
URN Uniform Resource Name
W3C World Wide Web Consortium
WG Working Group

WKT Well Known Text

XML eXtensible Markup Language

XSLT eXtensible Stylesheet Language Transformations

Chapter 5. Overview

This ER is broken down into three sections. The first section is related to the Portrayal ontology
modeling. It documents the changes needed to better align with SLD and SE standards and lessons
learned from the implementations. The second section is related to the Semantic Portrayal Service
Application Protocol Interface (API). It documents the changes related to the API, in particular the
endpoints related to the rendering of geospatial data and legends. The last section focuses on
documenting the workflow of the Portrayal Demonstration, challenges and issues found during the
Technology Integration Experiments (TIE). The ER also has two appendices: the first documents the
portrayal ontology, and the second documents the Representational State Transfer (REST) API of the
Semantic Portrayal Service.

13

Chapter 6. Portrayal Ontologies

This section summarizes the findings, design approaches and changes in the portrayal ontologies.

6.1. Background

The formalization of portrayal ontologies started in OGC Testbed 10, where the focus was on
representing point-based symbologies related to Disaster and Emergency Management.

An Incident Ontology and Taxonomy for Natural Events and Emergency Incidents was developed
and used to represent incidents that could be represented in the Homeland Security Working
Group Symbology (HSWG) for incidents.

The initial implementation of the Semantic Portrayal Service during the OGC Testbed 11 focused on
defining the styles, portrayal rules, point-based symbols and graphics to enable a Web Processing
Service (WPS) to produce an SLD document. The initial ontology was heavily based on ISO 19117
Geographic Information-Portrayal standard.

However, during the implementation of style renderers and development of the graphic ontology
during Testbed 12, it was concluded the ISO 19117 was mostly designed for runtime
implementation (for example use of portrayal function) rather than adapted for a declarative
approach.

It was found that the OGC SE standard provides a declarative approach based on XML encoding
that is better aligned with modern renderer API approaches such as Java Canvas, Hypertext
Markup Language (HTML) Canvas, Scalable Vector Graphics (SVG), MapCSS, ESRI Map Renderer,
etc. An update of the portrayal ontologies was done by introducing a symbolizer microtheory
aligned with SE and the graphic ontology based on SVG constructs. The scope of the portrayal
ontologies was limited to vector-based (feature-based) representation.

6.2. Goals for Testbed 13

The objective of Testbed 13 in terms of Portrayal Ontology development is to identify the gaps
between SLD/SE standards and the ontologies developed during Testbed 12. The scope of this
analysis is limited to vector data only. Further work is needed for coverage data (raster data in
particular) in future testbeds. To conduct this analysis, a round trip conversion from SLD to Linked
Data Representation and vice versa was performed. The goal is to have the portrayal ontologies
being, at least, as expressive as SLD/SE and able to support rendering tasks. The second objective is
to test the ability of the portrayal ontology to work on models different from XML, by testing its
application to Linked Data representation.

6.3. Findings

6.3.1. Tight Coupling of SLD/SE with XML Model

The SLD/SE standards are tightly coupled with the OGC Feature Model and its XML encoding in
GML. The implementation of the standards in an OGC Web Map Service (WMS) assumes typically

14

that vector data is provided by OGC Web Feature Service (WFS). Some short notation based on CQL
has been introduced to try to bridge the gap, but it is mostly used as syntactic sugar. There are
many formats that are not based on XML such as GeoJSON, Linked Data formats (Turtle, JSON-LD,
NT), and Comma Separated Values (CSV). Each of these standards uses different schema language
(JSON Schema, OWL, RDFS, CSV schema). When it comes to enable semantic interoperability of
portrayal information with a feature model, there needs to be a way to represent the feature model
semantically and map it to the different schemas encoding existing for each of the format. There is
also a need to have an extensible addressing framework that can accommodate different data
models.

6.3.2. Identifications

One of the main challenges with the SLD/SE standards is the lack of a global unique identifier for
representing the different portrayal information expressed by SLD/SE. The identifiers are identified
within the scope of the SLD document and make it hard to reuse and link to other artifacts
expressed in other SLDs documents or knowledge base such as feature dictionary.

Another challenge is the ability to identify feature types in unified way that is independent of the
data model used. Most of the OGC standards use XML schema and GML to represent feature type
definitions. In Linked Data (such as in GeoSPARQL), Feature types are represented through an OWL
class Uniform Resource Identifier (URI). Property Binding in SLD uses XPath to represent paths in
XML structure. In Linked Data, properties are typically defined globally and defined as URIL
SPARQL Protocol and RDF Query Language (SPARQL) and the Shapes Constraint Language (SHACL)
provide a mechanism to define RDF Path. A unified approach is needed to define property paths on
different data models (JSON, XML, Linked Data, CSV,..).

6.3.3. Expression Bindings

The OGC SE standard uses OGC Filter Encoding standard [OGC 09-026r2] to express portrayal rules
conditions and binding expressions to symbolizer attributes. The OGC Filter Encoding standard
describes an XML and Key-Value Pair (KVP) encoding of a system-neutral syntax for expressing the
projection, selection and sorting clauses of a query expression. The intent is that this neutral
representation can be easily validated, parsed and then translated into some target query language
such as SPARQL or SQL for processing. The OGC SE standard extends the expression model with
some pre-built functions commonly used in Portrayal (categorization, formatting functions). While
the goal of the OGC Filter Encoding standard is to define a system-neutral syntax, it suffers of many
drawbacks.

* The standard requires to implement converters from OGC Filter to a target native query
language (ex. SPARQL, SQL), which are not always trivial to implement against specific target
data models.

» Verbosity: The XML encoding of simple expression can be very verbose compared to other
standards query language (CQL, SPARQL).

e Lack of a standard mechanism to define and share functions.

* Assumption that the feature model is mappable to XML and can be represented in XML Schema.
This is not always the case, always available (ex. JSON, RDF, CSV) or even feasible. Other schema
languages can be used such as JSON Schema, OWL, RDF Schema or CSV Schema.

15

* Use of XML QNames: The QName to URI Mapping is broken when trying to map to RDF ontology.
Fundamentally, using “QNames” as abbreviations for URIs is a bad idea. QNames have a
number of restrictions on them because they are built to be legal XML Names: the kinds of
things that one can call elements and attributes. URIs don’t have these restrictions: it’s perfectly
possible for the last part of a URI to consist purely of numbers, or to have a slash at the end, or
even to have request parameters. Fair enough that meaningful QNames can be used for some
URISs, but if one cannot use them properly for all URISs, then there has to be a better way.

All the parameter attribute values for the symbolizers defined in the OGC SE standard XML
encoding require a OGC expression based on the OGC Filter specification. This makes the encoding
very verbose in case a user wants to assign a simple value such as stroke-width to a number. It also
makes it difficult to validate the expression as the actual types of parameter attributes are not
strongly typed.

6.3.4. Feature Type modeling

SLD/SE defines two properties to refer to FeatureType information:

* The FeatureTypeName identifies the specific feature type that the feature-type style is for. It
can be optional but only if a feature type is in-context or if it is intended for usage for a number
of feature types using SemanticTypeldentifier.

* The SemanticTypeldentifier is experimental and is intended to be used to identify what the
feature style (or coverages in case of usage inside a CoverageStyle) is suitable to be used for
using community-controlled name(s). For example, a single style may be suitable to use with
many different feature types. The syntax of the SemanticTypeldentifier string is undefined,
but the strings “generic:line”, “generic:polygon”, “generic:point”, “generic:text”,
“generic:raster”, and “generic:any” are reserved to indicate that a FeatureTypeStyle may be
used with any feature type with the corresponding default geometry type (i.e., no feature
properties are referenced in the feature style).

These properties are not well adapted to accommodate different schema languages and do provide
mechanisms to indicate where to get additional information about the feature types. For example,
OpenStreet Feature could be encoded in GML, JSON or XML and would require one to define a
different SLD encoding for each of these schemas. It would be useful to define the feature type at
the conceptual (semantic) level and then provide links to different encodings and distributions of
the schema. Having a global unique identifier for each feature type will enable the
integration/linking of the feature type dictionary with styling information an minimize duplication.

6.3.5. Layer

The OGC SLD standard defines the concept of “layer” as a collection of features that can be
potentially of various mixed feature types. A named layer is a layer that can be accessed from an
OGC Web Server using a well-known name. For example, the WMS interface uses the LAYER
parameter to reference named layers as in the example parameter:

LAYERS=Rivers,Roads,Houses

16

The SLD standard defines the concept of NamedLayer to represent map layers that can be referred
to by name by a different service. The name that is defined locally to the document is not a global
identifier. This is an issue when one wants to refer a layer to other concepts that are defined
outside the document, such as a dataset used by the layer (which could be defined by a DCAT
Dataset instance).

The NamedLayer element in the SLD standard is defined by the following XML-Schema fragment:

<xsd:element name="NamedLayer">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="se:Name"/>
<xsd:element ref="se:Description"” minOccurs="0"/>
<xsd:element ref="sld:LayerFeatureConstraints" minOccurs="0"/>
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element ref="s1d:NamedStyle"/>
<xsd:element ref="sld:UserStyle"/>
</xsd:choice>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

The LayerFeatureConstraints element is optional in a NamedLayer and allows the user to specify
constraints on what features of what feature types are to be selected by the named-layer reference.
It uses OGC Filter as the filter language, which is mostly designed for data that are mappable to
XML.

A named styled layer can include any number of named styles and user-defined styles, including
zero, mixed in any order. If zero styles are specified, then the default styling for the specified
named layer is to be used. A named style, similar to a named layer, is referenced by a well-known
name. A particular named style only has meaning when used in conjunction with a particular
named layer. One of the issues with this approach is that the name of the layer is defined locally. It
does not define a globally unique identifier that is referenceable, so it can be reused by other layers
defined outside the document.

A UserLayer is defined as a subclass of NamedLayer for representing a user-defined layer to be
built from WFS and WCS data only, and inline features encoded as GML FeatureCollection only. This
is too restrictive as it does not allow UserLayer leveraging other data sources such as GeoJSON,
Linked Data sources accessible from a SPARQL endpoint or other popular formats such as CSV or
Shapefile. UserLayer is defined by the following XML-Schema fragment:

17

<xsd:element name="UserlLayer">
<xsd:annotation>
<xsd:documentation>
A UserlLayer allows a user-defined layer to be built from WFS and
WCS data.
</xsd:documentation>
</xsd:annotation>
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="s1ld:Name" minOccurs="0"/>
<xsd:element ref="s1d:RemoteOWS" minOccurs="0"/>
<xsd:element ref="sld:LayerFeatureConstraints"/>
<xsd:element ref="sld:UserStyle" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

A user-defined style allows map styling to be defined externally from a system and to be passed
around in an interoperable format. The XML-Schema fragment for the UserStyle SLD element is
defined as follows:

<xsd:element name="UserStyle">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="se:Name" minOccurs="0"/>
<xsd:element ref="se:Description” minOccurs="0"/>
<xsd:element ref="s1ld:IsDefault" minOccurs="0"/>
<xsd:choice maxOccurs="unbounded">
<xsd:element ref="se:FeatureTypeStyle"/>
<xsd:element ref="se:CoverageStyle"/>
<xsd:element ref="se:0nlineResource"/>
</xsd:choice>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="IsDefault" type="xsd:boolean"/>

A UserStyle can contain one or more FeatureTypeStyles or CoverageStyles which allow the
rendering of features of specific types. These are described in OGC Symbology Encoding. These
styles can either be provided inline within the SLD document or they can be referenced using an
OnlineResource containing a OGC SE document with a FeatureTypeStyle or CoverageStyle root
element. This organization allows the more convenient use of feature-style libraries.

There is no standard that allows the management of user-defined layers and enables global
referencing of layers to enable the reuse of the layers in different maps. There is a need for an API
and global referencing of layers, as well as the need to create and describe the concept of a layer in
multiple data models and APIs.

18

6.3.6. Legend

Legend plays a central role in the interpretation of map. Legends are typically included with maps
to indicate to the user how various features are represented in the map or on the layer. It is
therefore important to be able to produce a legend on a map display client. Generating a legend on
the client side may involve a significant amount of processing. The client will need to examine the
selected style and determine which rules apply at the currently used map scale. While this would
save some interactions between the client and server and would allow the viewer client to present
consistent sample shapes (across remote map servers from different vendors), the legend graphics
might look different from the graphics actually rendered in the map since the viewer and server
may have different rendering engines and different graphical capabilities. A better approach is
either to associate the legend with a given rule or style or to provide API endpoints to generate
legend for a style and legend item glyphs for a given rule or symbolizer.

There are currently three OGC specifications that are relevant to represent Legends: OGC Symbol
Encoding (SE), OGC Style Layer Descriptor 1.0 and 1.1, and OGC Web Map Service (WMS)
specifications.

In the OGC SE specification, a Rule can be associated with a LegendGraphic element referring to a
Graphic Symbolizer. The Graphic Symbolizer can refer to an external graphic using a URL or
defined as a Mark. LegendGraphic only has a limited role in building legends. For vector types, a
map server would normally render a standard vector geometry (such as a box) with the given
symbolization for a rule. But for some layers, such as for Digital Elevation Model (DEM) data, there
is not really a “standard” geometry that can be rendered to get a good representative image. This is
what the LegendGraphic SE element is intended for, to provide a substitute representative image
for a Rule. For example, it might reference a remote URL for a DEM layer called “GTOP0O30”:

http://www.vendor.com/s1d/icons/COLORMAP_GTOP03@.png

The OGC SLD specification defines the operation GetLegendGraphic to generate a legend as an
image from an SLD style, rule and feature type with flexible legend options to render the layout and
labels of the legend on the server side. An SLD-WMS operation request for GetLegendGraphic can
look like this encoded in KVP:

http://www.vendor.com/wms.cgi?
VERSION=1.1.0&
REQUEST=GetLegendGraphic
LAYER=ROADL_1M%3Alocal_data&
STYLE=my_style&
RULE=highways&
SLD=http%3A%2F%2Fwww.s1d.com%2Fstyles%2Fkpp@1.xml&
WIDTH=16&
HEIGHT=16&
FORMAT=1mage%2Fqgif&

This would produce a 16x16 icon for the Rule named “highways” defined within layer
“ROADL_1M:local_data” in the SLD. The list of available formats for legend graphics and exceptions

19

can be assumed to be the same as are available for a map in the WMS GetMap request.

In OGC Web Map Service 1.3 specification, a Style may contain a LegendURL that provides the
location of an image of a map legend appropriate to the enclosing style. A Format element in
LegendURL indicates the MIME type of the legend image, and the optional attributes width and
height state the size of the image in pixels. Servers should provide the width and height attributes if
known at the time of processing the GetCapabilities request. The legend image should clearly
represent the symbols, lines and colors used in the map portrayal. The legend image should not
contain text that duplicates the Title of the layer, because that information is known to the client
and may be shown to the user by other means.

One of the challenges encountered today by web developers if the display of legends for map. In
many instances, legends are returned as bulk images containing multiple items for different
symbolizers. Most of the modern web applications today are using Responsive Web design, an
approach that suggests that design and development should respond to the user’s behavior and
environment based on screen size, platform and orientation. This implies that the client needs to
have the ability to layout legend items in a flexible way with positioning of their labels depending
of the screen formats. The use of an image for the whole legend is well adapted for responsive
design. A more flexible mechanism is needed to convey the whole legend of a map by decomposing
legend items that can be customized by a REST endpoint. Very often a legend image is also encoded
inline using base64 encoding instead of referring to remote URL, which can add overhead when
fetching each individual item.

The Portrayal Service should also accommodate the custom rendering of legend items (glyphs) for
symbol, symbolizers and rules to provide visual cues when searching these items in the portrayal
service. To address this challenge, an ontology was designed and encoded to describe Legend and
Legend Item that can be used in portable way. The full model is documented in Appendix A.

6.4. Design

6.4.1. Expression Ontology

To address the issues related to the encoding of expressions in the previous section, an extensible
approach was adopted. It leverages the heterogeneity of the data models, schema languages and
query language standards, instead of attempting homogenizing the query language. There are a
number of well-defined standards that are used for different data models. In the case of Linked
Data, the standard SPARQL and its OGC extension GeoSPARQL are well-established. For XML,
XQuery is the W3 standard. Each of these languages has standard mechanisms for defining
functions. The advantage of this approach is that the full expressiveness of each language and
existing query engines available can be leveraged without requiring a conversion process.

The key idea of the adopted approach is to treat expressions as literals and associate a standard URI
for the query language of the expression. A similar approach has been used in OWL-S for
representing conditions and parameter bindings in workflow of web services.

A standalone ontology for expression was defined, anticipating that it could be reused in other
standards that require query expression in different languages.

The core concept of the ontology is Expression. It has only two properties: expressionBody that

20

captures the expression as a literal and expressionLanguage, which refers to the URI of standard
query language. The ontology introduces two convenience subclasses: OGC Expression and
SPARQLExpression which have a fixed value to a query language (see Figure 1)

Expression

- eXpressionLangage : String
- e¥pressionBody : String

OGCExpression SPARQLExpression

Figure 1. Expression Model

The following are URLs for the query languages that have been used:

Language URL

SPARQL Query 1.0 http://www.w3.org/ns/sparql-service-
description#SPARQL10Query

SPARQL Query 1.1 http://www.w3.org/ns/sparql-service-
description#SPARQL11Query

OGC Filter

This ontology was used successfully to convert SLD portrayal rules expression, but not fully tested
for the rendering of the feature data. The Expression ontology is documented in Annex A.

6.4.2. Binding Ontology

In the symbolizer and graphic ontologies, the graphic properties have a range that corresponds to
the type of their values. Using expressions directly as values, will invalidate the model against the
ontology rules (i.e. if a range for graphic property is defined as a xsd:integer, assigning an
expression object will be invalid in OWL). To address the issue of validation of parameter values
(SVGParameter) in SE Encoding, a lightweight Binding ontology was introduced. Symbolizer and
PortrayalRule are defined as subclasses of Parameterizable. A Binding can be attached to any
Parameterizable Object (see Figure 2). It assigns an expression to a property of the
Parameterizable instance.

21

http://www.w3.org/ns/sparql-service-description#SPARQL10Query
http://www.w3.org/ns/sparql-service-description#SPARQL10Query
http://www.w3.org/ns/sparql-service-description#SPARQL11Query
http://www.w3.org/ns/sparql-service-description#SPARQL11Query

Paramerizable

1 - target

0. | _binding

Property Binding - expression | Expression

- property 1

Figure 2. Binding Model

This ontology was used successfully to convert SLD portrayal rules expression bindings, however
was not tested for the rendering of the feature data.

The Binding ontology is documented in Annex A.

6.4.3. Legend Ontology

A Legend plays a central role in the understanding of the meaning of a map or layer. It associates
symbols used in a style with its intended denotation (meaning). This meaning is often associated
with a human readable label but could also be associated with a machine-processable concept. A
layer can have multiple layer styles. For each style, there is a legend associated with it.

A formal model for a legend was designed to enforce best practices that can make it easier for a
client to layout legends in a variety of screen sizes automatically. To address this, the legend was
broken down into a set of individual items that can be laid out. The model can still represent a
legend with different symbolizers as one image using only one item, however it would be
preferable to decompose each symbolizer/rule as one legend item to obtain more flexibility in the
layout of the legend.

The Legend ontology is documented in Appendix A.

6.4.4. Layer Model

For the Testbed 13, an initial model was developed to represent a map layer that addresses some of
the findings described in the previous section. This model was introduced around the end of the
implementation phase in order to support the creation, update, cloning and search of map layers.
The model may need some refinement in future testbeds.

The layer model is slightly different from the one defined in current OGC services, in the sense that
it can accommodate multiple data sources using different models and formats (XML, JSON, CSV,
Shapefile, WFS, GML). These data sources are typically accessible from a URL but could be set inline
to capture annotations or small datasets (as demonstrated in Testbed with GeoJSON). Each data
source can have several parameters that are represented as a set of key value pairs. The description

22

of the parameters should be provided in the capabilities document of the portrayal service or a
dedicated endpoint. This aspect has only been partially addressed in this testbed due to lack of time.

The focus of the layer modeling within the Portrayal Service was to capture the information
necessary to perform the rendering of the layer. The design was not focused on the capture of
metadata to enable search and discovery of layers in a semantic registry, which was investigated in
another Testbed 13 Thread related to the Semantic Registry Information Model (SRIM) [11]. While
there is some overlap between both models, the focus was to capture the essential metadata needed
to render the layer.

Future testbeds will need to investigate the reconciliation of the SRIM profile for layer and map
concepts and the layer description of the portrayal service needed to perform its rendering. The
role of each service should also be clarified, for example, which service should capture metadata
about layers. The definition of Data source needs also to be reconciled with the Distribution defined
in DCAT. Coordinating efforts with W3C Spatial Data On The Web Working Group will help to
resolve some of these issues.

23

Chapter 7. Semantic Portrayal Service

This section summarizes the findings, design approaches, and changes for the Semantic Portrayal
Service.

7.1. Findings

During the OGC Testbed 10 and 11, the initial set of portrayal ontologies have been developed to
represent point-based symbols. In OGC Testbed 12, the model has been extended to support
symbolizers for line and polygons. A design and implementation of a REST-based Semantic
Portrayal Service was accomplished to manage portrayal information using the Semantic Registry
Service based on the Semantic Registry Information model (SRIM) developed during the Testbed 12.
REST CRUD (create, read, update, and delete) operations were implemented to manage and search
styles, symbolizers, symbols using dedicated endpoints for each. Due to the lack of time, the
rendering endpoints for layers, symbolizers and legends were not implemented. The service also
didn’t have the ability to manage layers, perform faceted search on portrayal items and perform
bulk import of portrayal information either encoded as SLD documents or Linked Data Format.

The goal of OGC Testbed 13 was to implement the rendering endpoints needed to demonstrate the
capabilities of the Semantic Portrayal Service. Another goal was to import and export SLD
documents and identify and address the gaps between the ontological model and the SLD model.

During the investigation of these gaps, it was identified that map layer management was also
needed. Users want to create layers with customized styles that can be saved, so the layers can be
easily accessible through a REST API. None of the current OGC service specifications support the
ability to manage and search layers with user-defined styles.

The need of the definition of a profile for the Semantic Registry for layers and maps metadata was
identified. This task was addressed by another thread in Testbed 13. The portrayal effort of this
thread will need to be reconciled with the results of the activities of the Semantic Registry Thread
in future testbeds.

7.2. Design

7.2.1. REST API Design

The Semantic Portrayal Service implementation is accessible through a hypermedia-driven and
Linked Data REST-based API to access layer and portrayal information (styles, rules, symbolizers,
symbols) from the service. The Semantic Portrayal implements REST API Level 3 and Level 2 of the
Richardson Maturity Model (see Testbed 12 ER) and Linked Data API.

The style information is encoded in the following representations: RDF/XML, Turtle, N-Triples,
JSON-LD and HAL-JSON. The Semantic Portrayal Service REST API is described in more detail in
Annex B.

24

7.2.2. Importing Portrayal Information

To import portrayal information, a pluggable, extensible design approach was adopted, so it can
accommodate a variety of formats, as standards evolve in the industry. Each importer type provides
a list of parameters with name, description, type and cardinality. This information is used to build
User Interface (UI) forms to capture value bindings for each parameter. For the OGC Testbed 13
initiative, importers for SLD 1.0, SLD 1.1 and Linked Data formats (RDF, Turtle, NTriples), based on
the portrayal ontologies, were implemented. The importers can work with remote URL or file
attachment.

7.2.3. Import SLD

The OGC SLD importer was designed to import SLD documents from either a URL or a file
attachment. The imported document was parsed and mapped to the updated portrayal ontology
and registered in the Semantic Registry implementing the Portrayal Information. A complete
mapping of all related feature style information to the portrayal ontology was accomplished
successfully by updating the ontology model with expression and bindings micro-ontology. It was
found that the mapping was complete and feasible. However, the ontology had more
expressiveness than OGC SLD as it could accommodate multiple data models (JSON, XML, RDF) and
expression languages.

7.2.4. Linked Data Import

The Linked Data model provides a powerful integration mechanism to represent any objects,
properties and relationships that can be understood unambiguously by machine (to perform
inferences for example). The OGC Testbed 12 implementation of the Semantic Portrayal Service
provided the ability to perform transactions of portrayal items in a very granular way by using
dedicated endpoints for each item type (symbols, styles, symbolizers). While this was a valid
approach, the performance to upload a large set of portrayal information was poor. It also limits
one of the main benefits of using Linked Data: linking objects of different types in a semantic graph.

For Testbed 13, an importer for Linked Data formats (RDF/XML, Turtle, N-Triples) was implemented
to upload any portrayal concepts managed by the portrayal services and expressed by the portrayal
ontologies used by the service. The Linked Data Model was processed on the server side by iterating
on all instances of resource types supported by the service and indexing them in the semantic
registry. URIs of the resources were used to generate internal identifiers consistently. It was
observed that significant improvement in bulk upload time compared to the more granular
approach taken in the previous Testbed.

A future improvement, that can be addressed in future OGC Testbeds for this endpoint, is to
integrate Shape Constraint Language (SHACL) validator to validate the shapes of the objects to
make sure they contain the required properties needed by the service to perform their tasks. An
investigatigation of the use of Linked Data for exporting all portrayal information managed by the
service should also be performed.

7.2.5. Export SLD

Exporting SLD XML from the portrayal service was done through the /export endpoint. Using the
portrayal ontologies, the convertion of FeatureTypeStyle ontological concept to a full SLD document

25

with loss was done without loss. However, the export of symbolizers alone was not possible without
breaking the XML validation against the SLD document schema.

7.2.6. Integration with Portrayal Registry

The Semantic Portrayal Service was using the Portrayal Registry to store style items.The SRIM
profile was updated to accommodate the portrayal items by using the portrayal ontologies. An
endpoint to the portrayal registry was also added to import Linked Data for portrayal information.
The import endpoint of the Portrayal Service was interfaced with the Semantic Registry import by
forwarding the request to the registry. The search of portrayal items in the Semantic Portrayal
Service was delegated to the Semantic Registry. The following client Figure 3 shows the portrayal
information stored in the semantic registry.

ltems v | Search... Q
Q, Search ltems (2]
Q | Search items... 307 results = 10 per page Sorting by Modified Date 15 « |« - 2 3 4
Y type Default PointSymbolizer Rule (Portrayal Rule)
Default PointSymbolizer applied on point

Point Symbolizer {143 Created: Nov 29, 2017 10:26:18 AM

Portrayal Symbol ‘m

Polygon Symbolizer (o) Default LineSymbolizer Rule (Portrayal Rule)

Line Symbolizer 6 Default LineSymbolizer applied on line

Portrayal Rule (4} Created: Nov 29, 2017 10:26:18 AM

Default PointSymbolizer Rule (Portrayal Rule)
Default PointSymbolizer applied on point

Created: Nov 29, 2017 10:26:18 AM

Polygon Symbolizer Circle GraphicFill (Polygon Symbolizer)
GraphicFill(square,size:10) stroke(color:0x000000,width=2)

Created: Nov 29, 2017 10:26:18 AM

Polygon Symbolizer X GraphicFill (Polygon Symbolizer)
GraphicFill(x,size:10) stroke(color:0x000000,width=2)

Created: Nov 29, 2017 10:26:18 AM

Polygon Symbolizer (Aqua) with Black Outline (Polygon Symbolizer)
fill-color:0x00ffff stroke-color:#000000 stroke-width=2

Created: Nov 29, 2017 10:26:18 AM

Polygon Symbolizer triangle GraphicFill (Polygon Symbolizer)
GraphicFill(triangle,size:10) stroke(color:0x000000,width=2)

Created: Nov 29, 2017 10:26:18 AM

Polygon Symbolizer (Aqua) with star fill (Polygon Symbolizer)
GraphicFill(star,size:10) str :0x000000,width=2)

Figure 3. Portrayal Registry Client

7.2.7. Rendering

For the Testbed 13 initiative, the different types of renderers for the portrayal service were
identified:

* Layer Renderer: render layers managed by the service but also transient layers (layer
specification submitted to the renderer but not managed by the service).

* Map Renderer: Render a map from multiple layers managed by a portrayal service. It was
chosen to follow the WMS GetMap operation protocol to facilitate the integration with existing
web map client such as Leaflet, OpenLayers or MapBox. These APIs do not require a full
implementation of the WMS specification as most of them only use the GetMap operation and
ignore the GetCapabilities operation.

* Glyph Renderer: Render a symbolizer/symbols into an image that can be used as a legend item

26

or preview of symbolizers (or symbols). This is useful when symbolizers are defined by users
and clients need a way to generate a legend for the symbolizer.

* Legend Renderer: Generate a legend object composed of multiple legend items (each one
representing a symbolizer corresponding to a portrayal rule. A Legend ontology was developed
to describe the legend and legend items in JSON and Linked Data form. This would facilitate the
interoperability of sharing legend information but also provide flexibility to clients to perform
customized layout of the legend for specific targeted device display. Due to lack of time, the
implementation of the renderer was not implemented.

The details of each renderer design are as follows:

Layer Renderer

While developing the client for the portrayal service, the following use cases for rendering layers
were identified:

* Render a layer by using its identifier with its associated styles.

* Render a layer by using its identifier and overwrite its styling information using different
bindings for its associated styles or replacing the associated styles with new styles.

* Render a transient layer by passing its data source information and styles information explicitly
To address these use cases, different endpoints for layer rendering were introduced:

To address the first use case, which renders a layer by referring its internal id, a convenience
rendering endpoint was provided using REST principles following the following pattern:

/layers/{id}/renderer

This endpoint renders the layer based on its definition using its associated source and styles. When
this endpoint is used without parameter, the default extent of the data sources is used, a default
size proportional to the bounding box and the CRS of the dataset. By making all the parameters
optional, this provides a quick way to get a rendering of the layer by using a simple URL address.
However, the rendering endpoint also accepts parameters such as CRS, BBOX, Width, Height, Style
or Symbolizer identifiers to provide custom rendering of the layer within a given bounding box in a
given CRS and rendered in a given image size.

When URI of layers are used to reference a layer, a second endpoint was defined. It works in a
more flexible way to render the layer using the following URL pattern:

/renderer/layer

This endpoint requires either a layer internal id or a URI to refer to a layer and uses the same
parameters as the former endpoint. This endpoint allows the rendering of a layer that can be
accessible remotely using a resolvable URL. It was suggested to investigate distributed rendering of
layers in future testbeds.

Details of the layer renderer endpoints are provided in Appendix B.

27

Map Renderer

To facilitate the integration of the Portrayal Service with existing clients, a map renderer endpoint
was implemented using the WMS GetMap protocol parameters of the HTTP Get operation such as
BBOX, CRS, WIDTH, HEIGHT, STYLE, FORMAT parameters. The Map Renderer endpoint is
documented in Annex B.

Most of the Web Map clients that support WMS protocol such as OpenLayer, MapBox, Leaflet, only
use the GetMap operation endpoint of the standard. The GetCapabilities is typically used by
developers to get the identifier of the layer. The approach taken by the client is compatible with this
approach. The only difference is that the layers can be discovered with the layer search endpoint
and that each layer is modeled as a REST resource that is addressable with a unique URL and id. To
test the viability of the approach, the integration of the Portrayal Service with the popular Leaflet
Map Client was successfully implemented, by getting a portrayal service layer overlapping
OpenStreetMap base layer using reprojection and rendering of the layer with custom styles. For the
demonstration, symbolizer identifiers were used to refer to the styles (see Figure 4).

[I7) New York City Street Layer + w e

New York City Street Layer

FeatureLayer

The NYC Street Centerline (CSCL) is a road-bed
representation of New York City streets containing address
ranges and other

GeoJSON
https://raw.githubusercontent.com/fillerwriter/nyc-
streets/master/nyc-streets.geojson

Geographic Bounding Box

A
le ~=+—Patefson s
PatefsonJ s Bayville

Slen Gove | Huntington
J\/ -

Tl
A
B o
or‘angre /_l/U ‘\ k ‘b M:l\Elo[-l:rr‘ e

==\ = "/‘k;
Hempscaad /L West Bt
teppstead AT

TFveeﬁovl 1
e
|

2L AL
g'Beact

/mhagz /
Vil / Leaflet | © OpenStreetMap contributors

Inwood

Symbolizers
e 3 g fug = 3
e AN J o i) Default Line Symbolizer
SRS, < N 1)
i \\\(\‘\\\\‘\‘\1‘\ y £=s i . 2 I \/\ Line Symbolizer
i WL | W < 7 3 . an

Hide Search

v X

Q | Search symbolizers.

Leaflet | © OpenStreetMap contributors All Relevance IF

Figure 4. Map Rendering using WMS GetMap protocol

In future testbeds, more testing needs to be done with the map renderer to use Symbols,
FeatureTypeStyle, and CoverageStyle identifiers as style parameters. As more implementations of
the Portrayal Service become available, an investigation should be conducted to use Layer resource
URL instead of internal identifiers to access layers remotely and rendering the map using a
cascading behavior similar to the cascading behavior of WMS.

Glyph Renderer

To support rendering of symbols and legends, dedicated renderer endpoints for symbolizers and
symbols were defined. The endpoint accepts an id or the URI of the symbolizer and optionally

28

width and height of the output formats. For the testbed, the Testbed 11 Canadian EMS icons
(encoded in PNG) were used to render point glyphs. The rendering of well-known shapes for point
symbolizers, and basic line and polygon symbolizers was demonstrated for displaying previews of
symbols and symbolizers in the client. Future testbeds need to further investigate more advanced
symbolizer specifications including the usage of some conditions and expression bindings in
portrayal rules. The API of the endpoint is documented in Appendix B.

7.2.8. Layer Management API

By the end of the implementation phase of the testbed, the need of implementing a mechanism to
persist layer specification was identified, so layers can be referenced easily to construct maps
composed of multiple layers. The API and Layer Model design are not as mature as other endpoints
developed during this testbed but it provides a good starting point for future investigations and
refinements.

In order to make it easier to reference the layer and enable the sharing of layer information over
the web, a RESTful approach was used to manage layers. Standard CRUD operations using POST,
PUT, DELETE and GET were adopted. An initial model was designed to represent Layer information
including Data sources, and Styling information (see previous section). The API is anticipated to be
changed based on the enhancements needed to the layer model (in particular with the alignment of
the SRIM model).

More detailed information of the REST API for Layer Management can be found in Appendix B.

29

Chapter 8. Portrayal Demonstration

This section summarizes the findings, design approaches, and workflows used for the Portrayal
Thread Demonstration.

8.1. Datasets

To demonstrate the robustness and flexibility of the portrayal model to accommodate different data
models and formats, the following formats and protocols to build map layers were implemented
and tested:

8.1.1. GeoJSON

GeoJSON is a format for encoding a variety of geographic data structures. GeoJSON supports the
following geometry types: Point, LineString, Polygon, MultiPoint, MultiLineString, and
MultiPolygon. Geometric objects with additional properties are Feature objects. Sets of features are
contained by FeatureCollection objects. In 2015, the Internet Engineering Task Force (IETF), in
conjunction with the original specification authors, formed a GeoJSON Working Group (WG) to
standardize GeoJSON. RFC 7946 was published in August 2016 and is the new standard specification
of the GeoJSON format, replacing the 2008 GeoJSON specification.

For this testbed, GeoJSON as data sources for making layers was used in two ways. The first way
was to access GeoJSON from a remote URL. For the demonstration, a Github repository of GeoJSON
data for countries, states and New York City roads and Police Precincts (see Figure 5) was used.

Semantic Portrayal Service =
[I7) Create Layer - + o

Source URL
https://data.cityofnewyork.us/api/geospatial/78dh-3ptz"

A Source URL must begin with http:// or https://

Data Source Type

GeoJSON

Bounding Box

\\,_J
| |

1

Leaflet | © OpenStreetMap contributors

A mm =y

Symbolizers Render

AR e . 5 v
1/ _ . Dashed Line Symbolizer *
t I v \\ Line Symbolizer
§
hY
r/
e S Polygon Symbolizer X
i . I Polygon Symbolizer
P | u —
et -
-
‘\ \\/g - Hide Search
{ -7 .
P Q | Search symbolizers
- S~
{_—~~

- All $ Relevance IF

Figure 5. Remote GeoJSON Layer

The use of GeoJSON inline was also tested in the Layer descriptions as a way to capture annotations

30

in web-based applications. To perform this task, two sets of layers were created: the first set
retrieved data remotely using a URL, the second set was defined the same layer using inline
GeoJSON.

8.1.2. Shapefile

The shapefile format is a popular geospatial vector data format for geographic information system
(GIS) software. It is developed and regulated by Esri as a (mostly) open specification for data
interoperability among Esri and other GIS software products. The shapefile format can spatially
describe vector features: points, lines, and polygons, representing simple feature data. A Geospatial
Dataset encoded in Shapefile format is composed of multiple files. However many services
distribute shapefiles in zip file format, so they can be bound together as a coherent set of files. For
this reason, the implementation of the portrayal service supports shapefiles that are packaged as a
zip file that can be accessed remotely via a simple URL. For the demonstration, shapefiles
describing airports of the world were used and portrayed with icon based symbolizers.

8.1.3. Web Feature Service

For the demonstration, a Technology Integration Experiments (TIE) was performed with the Web
Feature Service 1.1.0 from GeoSolutions that provided data supporting a mass migration scenario. A
significant amount of time was spent solving some issues related to the coordinate order of the
WGS-84 coordinate reference system handled by the WFS Client library and GeoServer
implementation. The notation EPSG:4326 and the URI form are still misunderstood in the industry
causing issues with interoperability. For Testbed 13, the dynamic creation and custom rendering of
layers based on WES data returned in GML were successfully demonstrated.

8.1.4. GeoSPARQL endpoint

For this testbed, Image Matters deployed its GeoSPARQL-compliant Server populated with
OpenStreetMap data produced in Testbed 12. Some development was started to implement an OGC
Query/Filter converter to GeoSPARQL. Unfortunately, due to technical difficulties related to the WFS
Client and CRS conventions and the last minute addition of a Layer Management REST API on the
Portrayal Service, the full integration of GeoSPARQL with the Portrayal Service was not achieved.
This aspect can be addressed in next testbeds, as it could provide a powerful mechanism to portray
any Geospatial Linked data on the web.

8.2. Import/Export of Portrayal Information

The ability to upload OGC SLD 1.0 and SLD 1.1 documents to import portrayal information
including FeatureTypeStyle, Rules and Symbolizers, was added to the client implementation. The
documents were converted into an RDF encoding compliant with the portrayal ontologies and were
imported into the Semantic Registry as a bulk operation to improve performance of ingesting a
large number of items into the registry. One of the limitations of the conversion of SLD to Linked
Data representation was the lack of descriptive information for some of the elements in the SLD
documents, making it difficult to display in a user-friendly way so that a user can interpret the
meaning of the portrayal information properly.

The client also provided the ability to directly import an RDF model using the portrayal ontology to

31

represent feature types, symbolizers, symbols, rules, rule lists, graphic information using the bulk
import operation in the Semantic Registry.

The resulting imports from SLD and Linked Data representation in the Semantic Registry were
immediately available to the Semantic Registry Service and accessible via its REST API. The user
interface allows the upload of SLD documents from a URL or a file attachment (see Figure 6).

Semantic Portrayal Service =
2. Import items (2]

Source URL

A Source URL must begin with http:// or https://

OR Upload a File Choose File | AgriculturePntStyle.xml
Format NTRIPLE =~ RDF/XML = SLD1.0.0 | SLD1.1.0 | Turtle

Cancel Import

Portrayal Services v0.2.0-68-g406e5be | Image Matters, LLC

Figure 6. SLD Import UI

8.3. Portrayal Information Search

To demonstrate the search capabilities of portrayal information, a faceted search UI has been built
to search portrayal items by type or free text (see Figure 7). More facets may be investigated in the
future.

Semantic Portrayal Service

Q, Search Portrayal ltems + (2]
Q | Search items... 302results =~ 10 per page Sorting by Relevance 15 « < .. 83 4 H 6
¥ type . avalanche JSON | RDF | TTL

Point Symbolizer
Point Symbolizer

Portrayal Symbol

aviation JSON RDF TTL
Polygon Symbolizer Portrayal Symbol

Line Symbolizer aviation Symbol defined by Emergency Management Symbology (EMS) standard

Created: Nov 29, 2017 10:27:52 AM

200060

FeatureType Stvle

aviation JSON | RDF TTL
Point Symbolizer

biologicalHazard JSON | RDF TTL
Portrayal Symbol

biologicalHazard Symbol defined by Emergency Management Symbology (EMS) standard

Created: Nov 29, 2017 10:27:52 AM

biologicalHazard JSON RDF | TTL
Point Symbolizer

blizzard JSON | RDF TTL
g' Portrayal Symbol

blizzard Symbol defined by Emergency Management Symbology (EMS) standard
Created: Nov 29, 2017 10:27:52 AM

blizzard JSON | RDF TTL
>S Point Symbolizer
blowingSnow JSON RDF | TTL

(X Portrayal Symbol

Figure 7. Portrayal Item Search

32

8.4. Symbolizer Editor

To demonstrate the ability to create, share and apply customized symbolizers to different data
sources in order to create a new layer or modify existing layers, a set of editors for creating and
updating point, line and polygon symbolizers was implemented in the portrayal client. The initial
implementation supports only static symbolizers with fixed values on graphic properties. Future
improvements to be addressed in future testbeds include the completion of the symbolizer editors
by supporting all the graphic attributes defined in the model and support bindings to complex
expressions using feature data information. This would help to test the versatility of the binding
model on different data source types (JSON, XML, Linked Data). Figure 8 illustrates the creation of
symbolizers.

Semantic Portrayal Service

[Light Blue Circle, Blue Outline e

B Save
Light Blue Circle, Blue Outline _

Cancel
O Type Point Symbolizer

Stroke #1f6adb H s px

(A #2addeb =

Shape Circle : 32 px

Portrayal Services v0.2.0-68-g406e5be | Image Matters, LLC

Figure 8. Symbolizer Editor Ul

8.5. Layer Management

By the end of the implementation phase of Testbed 13, the need to create and save user-defined
layers was identified. The Semantic Portrayal Service REST API was extended to support CRUD
operations to create, update, delete and retrieve layers. The initial implementation saves the layers
in the Semantic Portrayal Service store. Future work will need to harmonize the layer model with
the SRIM Profile for Layers and Maps and synchronize the layer repository with the Semantic
Registry, so layers can be discovered in the Registry to support search and discovery of layers in
other applications.

8.5.1. Layer Creation

To demonstrate the REST API for Layer management, it was added in the portrayal web client the
functionalities of creating new layers from different data sources such as Zipped Shapefile,
GeoJSON, WES and apply style information on this layer with interactive feedback in a map view.
The order of application of symbolizers was controllable in the Ul The rendering of the layer in the
map was delegated to the server by accessing the layer rendering endpoint with information about
the view context. The rendering endpoint reprojected from the data to the viewer target Coordinate
Reference System (CRS) as needed (see Figure 9).

Figure 9 shows the creation of a layer from a dataset of Police Precinct in New York City encoded in

33

GeoJSON accessible from a URL. Two static symbolizers (line and polygon) are applied to the data
and rendered in Web Mercator Projection using the layer rendering endpoint of the Semantic
Portrayal Service. The rendered image was returned as PNG format.

Semantic Portrayal Service

[I7) create Layer c + (2]

Source URL
https://data.cityofnewyork.us/api/geospatial/78dh-3ptz"
A Source URL must begin with http:// or https://
Data Source Type
GeoJSON 3

Bounding Box

+
)
/ .
«
|
>
- 1
,I Leaflet | © OpenStreetMap contributors
(clea
l Symbolizers Render
—
Vatia—te ¢ / \ Dashed Line Symbolizer ~ ~ *
| " i IS~))
t N v \\ Line Symbolizer
{ — \3 N,
r) 7
n v x
I;._,_\ 5 ,/ N o ~ 5 Vel " Polygon Symbolizer
. —— ——’ - Polygon Symbolizer
A o 7 -
I 7
I'd ‘\ {7’ =
\ N Hide Search
(’I" Q | Search symbolizers..
Ve , o~
_’ Al B Relevance 15

Figure 9. Layer Creation UI

8.5.2. Integration with Web Map Client

To integrate the layer managed by the portrayal service with existing web clients such as Leaflet,
OpenLayers or MapBox,a rendering endpoint was implemented with the OGC GetMap operation.
The integration with Leaflet was demonstrated (Figure 10).

34

[I7) New York City Street Layer + W @

New York City Street Layer

FeatureLayer

The NYC Street Centerline (CSCL) is a road-bed
representation of New York City streets containing address
ranges and other

GeoJSON
https://raw.githubusercontent.com/fillerwriter/nyc-
streets/master/nyc-streets.geojson

[Now Yor ity | Gontorine | sirots

3 \'
LA 'a\\“)'\\
\\‘\“‘,*\f\(\\f\\

AW
R
ke

AL
& %v&\\\“%i\\\ Geographic Bounding Box
$ iae
5 BN TP I P [YOnkers-
: , ST 1
5 3y ,’,’,l%? /i Ie} ‘Later{s%;g{ Bayville
. . i A g
g it S+ Yoy MEA Slen Gove . Huntington
g N NS Vi k .
]/’ 4 nnn’m/;mS i _,/f,
|2 A . o S X
: onnge / =
4 o pewiea pinesE\ N
i ‘~\\”\\‘ : o / epteta N
AR sl Iy 7 {
i W R Elizabéth 4 Freeport
17328 RN oot |
R AR A Pl)
X i\enqn i \\\\§\.\ / 5 g'Beach”
b \\‘\ P s /odbridge’ /
S i \v.u\m NS &P’ Ja b AL Leaflet | © OpenStreetMap contributors
R Q&S i \\% . arecy
S S AN o 6y WyIdlife
R X §§§\§§ v\l\»‘\‘v N T \ < Symbolizers
Sy i i N
a NN . . v x
% St u“\\)‘!\\.!{\‘“r\\‘,\\\r“\ N | Default Line Symbolizer
A s
1 Lrmitt i i
3 NS “\\“‘l\‘\""\\"‘“‘“‘\ Line Symbolizer
4 fil \1\\‘1\\ e 1
LK L
L
b i { Hide Search
I k.
\)
\u g Q | Search symbolizers..
\ i
i
§ v Leaflet | © OpenStrestMap contributors Al N Relevance =

Figure 10. Leaflet Integration with Portrayal Service

8.5.3. Faceted Layer Search

To demonstrate the search capabilities for layers, a faceted search for layers was implemented in
the portrayal web client. The client used the Layer Search REST API to perform search by free text,
spatial bounding box, keyword, layer types, data sources types. The search results could be sorted
by relevance, creation date, modified date or alphabetically in ascending or descending order. A
summary of each layer was displayed with hyperlinks to the layer detail page (see Figure 11).

35

Q, Search Layers + (2]

Q | Search layers... 451 results 10 per page Sorting by Relevance IF « |« - 2 3 4

+ | Afghanistan (AFG) Borders (FeatureLayer)

Afghanistan (AFG) Borders layer from inline GeoJSON
Created: Nov 29, 2017 10:23:35 AM

| ™ | Afghanistan(AFG) Borders (FeatureLayer)

Afghanistan(AFG) Borders layer from remote GeoJSON
Created: Nov 29, 2017 10:23:35 AM

Leaflet | © OpenStreetMap contributors AgriculturePnt (FeatureLayer)

Layer from WFS FeatureType http://daraa.cloudsdi.geo-solutions.it/:AgriculturePnt
Created: Nov 29, 2017 10:22:05 AM

Y layerType
AgricultureSrf (FeatureLayer)
FeatureL.ayer @ Layer from WFS FeatureType http://daraa.cloudsdi.geo-solutions.it/:AgricultureSrf
Created: Nov 29, 2017 10:22:32 AM
Y dataSource.type Airports Layer (from shapefile) (FeatureLayer)
Airports Layer from Shapefile
GeoJSON [414) Created: Nov 29, 2017 10:25:16 AM
Web Feature Service Alabama(AL) State Borders (FeatureLayer)
Shapefile (4] Alabama(AL) State Borders layer from remote GeoJSON
Created: Nov 29, 2017 10:24:08 AM
Y keyword Alaska(AK) State Borders (FeatureLayer)
Alaska(AK) State Borders layer from remote GeoJSON
borders m Created: Nov 29, 2017 10:24:07 AM
country 356) Albania (ALB) Borders (FeatureLayer)
usa @ Albania (ALB) Borders layer from inline GeoJSON
state (52 Created: Nov 29, 2017 10:23:35 AM
republic 14]

Albania(ALB) Borders (FeatureLayer)

AlhanialAl R\ Rardare lavar fram remnta (an. ISON

Figure 11. Faceted Layer Search

For future testbed efforts, it is suggested to work on the alignment with the SRIM Profile for Layer
and Map used for search and discovery of layers in the Semantic Registry. Additional fields such as
subject, theme, layer classification using semantic concepts may be useful to support better
semantic search of layer information in the faceted search. There is also a need to investigate
synchronization mechanisms between the layers managed by the Semantic Portrayal Service and
the Semantic Registry.

8.5.4. Layer Detail Page

To demonstrate the rendering of layers and legend, a detailed page for a layer was implemented. It
displays basic metadata about the layer, data source, the style information and legends. The graphic
glyphs associated with each style were rendered on the server side using the symbolizer renderer
endpoint. The layer display was reprojected and rendered using the server-side layer renderer
endpoint implementing the WMS GetMap operation. Figure 12 illustrates the display of City of New
York Police Precincts Layer with an OpenStreetMap base layer using Leaflet Web Map Client. The UI
allows the user to modify the current style of the layer by providing a symbolizer search
functionality and apply the symbolizer interactively using the server-side layer renderer. The
customized layer could be cloned and saved by the client.

36

Semantic Portrayal Service

D:D City of New York m =
SN U G A 7 X wnewang Ty e .
NCN, ‘,/ OfiTandS Wyckoff \) N\ r)om!s Fer(y / '}r_\ 7’_‘\‘4\(e Clty of New York
* [X (\ { / Port CHebter
} { N { Westwood /4 85" .
L) A ALY } (/Ao et eatureLayer
/ i /F J"/;i‘;{m '/I v}’ Keres (,7) / Layer containing data describing the City of New York
4| pergenteid YOTKersy—s

/ tincoln Rark
e Montville %
Mor

~New,Rbchelle Bayville GeoJSON
'~ https://data.cityofnewyork.us/api/geospatial/78dh-3ptz?
method=export&format=GeoJSON

N,

) Denville

Joversg AN 7

%\Paluppany Vi +
Troy Hills

| / 5 West Caldwell

1O (2 J
Rumer!ovd/{‘
utherford A% Giifrsid
(AN, e
7,
n Ci

icli
Bloc eld \
7 A
)

Symbolizers

LA 25 . .
Morfi Prvingston Sl et Adtin I AN Dashed Line Symbolizer v
J \ ~,
/0N " .)
// Mad\g‘gn\ \\ Line Symbolizer
TP W ol o
y e)
AN v { Polygon Symbolizer ax
Berkeley Heights” | 7 I Polygon Symbolizer
//'/ Westfield .~ Elizabeth prECY
R infi &
pingela . 7 Hide Search
7 /
Green Brook e Q | Search symbolizers
& ~southrplainfield
N K
Z \\ it N Line Symbolizer 4 Relevance IF
: a
4
New Brur\swl(k \,
N - -
,/ Sayrevilé R . hiN Dashed Line Perpendicular
EasyBrursmick p A i \ A, Offset 10 Symbolizer
7~ OldBridge Hazlets , N Line Symbolizer
\\ \ﬁa«mowr(
% / d A\ Stroke #0000FF 2px
/ las’ A 2\ Haldel \\[}p\daar\k
E NTP \ e F\l N hdN Dashed Line Symbolizer
/) Mariboro y 2L A SR 2 Leaflet | © OpenStreetMap contributors Ny Line Symbolizer
)

Stroke #0000FF 3px

+ Default Line Symbolizer

Figure 12. Layer Detail Page

More advanced styling capabilities will need to be investigated in future testbeds by testing the
application of relevant portrayal rules that are based on feature data attributes. The handling of
coverage/image layers and styles specific to coverage layers should also be investigated.

8.6. Demonstration Workflow

For the demonstration day, a workflow involving different data sources (WFS, Shapefile, GeoJSON,
GeoSPARQL), Semantic Registry, Semantic Portrayal Service and portrayal web client, was defined
to illustrate the different functionalities and interaction between the different services.

The workflow Figure 13 starts with the population of portrayal information by importing SLD
documents and Linked Data representations of Portrayal Information (1). The Portrayal Service
processes the portrayal information (2) and registers each portrayal artifact in the Semantic
Registry implementing the Portrayal Profile (3) playing the role of a Portrayal Registry. Then the
user performs a search of portrayal information (4) that is delegated to the semantic registry (5).
Portrayal search results are presented to the user (6). Then the user creates a new layer by selecting
a feature collection source and a style (7). The Semantic Portrayal Service retrieves the Feature
collection from its source (8) and the style items from the registry (9) to be rendered as an image
layer. The Portrayal Service performs the rendering of the layer by reprojecting and applying the
styles to the feature data (10) and sends the rendered image to the client to display the layer to the
user. The user then saves the layer in the portrayal Service for future retrieval.

37

Search
Portrayal Info

Select Feature
Collection and Style

@ Display

Portrayal Info

@ Save Layer

(SLD/RDF)

Upload
(‘D Portrayal ltems I

|

Import Portrayal
Items (SLD/RDF)

Register
Portrayal ltems

Render
styled Map

Fetch Feature
Collection 0
Search
(@) Feten style
Fetch Feature Fetch Feature
Collection o o Collection

GeoJSON/SHPI...
Sources

Geoserver WFS

Figure 13. Demonstration Workflow Search

For the demonstration, sources encoded in GeoJSON and zipped Shapefiles were used, as well as the
Web Feature Service of GeoSolutions used for the Mass Migration Thread. Due to time constraints,
the integration of a GeoSPARQL endpoint was not tested. This should be addressed in future
testbeds to exercise the Portrayal ontologies further and offer the opportunity to perform map
rendering from a vast source of available geospatial Linked Data (such as DBPedia, Geonames).

38

Appendix A: Semantic Portrayal
Ontologies

39

A.1 Overview

The Portrayal Ontologies specify a conceptual model for portrayal data, in particular symbols and
portrayal rules. Portrayal rules associate features with symbols for the portrayal of the features on
maps and other display media. These ontologies include classes, attributes and associations that
provide a common conceptual framework that specifies the structure of and interrelationships
between feature types, portrayal rules, symbols and symbolizers. It separates the content of the
data from the portrayal of that data to allow the data to be portrayed in a manner independent of
the dataset model. The graphic description used for symbolizers is intended to be format
independent but convertible to any target formats (SVG, KML). The ontologies are derived from
concepts found in existing portrayal specifications (ISO 19117, OGC Symbology Encoding, Styled
Layer Descriptor Profile of WMS, SVG, KML, CartoCSS, MapCSS).

For the Testbed 13 initiative, four new ontology modules were introduced to represent legends,
layers, expressions and bindings. Other ontologies defined in previous testbeds were refined to
better align with OGC SLD and support round-trip conversion between the semantic representation
of portrayal information and SLD.

To favor reusability, the Portrayal ontologies are decomposed into a number of reusable ontology
modules (Figure 14), each one addressing an orthogonal aspect of portrayal:

 Style ontology: defines the concept of Style and portrayal rules.

* Legend ontology (new): defines legend and legend item descriptions.

» Symbol ontology: defines the concept of SymbolSet and Symbol and structural definition of
Symbol components.

* Symbolizer ontology: defines the concepts of Symbolizers defining instructions to render data
as graphics.

» Graphic ontology: defines graphic elements including graphic objects and attributes.

* Binding ontology (new): defines binding of data properties to expression associated to graphic
properties

* Expression ontology (new): defines an extensible ontology for representing expression for
different data model and different expression languages such as SPARQL, OGC Filter and the
Rule Interchange Format (RIF) for example.

* Layer ontology (new): defines map layers including data sources and styling information
(Initial version as developed at the end of the Testbed)

40

Binding

Expression

Figure 14. Portrayal ontology modules

A.1.1 Namespaces

The Portrayal ontology module specifications are based on a formal semantic model (ontology) that
uses a number of well-established ontologies. Each ontology itself defines a minimal set of classes
and properties of its own. The full set of namespaces and prefixes used in this document is shown
in the table below.

Table 2. Table 3. Namespaces

Prefix Namespace URI Schema & Documentation

style http://www.opengis.net/ont/ N/A
portrayal/style#

symbol http://www.opengis.net/ont/ N/A
portrayal/symbol#

symbolizer http://www.opengis.net/ont/ N/A
portrayal/symbolizer#

graphic http://www.opengis.net/ont/ N/A
portrayal/graphic#

legend http://www.opengis.net/ont/ N/A
portrayal/legend/

layer http://www.opengis.net/ont/ N/A
portrayal/layer

expression http://www.opengis.net/ont/ N/A
expression/

binding http://www.opengis.net/ont/ N/A
binding#

41

http://www.opengis.net/ont/portrayal/style#
http://www.opengis.net/ont/portrayal/style#
http://www.opengis.net/ont/portrayal/symbol#
http://www.opengis.net/ont/portrayal/symbol#
http://www.opengis.net/ont/portrayal/symbolizer#
http://www.opengis.net/ont/portrayal/symbolizer#
http://www.opengis.net/ont/portrayal/graphic#
http://www.opengis.net/ont/portrayal/graphic#
http://www.opengis.net/ont/portrayal/legend/
http://www.opengis.net/ont/portrayal/legend/
http://www.opengis.net/ont/portrayal/layer
http://www.opengis.net/ont/portrayal/layer
http://www.opengis.net/ont/expression/
http://www.opengis.net/ont/expression/
http://www.opengis.net/ont/binding#
http://www.opengis.net/ont/binding#

dcat

dct

extent

geosparql

prov

rdf

rdfs

srim

schema

skos

xsd

42

http://www.w3.org/ns/dcat#

http://purl.org/dc/terms/

http://www.opengis.net/ont/
spatial/extent

http://www.opengis.net/ont/
geosparql

http://www.w3.org/ns/prov#

http://www.w3.0rg/1999/02/22-
rdf-syntax-ns#

http://www.w3.0rg/2000/01/rdf-
schema#

http://www.geoplatform.gov/
ont/srim#

http://schema.org/

http://www.w3.0rg/2004/02/
skos/core#

http://www.w3.0rg/2001/
XMLSchema#

Data Catalog Vocabulary
[http://www.w3.0rg/TR/2014/REC-
vocab-dcat-20140116/]

DCMI Metadata Terms
[http://dublincore.org/documents/
2012/06/14/dcmi-terms/]

N/A

GeoSPARQL
[http://www.opengeospatial.org/
standards/geosparql]

PROV-0O: The PROV Ontology
[http://www.w3.0rg/TR/2013/REC-
prov-0-20130430/]

Resource Description
Framework (RDF): Concepts
and Abstract Syntax
[http://www.w3.0rg/TR/2004/REC-rdf-
concepts-20040210/]

RDF Vocabulary Description
Language 1.0: RDF Schema
[http://www.w3.0rg/TR/2004/REC-rdf-
schema-20040210/]

Schema Vocabulary
[http://schema.org/]

SKOS Simple Knowledge
Organization System -
Reference [http://www.w3.0rg/TR/
2009/REC-skos-reference-20090818/]

XML Schema Part 2: Datatypes
Second Edition
[http://www.w3.0rg/TR/2004/REC-
xmlschema-2-20041028/]

http://www.w3.org/ns/dcat#
http://www.w3.org/TR/2014/REC-vocab-dcat-20140116/
http://purl.org/dc/terms/
http://dublincore.org/documents/2012/06/14/dcmi-terms/
http://www.opengis.net/ont/spatial/extent
http://www.opengis.net/ont/spatial/extent
http://www.opengis.net/ont/geosparql
http://www.opengis.net/ont/geosparql
http://www.opengeospatial.org/standards/geosparql
http://www.w3.org/ns/prov#
http://www.w3.org/TR/2013/REC-prov-o-20130430/
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://www.w3.org/2000/01/rdf-schema#
http://www.w3.org/2000/01/rdf-schema#
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/
http://www.geoplatform.gov/ont/srim#
http://www.geoplatform.gov/ont/srim#
http://schema.org/
http://schema.org/
http://www.w3.org/2004/02/skos/core#
http://www.w3.org/2004/02/skos/core#
http://www.w3.org/TR/2009/REC-skos-reference-20090818/
http://www.w3.org/TR/2009/REC-skos-reference-20090818/
http://www.w3.org/TR/2009/REC-skos-reference-20090818/
http://www.w3.org/2001/XMLSchema#
http://www.w3.org/2001/XMLSchema#
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/

A.2 Ontologies

A.2.1 Style Ontology

The Style Ontology defines concepts of Style, Portrayal Rule Set, Portrayal Rule, Rule Condition and
PortrayalContext. [style_ontolology_image] below shows an overview of the model in UML.

style:PortrayalRuleList | - style:hasRule style:Style - style:hasRule
0. 0r

[

feature:FeatureType style:FeatureTypeStyle style:CoverageStyle

style:PortrayalRule

- style:featureType

Figure 15. Style Model Overview

A.2.1.1 Style

The Style concept is the central concept of the Style ontology. It associates symbol sets with
portrayal rule sets, which define the mapping of feature types to symbols. The Style also captures
descriptive metadata and tradecraft information such as the audience for the style, scope of
application and field of application.The following table summarizes the properties of the Style class.

Table 3. Properties of the Style Class

Property Usage Note Range Multiplicity and
use
name Name identifier of the style. String One
dct:title Multilingual human-readable title for the style 1..n (one per
language)
dct:descr Multilingual human-readable description for the style String 1..n (one per
iption language)
hasRule PortrayalRule or ordered PortrayalRuleList associated Portrayal 1.n
with the Style. Rule or
Portrayal
RuleList
dct:audie The intended audience of this style. foaf:Grou 0.n
nce p
scope Descriptive definition of the scope of application of String 0..1
the style
language Language associated with the style String 0..n
style:sym SymbolSet associated with the style SymbolSe 0.n
bolSet t

43

Property Usage Note Range Multiplicity and

use
fieldOfA The field of application of this style, where values are skos:Conc 0.n
pplicatio defined as SKOS concept in a taxonomy. ept
n

A.2.1.2 FeatureTypeStyle

A FeatureTypeStyle is a style that is applied for a specific feature:FeatureType.
FeatureTypeStyle inherits all properties from Style.

Table 4. Properties of the Style Class

Property Usage Note Range Multiplicity and
use
name Name identifier of the style. String One
dct:title Multilingual human-readable title for the style String 1..n (one per
language)
dct:descr Multilingual human-readable description for the style String 1..n (one per
iption language)
featureT FeatureType associated with the style String 1.n
ype
hasRule PortrayalRule or ordered PortrayalRuleList associated Portrayal 1.n
with the Style. Rule or
Portrayal
RuleList

The following example shows the definition of the EMS Style with audience information organized
as a hierarchy.

44

EMS Style with Audience Information

@prefix : <http://www.opengis.net/testbed/12/portrayal/ems/style#> .
@prefix feature: <http://www.opengis.net/ont/featuref> .

@prefix dct: <http://purl.org/dc/terms/> .

@prefix xsd: <http://www.w3.0rg/2001/XMLSchema#> .

@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#> .

@prefix ems: <http://www.opengis.net/testbed11/ont/incident/ems#> .
@prefix style: <http://www.opengis.net/ont/portrayal/style#> .

oprefix foaf: <http://xmlns.com/foaf/0.1/> .

@prefix group: <http://www.socialml.org/ontologies/group#> .

:EMSIncidentStyle a style:FeatureTypeStyle ;

dct:audience
<http://ows.usersmarts.com/1dapp/audiences/community/CanadianEmergencyAndDisasterManag
ement> ;

dct:description "Style defining the set of rules for mapping incident types
from EMS to symbology" ;

det:title "EMS Incident Type Style" ;
style:featureType ems:EMSIncident ;
style:hasRule rems.incident.hazardousMaterial.radiologicalHazard-

portrayal-rule , :ems.incident.temperature.windChill-portrayal-rule,
rems.incident.health-portrayal-rule , :ems.incident.hazardousMaterial-portrayal-rule

ems:EMSIncident a feature:FeatureType ;
rdfs:comment "Incident defined for Canadian Emergency Management System" ;
rdfs:label "EMSIncident" ;

feature:gmlName "ems:EMSIncident" .

<http://ows.usersmarts.com/1dapp/audiences/community/EmergencyAndDisasterManagement>
a foaf:Group , group:Group ;
rdfs:label "Emergency and Disaster Management Community" ;
foaf:name "Emergency and Disaster Management Community" .

A.2.1.3 CoverageStyle

A CoverageStyle is a style that is applied for a Coverage. CoverageStyle inherits all properties
from Style. This concept is introduced as a placeholder for future extension.

A.2.1.4 PortrayalRuleSet

A portrayal rule set describes a function set which maps the feature types of a feature catalog to a
symbol. It is composed of one or more portrayal rules, which in turn maps an individual feature
type to a symbol. The table below provides a summary of the PortrayalRuleSet.

Table 5. Properties of the PortrayalRuleSet Class

45

Property Usage Note Range Multiplicity and

use
dct:title Multilingual human-readable name for the string 0..n (one per
PortrayalRuleSet language)
dct:descr Multilingual human-readable description for the string 0..n (one per
iption PortrayalRuleSet language)
hasRule PortrayalRule member of this PortrayalRuleSet. Portrayal 0.n

Rule

The following is a sample of the PortrayalRuleSet defined for the EMS Style.

EMS PortrayalRuleSet Example

:EMSRuleSet a style:PortrayalRuleSet ;
dct:description "Set of rules for mapping incident types from EMS to
symbology" ;
det:title "EMS Portrayal Rule Set" ;
style:hasRule :ems.incident.temperature.windChill-portrayal-rule ,
:ems.incident.roadway.hazardousRoadConditions-portrayal-rule ,
rems.incident.civil-portrayal-rule ,
rems.incident.roadway.trafficReport-portrayal-rule ,
rems.incident.meteorological.waterspout-portrayal-rule ,
rems.incident.geophysical.lahar-portrayal-rule ,
rems.incident.meteorological-portrayal-rule ,
rems.incident.meteorological.stormSurge-portrayal-rule ,
rems.incident.aviation-portrayal-rule ,
rems.incident.hazardousMaterial.radiologicalHazard-portrayal-rule

rems.incident.crime.bomb-portrayal-rule .

A.2.1.5 PortrayalRule

A PortrayalRule defines a rule that associates a feature type (feature:FeatureType) to a symbol
(symbol:Symbol) satisfying a certain condition (PortrayalRuleCondition) in a given context
(PortrayalContext). The Table below summarizes its properties.

Table 6. Properties of the PortrayalRule

Property Usage Note Range Multiplicity and
use
name Name of the PortrayalRule string 0..1
dct:title Multilingual human-readable title for the string 0..n (one per
PortrayalRule language)
dct:descr Multilingual human readable description for the string 0..n (one per
iption PortrayalRule. language)
hasCondi The conditions that needs to be satisfied by the rule RuleCond 0.n
tion ition

46

Property

maxScal
eDenomi
nator

minScale
Denomin
ator

portraya
1Context

symbol

Usage Note

The maximum scale denominator to which the rule
applies

The minimum scale denominator to which the rule
applies

The context of application of the PortrayalRule
(placeholder for future extension)

The symbol associated with the rule

Range

integer

integer

Portrayal
Context

symbol:S
ymbol

Multiplicity and
use

0.1

0.1

The listing below shows an example of PortrayalRule for Windchill. The PortrayalRule applied on
the ems:EMSIncident featureType and associates the EMS symbol for Windchill defined by the URL:
http://www.opengis.net/testbed/11/cci/ems/symbols#ems.incident.temperature.windChill-symbol

[http://www.opengis.net/testbed/11/cci/ems/symbols#ems.incident.temperature.windChill-symbol]

EMS PortrayalRule Example

:ems.incident.temperature.windChill-portrayal-rule

a style:PortrayalRule ;
dct:description

ems.incident.temperature.windChill" ;

det:title

condition;

style:maxScaleDenominator
style:minScaleDenominator "0.0"Axsd:double ;
style:symbol

"Portrayal rule for incident type

"Wind Chill incident portrayal rule" ;
style:hasRuleCondition :ems.incident.temperature.windChill-portrayal-rule-

"100000.0""xsd:double ;

<http://www.opengis.net/testbed/12/ems/symbols#ems.incident.temperature.windChill-
symbol> .

A.2.1.6 RuleCondition

The RuleCondition defines the condition in which a portrayal rule applies for a given feature. The
RuleCondition can be encoded using multiple encodings. The Table below summarizes the
properties of PortrayalRuleCondition.

Table 7. Properties of the RuleCondition

Property

dct:title

Usage Note

Multilingual human-readable name for the
RuleCondition

dct:descr Multilingual human-readable description for the

iption

RuleCondition

Range

string

string

Multiplicity and
use

0..n (one per
language)

0..n (one per
language)

47

http://www.opengis.net/testbed/11/cci/ems/symbols#ems.incident.temperature.windChill-symbol

Property Usage Note Range Multiplicity and
use

hasConst The encoding of the constraint defining the condition Constrain 0.n
raint t

To provide an extensible mechanism to express constraints for the condition, we modified the
previous ontology in Testbed 11, which wuses specialized properties (sparglCondition,
rifCondition,ogcFiterCondition)

Table 8. Properties of the Constraint

Property Usage Note Range Multiplicity and
use

constrai The constraint language used to encode the URL 1
ntLangu constraint. The following constraint languages URLs
age are currently recommended:

» SPARQL: http://www.w3.org/ns/sparql-service-

description#SPARQL11Query

* OGC Filter: http://schemas.opengis.net/filter

 RIF : http://www.w3.0rg/2007/rif

* CQL : http://www.opengis.net/specs/cql
body The constraint body expressed in the constraint String 1

language

The following example demonstrates the encoding of the portrayal rule condition for the Portrayal
rule for the symbol Windchill. The condition applies on the feature property ems:incidentType. If
the value of this property is equals to
http://www.opengis.net/taxonomy/ems#ems.incident.temperature.windChill [http://www.opengis.net/
taxonomy/ems#ems.incident.temperature.windChill] then the rule is applicable.

48

http://www.w3.org/ns/sparql-service-description#SPARQL11Query
http://www.w3.org/ns/sparql-service-description#SPARQL11Query
http://schemas.opengis.net/filter
http://www.w3.org/2007/rif
http://www.opengis.net/specs/cql
http://www.opengis.net/taxonomy/ems#ems.incident.temperature.windChill

EMS RuleCondition Example

:ems.incident.temperature.windChill-portrayal-rule-condition
a style:RuleCondition ;
style:hasConstraint
[style:Constraint ;
style:body "PREFIX ems:
<http://www.opengis.net/testbed11/ont/incident/ems#>\nASK \nWHERE { ?this
ems:incidentType
<http://www.opengis.net/taxonomy/ems#ems.incident.temperature.windChill>.\n}" ;
style:constraintLanguage <http://www.w3.org/ns/sparql-service-
description#SPARQL11Query>
13
style:hasConstraint
[a style:Constraint ;
style:body
"<ogc:Filter><ogc:PropertylsEqualTo><ogc:PropertyName>incidentType</ogc:PropertyName><
ogc:Literal>http://www.opengis.net/taxonomy/ems#fems.incident.temperature.windChill</og
c:Literal></ogc:PropertyIsEqualTo></ogc:Filter>" ;
style:constraintlLanquage <http://schemas.opengis.net/filter>
13
style:hasConstraint
[a style:Constraint ;
style:body "Prefix(ems
<http://www.opengis.net/testbed11/ont/incident/ems#>)\nExists ?this (
ems:incidentType(?this
<http://www.opengis.net/taxonomy/ems#ems.incident.temperature.windChill>))" ;
style:constraintlLanguage <http://www.w3.0rg/2007/rif>

]

The rule is expressed in three different encodings: OGC Filter, SPARQL and RIF.

The SPARQL query is formulated as an ASK query which returns a boolean value. The variable ?this
is bound to the current instance of featureType that is being tested.

PREFIX ems: <http://www.opengis.net/testbed11/ont/incident/ems#>
ASK
WHERE {

7this ems:incidentType

<http://www.opengis.net/taxonomy/ems#ems.incident.temperature.windChill>.

}

The equivalent RIF condition is expressed as:

49

Prefix(ems <http://www.opengis.net/testbed11/ont/incident/ems#>)
Exists ?this

(ems:incidentType(?this
<http://www.opengis.net/taxonomy/ems#ems.incident.temperature.windChill>))

The Constraints expressed in SPARQL and RIF can be used by a semantic portrayal rule engine that
consumes feature data represented as Linked Data (recommendation for next testbed). We foresee
that the portrayal catalog containing these rules can be extended with a rendering service that will
apply the rules on a set of linked data compatible with the style and generates the portrayal
rendering to a number of target formats (SVG, KML etc..). Future testbeds should experiment with
this capability.

To perform the bridge between the Linked Data representation of the FeatureType and GML
representation we annotated the FeatureType and FeatureProperty with the attribute gmlName to
indicate what is the mapping between the conceptual definition and the GML syntactic definition
based on XML schema.

The following example shows the feature type definition for EMSIncident with the gmIName
annotations.

ems:EMSIncident a feature:FeatureType ;
rdfs:comment "Incident defined for Canadian Emergency Management System" ;
rdfs:label "EMSIncident" ;

feature:gmiName "ems:EMSIncident" .

ems:incidentType a feature:FeatureProperty ;
rdfs:label "incidentType" ;
feature:gmiName "ems:incidentType" .

The following example shows the feature type definition for HSWGIncident with the gmlName
annotations.

hswg:HSWGIncident a feature:FeatureType ;
rdfs:comment "Incident defined for Homeland Security Working Group" ;
rdfs:label "HSWGIncident" ;
feature:gmlName "hswg:HSWGIncident" .

hswg:incidentType a feature:FeatureProperty ;

rdfs:label "incidentType" ;
feature:gmlName "hswg:incidentType" .

A.2.1.7 PortrayalRuleList and Ruleltem

In some instance, rules need to be executed in a given order with support of fallback rules.The
PortrayalRuleList defines an ordered list of RuleItem instances. The PortrayalRuleList is
implemented by an rdf:List.

50

style:PortrayalRuleList style:Ruleltem

{ordered} 0.*

- style:elseRule - style:rule
0.1 1

style:PortrayalRule

Figure 16. PortrayalRuleList

The Ruleltem defines a placeholder referring indirectly to a portrayal rule. However it can also
provide a reference to fallback portrayal rules (elseRule) if the rule is not applicable. The Ruleltem
is used when the order of application of the rules is important. The Ruleltem instances are used as
elements of PortrayalRuleList.

Table 9. Properties of the Ruleltem™*

Property Usage Note Range Multiplicity and
use
rule The rule associated with the rule item Portrayal 1
Rule

A.2.2 Legend Ontology

The Legend Ontology defines concepts of Legend and LegendItem. The following figure shows an
overview of the model in UML (we use the namespace prefix olegend for Open Legend).

51

olegend:Legend

- <srecommended=> dcttitle : xsd:string[0_1]
- =<gptional== dct.description ; xsd:siring[0..1]

==pptional==

n * | -olegenditemns

olegend:Legenditem

- <=mandatory=> olgend:label : xsd:string[1]

- <=pptional=> dct description ; xsd:stnng[J..1]

- <<pptional==> olgend.contentData : xsd base64[0_.1]

- ==pptional== clgend:ur ; xsd:string[0..1]

- <=recommended=> dcatmediaType : xsd string[0..1]

- <<gptional=> schema:width : intf0..1]

- <=pptional== schema:height: inf0..1]

- ==pptional== olegend values ; xsd string[0. "]

- <=pptional== olegend mininclusiveValue : xsd:-decimal[0._1]

- =<pptional== clegend minExclusiveValue - xsd.decimal[0..1]
- <<pptional==> olegend maxinclusiveValue : xsd : decimal[0. 1]
- <=<pptional>> olegend maxExclusiveValue : xsd : decimal[0..1]

Figure 17. Legend Model Overview

A Legend plays a central role in the understanding of the meaning of a map or layer. It associates
symbols used in a style with its intended denotation (meaning). This meaning is often associated
with a human readable label but could also be associated with a machine processable concept. A
layer can have multiple layer styles. For each style, there is a legend associated with it.

We choose to define the Legend Object in a separate micro-ontology (a.k.a.
NOTE microtheory) as it is a reusable concept that could be used to associated a legend to
a map, layer or a style.

A.2.2.1 Legend Object

The primary objective of the Legend (legend:Legend) object is to be presented and be read by end
users. Most of the time, legends are encoded as image that could be retrieved from a remote
endpoint or inline using base64 encoding. When legends are very rich in symbols, they tend to
produce image that are disproportionally long to display on a screen. To work around this problem,
legends can be broken down into individual items (LegendItem) that typically associate one
symbol with one item. The client has then the flexibility to layout the legend the best way using the
space constraints of the target device screen.

52

Term
title

description

items

Mapping Definition

dct:title The title of a legend

[http://dublinc
ore.org/
documents/
dcmi-terms/#

terms-title]

dct:descripti The description of a legend
on

[http://dublinc
ore.org/
documents/
dcemi-terms/#
terms-

description]

legend:items A legend can be encoded as one item or be
decomposed into more fined grained items
(typically mapping one symbol per item)

A.2.2.2 Legend Item

Range

string

string

Card.
0.1

0.1

legend:Lege 0..n

ndItem

The legend item (legend:LegendItem) can be used to decompose the items of a given layer legend,
or could also be used as the place holder for the legend for the whole layer or even a set of layers
(in the case of map). The drawback of the second approach is the client has less control of the layout
of the legend and a large legend tends to be difficult to be managed for display.

Term
label

description

url

contentData

Mapping description

rdfs:label The label of a legend item

[https://www.w
3.org/TR/rdf-
schema/#
ch_label]

dct:descripti The description of a legend item
on

[http://dublinc

ore.org/

documents/

dcmi-terms/#

terms-

description]

legend:url the remote resource url to access the legend
content

legend:conte Base64 encoding of the content of the legend
ntData

Range

string

string

url

base64
string

Card.
0.1

0.1

0.1

53

http://dublincore.org/documents/dcmi-terms/#terms-title
http://dublincore.org/documents/dcmi-terms/#terms-description
http://dublincore.org/documents/dcmi-terms/#terms-description
https://www.w3.org/TR/rdf-schema/#ch_label
http://dublincore.org/documents/dcmi-terms/#terms-description
http://dublincore.org/documents/dcmi-terms/#terms-description

Term

mediaType

values

minInclusive
Value

minExclusive
Value

maxInclusive
Value

maxExclusive
Value

Mapping

dcat:mediaT
ype

[https://www.w
3.org/TR/vocab-
dcat/#
Property:distri
bution_media_t

ype]
legend:value

legend:minI
nclusiveValu
e

legend:minE
xclusiveValu
e

legend:maxI
nclusiveValu
e

legend:maxE
xclusiveValu
e

description

the media type of the content of the legend
item

data values associated with the legend

min inclusive classbreak value associated
with the legend item

min exclusive classbreak value associated
with the legend item

max inclusive classbreak value associated
with the legend item

max exclusive classbreak value associated
with the legend item

A.2.3 Symbology Ontology

The Symbology Ontology is a microtheory that defines the conceptual model for defining

Range

string

string

decimal

decimal

decimal

decimal

SymbolSet and Symbol with their structural components called Symbolizer.

The figure below shows an overview of the model.

54

Card.

0.1

0..n
0.1

0.1

0.1

0.1

https://www.w3.org/TR/vocab-dcat/#Property:distribution_media_type
https://www.w3.org/TR/vocab-dcat/#Property:distribution_media_type

SymbolSet

0.x - symbolSet

0. | -symbol

0.1
Resource Symbol - denotes skos:Concept

browseGraphic

0.% | -symbolizer

Symbolizer

Figure 18. Symbology Model Overview

A.2.3.1 SymbolSet

SymbolSet collects symbols into sets of symbols that are used together. Symbols can be shared
among symbol sets. A Symbol set can be equated with a legend of a map. The Table below
summarizes the SymbolSet properties.

Table 10. Properties of the SymbolSet Class

Property Usage Note Range Multiplicity and
use

dct:ident Unique identifier for the symbol set mainly used by string One

ifier machine.

dct:title Multilingual human-readable title for the SymbolSet string 0..n (one per
language)

dct:descr Multilingual human-readable description for the string 0..n (one per

iption SymbolSet language)

specifica Cites the specification standard for the SymbolSet Resource 0..1

tion

symbol Symbol member of this SymbolSet Symbol 0.n

The following example shows a sample of the EMS SymbolSet.

55

EMS SymbolSet Example

@prefix : <http://www.opengis.net/testbed/11/cci/ems/symbols#> .
@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#t> .

@prefix graphic: <http://www.opengis.net/ont/portrayal/graphic#> .
@prefix symbol: <http://www.opengis.net/ont/portrayal/symbol#> .
@prefix dct: <http://purl.org/dc/terms/> .

@prefix skos: <http://www.w3.0rg/2004/02/skos/core#> .

:EMSSymbolSet a symbol:SymbolSet ;

dct:description "Standard Canadian Emergency Mapping Symbology (EMS)
SymbolSet version 1.0" ;

det:title "Canadian Emergency Mapping Symbology (EMS) SymbolSet
(version 1.0)" ;

symbol:symbol ems.incident.roadway.roadwayClosure-symbol ,

rems.incident.temperature.windChill-symbol , :ems.incident.temperature.heatWave-symbol
, ‘ems.incident.civil.looting-symbol , :ems.incident.civil.dignitaryVisit-symbol ,
rems.incident.civil.displacedPopulations-symbol , :ems.incident.publicService-symbol ;
symbol:specification <https://cms.masas-
X.ca.s3.amazonaws.com/EMS_Symbology_v1.0.pdf> .

A.2.3.2 Symbol

A Symbol is the type used to define symbol classes. Symbols are collected into symbol sets. A symbol
has one machine readable identifier. It is described by a title, description and can refer to a formal
specification document. A symbol can denote a concept defined in a SKOS taxonomy. The table
below summarizes the Symbol properties.

Table 11. Properties of the Symbol Class

Property Usage Note Range Multiplicity and
use

dct:ident Machine readable name for the symbol. The identifier string 1
ifier should be unique
dct:title Multilingual human-readable title for the Symbol string 0..n (one per

language)
dct:descr Multilingual human-readable description for the string 0..n (one per
iption Symbol language)
specifica Reference to the full details of the portrayal symbol = Resource 0.1
tion
browseG Reference a graphic representing the symbol Resource 0..1
raphic
denotes Concept that is denoted by the symbol skos:Conc 0.n

ept

symboliz Defines the symbolizer rendering the symbol symboliz 0.n
er:symbo er:Symbo
lizer lizer

56

Property Usage Note Range Multiplicity and

use
symbolS The SymbolSet which this symbol belongs to. SymbolSe 0.n
et t

skos:not Notation used to refer the symbol as defined in a string 0..n
ation notation system. Use a custom datatype if multiple

notations are used

The following listing shows the encoding in Turtle for the WindChill symbol belonging to the EMS
SymbolSet.

EMS Symbol Example

:ems.incident.roadway.roadwayClosure-symbol

a symbol:Symbol ;

det:title "roadwayClosure" ;

symbol:browseGraphic
<http://ows.usersmarts.com/ems/icons/tier1/Base/ems.incident.roadway.roadwayClosure.pn
9>

symbol:denotes
<http://www.opengis.net/taxonomy/ems#ems.incident.roadway.roadwayClosure> ;

symbol:specification <https://cms.masas-
X.ca.s3.amazonaws.com/EMS_Symbology_v1.0.pdf> ;

symbol:symbolName "ems.incident.roadway.roadwayClosure" ;

symbol:symbolSet :EMSSymbolSet ;

symbolizer:symbolizer :ems.incident.roadway.roadwayClosure-pointSymbolizer .

:ems.incident.roadway.roadwayClosure-pointSymbolizer

a symbolizer:PointSymbolizer ;
det:title "PointSymbolizer for roadwayClosure symbol" ;
graphic:graphicSymbol [a graphic:GraphicSymbol ;

graphic:externalGraphic
<http://ows.usersmarts.com/ems/icons/tier1/Base/ems.incident.roadway.roadwayClosure.pn
9>
1.

<http://ows.usersmarts.com/ems/icons/tier1/Base/ems.incident.roadway.roadwayClosure.pn
9>

a graphic:ExternalGraphic ;

dct:description "icon for ems.incident.roadway.roadwayClosure" ;
det:title "ems.incident.roadway.roadwayClosure icon" ;
graphic:format "image/png" ;

graphic:onlineResource
<http://ows.usersmarts.com/ems/icons/tier1/Base/ems.incident.roadway.roadwayClosure.pn

g> .

A.2.4 Symbolizer Microtheory

The Symbolizer ontology defines a set of symbolizers (also called renderers) that defines

57

instructions for rendering data to graphic representation. The ontology is built on top of the
Graphic Ontology which defines graphic objects and properties. Symbolizers are referred by
symbol:Symbol to describe how conceptual symbol are rendered into graphics. This section
describes an overview of the microtheory, examples and rationale of some of the design decisions.

The OGC Symbology Encoding defines a number of symbolizers that uses SVG parameters defines a
key value pair. While this mechanism provides extensibility by accommodating future key value
pairs, there is no schema allowing knowledge of which keys are valid for a given symbolizer.
Starting with Testbed 12, we decided to move away from the approach used in the previous Testbed
11 which was based on the ISO 19117 model which introduces symbol definition, symbol
components and graphics. We found out that the ISO 19117 was not adequate to be represented as a
semantic descriptive model. The ISO 19117 is more geared toward an implementation which can
use functions to calculate positioning of symbol components. We decided to align our model more
toward main stream map renderer and descriptive standards such as SVG.

A.2.4.1 Symbolizer Hierarchy

The top concept of the Symbolizer ontology is Symbolizer. A Symbolizer describes how a feature is
to appear on a map. The Symbolizer describes not just the shape that should appear but also how
visual variables are defined using graphical properties such as color and opacity. A Symbolizer is
obtained by specifying one of the subclasses of Symbolizer and then supplying parameters to
override its default behavior. The hierarchy of symbolizer is illustrated in the following figure.

Symbolizer

]

PointSymbolizer LineSymbolizer PolygonSymbolizer TextSymbolizer RasterSymbolizer CompositeSymbolizer

Figure 19. Symbolizer Hierarchy

Note that the hierarchy uses similar terminology than the OGC SE specification, except that it
introduces an additional class called CompositeSymbolizer that defines a composition of
symbolizers applied in a given order and using a composition operation (default is source over), as
well as a CustomSymbolizer for modifying preexisting Symbolizers. This version of the ontology
mostly focused on rendering of feature (vector) data, and is not addressing in depth the Raster
Symbolizer, which is introduced as a placeholder for future extension. Other extensions of
symbolizer may be defined down the road for more specialized use-cases such as complex
symbologies that are difficult to express with graphic descriptors (example MIL 2525 symbology).

A.2.4.2 Symbolizer

Symbolizer is the top class of all the symbolizer and provides properties that are inherited by all

58

subclasses.

Table 12. Properties of the Symbolizer Class

Property Usage Note Range Multiplicity and
use

name symbolizer name xsd:string 0..1

dct:title title of the symbolizer xsd:string 0..1

dct:descri description of the symbolizer xsd:string 0..1

ption

:uom Unit of measure that applies to all elements included URI 0..1

inside a Symbolizer such as stroke-width, Size,
fontsize, Gap, InitialGap, Displacement and
PerpendicularOffset. If no uom is set inside of
Symbolizer, all units are measured in pixel.

binding:b List of Bindings to apply to the Symbolizer or objects it binding:B 0..*
inding contains inding

A.2.4.3 Point Symbolizer

A PointSymbolizer is defined as a Symbolizer that is used to draw a “graphic” at a point. If the
geometry associated with the PointSymbolizer is not a point, such as a line, polygon, raster, a
representative point of the geometry (typically centroid) should be used.

Table 13. Properties of the PointSymbolizer Class

Property Usage Note Range Multiplicity and
use

graphic:g graphic symbol graphic:G 0..1

raphicSy raphicSy

mbol mbol

:geometry Geometric Property associated with the point :Property 0.n

Property symbolizer

A.2.4.4 Line Symbolizer

A LineSymbolizer is a Symbolizer that is used to render a "stroke" along a linear geometry type
such as string of line segments. Geometry types other than inherently linear types can also be used.
If a point geometry is used, it should be interpreted as a line of “epsilon” (arbitrarily small) length
with a horizontal orientation centered on the point, and should be rendered with two end caps. If a
"area" geometry (for example polygon) is used, then its closed outline is used as the line string (with
no end caps). If a raster geometry is used, its coverage-area outline is used for the line, rendered
with no end caps.

Table 14. Properties of the LineSymbolizer Class

59

Property Usage Note

:geometry Geometric Property associated with the symbolizer
Property

graphic:st Stroke associated with the line symbolizer
roke

graphic:p Perpendicular offset
erpendic
ularOffset

A.2.4.5 Polygon Symbolizer

Range

:Property

graphic:S
troke

xsd:deci
mal

Multiplicity and
use
0.n

0.1

0.1

A PolygonSymbolizer is a Symbolizer that is used to render the area enclosed by a polygon. If a
polygon has “holes,” then they are not filled, but the borders around the holes are stroked in the
usual way. “Islands” within holes are filled and stroked, and so on. If a point geometry is referenced
instead of a polygon, then a small, square, ortho-normal polygon should be constructed for
rendering. If a line is referenced, then the line (string) is closed for filling (only) by connecting its
end point to its start point, any line crossings are corrected in some way, and only the original line
is stroked. If a raster geometry is used, then the raster-coverage area is used as the polygon.

Table 15. Properties of the PolygonSymbolizer Class

Property Usage Note

:geometry Geometric Property associated with the symbolizer
Property

graphic:st Stroke associated with the polygon symbolizer
roke

graphic:fi Fill associated with the polygon symbolizer
11

graphic:p Perpendicular offset
erpendic
ularOffset

graphic:d Displacement
isplaceme
nt

A.2.4.6 Text Symbolizer
A TextSymbolizer is a Symbolizer that is used to render text.

Table 16. Properties of the TextSymbolizer Class

Property Usage Note

:geometry Geometric Property associated with the symbolizer
Property

60

Range

:Property

graphic:S
troke

graphic:F
ill
xsd:deci
mal

graphic:T
ranslatio
n

Range

:Property

Multiplicity and
use
0.n
0.1

0.1

0.1

0.1

Multiplicity and
use

0.n

Property Usage Note Range Multiplicity and

use
graphic:f Font associated with the text symbolizer graphic:F 0..1
ont ont

graphic:fi Fill associated with the text symbolizer graphic:F 0.1
1l ill

graphic:h Halo associated with the text symbolizer graphic:H 0..1
alo alo

graphic:te Text label associated with the text symbolizer String 1
xtLabel

graphic:la LabelPlacement associated with the text symbolizer graphic:L 0..1
belPlace (could be PointPlacment or LinePlacement for abelPlace

ment example) ment

A.2.4.7 Raster Symbolizer

A RasterSymbolizer is a Symbolizer that is used to render raster. This symbolizer has been
introduced as a placeholder for future extensions, as this testbed was primarely focused on
symbolization of vector data.

A.2.4.8 Composite Symbolizer

A CompositeSymbolizer is a symbolizer composed of a list of Symbolizers that are applied in a
given order using a given composition operation. The default composition operation is src-over
composition.

Table 17. Properties of the CompositeSymbolizer Class

Property Usage Note Range Multiplicity and
use
:comp-op Composition operator valid values are " "src-over", xsd:string 0..1
"dest-out", "dest-over
:items List of Symbolizer rendered in the order of the list rdf:List of 1
Symboliz
ers

A.2.4.9 Custom Symbolizer

A CustomSymbolizer is used to modify a previously existing Symbolizer with new Bindings and/or
a new GeometryProperty.

Table 18. Properties of the CustomSymbolizer Class

Property Usage Note Range Multiplicity and
use

:symboliz Registry identifier of the Symbolizer to modify xsd:string 1

erld

61

Property Usage Note Range Multiplicity and
use

:geometry Property to set as the new Symbolizer’s :Property 0..1
Property GeometryProperty

A.2.5 Graphics Microtheory

A.2.5.1 Context

This document is prepared in the context of the Semantic Portrayal Service - a true semantic-
enabled service that demonstrates semantic integration and interoperability across disparate
portrayal catalogues.

A.2.5.2 Scope

The objective of this ontology is to define vocabulary terms describing graphic elements (objects
and properties) using Linked Data encoding. The use of ontology languages such as OWL provides a
powerful mechanism to express the semantic, classification, relationships and constraints of the
graphic elements. The Linked data encoding for the graphics enables to build a "Web of Graphics"
that could be referenced by other resources and the decentralized distribution of graphics
information on the web, favoring reusability of graphics and linkage to application that can go
beyond styling application. In the case of map portrayal application, the graphic ontology is used by
symbolizers to instruct renderers the way to render features on a map.

To model the graphic elements of the ontology, we try to use a model that is close to the way graphic
properties are defined in CSS and SVG. For example to encode color, the preferred way is to use
literal with a CSSColorLiteral datatype that uses the same syntax as CSS and SVG. Similarly length
can be expressed using different unit of measures (percent, cm, mm). Instead of introducing a
concept of Length and Unit of Measure that could be very verbose, we choose to use introduce a
datatype LengthType that is based on the SVG and CSS syntax.

A.2.5.3 Terminology used in the Graphics Ontology

The Graphics Ontology reuses terms from various existing specifications. The default namespace
used in the documentation of the ontology is http://www.opengis.net/ont/portrayal/graphic#. The
preferred prefix for this namespace is graphic. Classes and properties in the next sections that
have been taken from the following namespaces.

Table 19. Namespace Prefixes

Prefix Namespace

dct http://purl.org/dc/terms/

geosparql http://www.opengis.net/ont/geosparql#

owl http://www.w3.0rg/2002/07/owl#

rdf http://www.w3.0rg/1999/02/22-rdf-syntax-ns#
rdfs http://www.w3.0rg/2000/01/rdf-schema#

62

http://www.opengis.net/ont/portrayal/graphic#
http://purl.org/dc/terms/
http://www.opengis.net/ont/geosparql#
http://www.w3.org/2002/07/owl#
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/2000/01/rdf-schema#

Prefix Namespace

xsd http://www.w3.0rg/2001/XMLSchema#

A.2.5.4 Graphics Ontology Classes

This figure shows a UML Diagram of all classes and properties included in the Graphics Ontology.

GraphicElement

GraphicObject GraphicProperty

GraphicSymbol l Mark] [Fill

ExternalGraphic

l Stroke] [AnchorPoint

l Shape] [Text] l GraphicEll} | GraphicStroke LabelPlacement [Color] Transformation

‘ 0.7 {ordered}
ﬁ?ﬁ \ |

l Scaling I I Translation

Cw) | =]

+operations

PointPlacement LinePlacement

Com positeTransformatiorl

Figure 20. Graphics Ontology

Graphic Element

The :GraphicElement concept is the top concept of the Graphic Ontology. It is aligned with the
definition introduced in ISO 19117. :GraphicElement is the abstract root for the graphic elements,
as defined in a graphic specification language (such as SVG or OGC SE), that defines a symbol. The
graphic elements may be graphic objects, such as shapes, texts or graphic properties such as
color, stroke, fill, font. A :GraphicElement has two subclasses: :GraphicObject and
:GraphicProperty.

GraphicElement

GraphicObject GraphicProperty

Figure 21. Graphic Element Hierarchy

63

http://www.w3.org/2001/XMLSchema#

Graphic Object

A :GraphicObject is an abstract class defined as a :GraphicElement that can be drawn such as a
graphic shape (oval, ellipse, rectangle, path) , Raster, Glyphs (text and graphic symbols) .

The term SY_GraphicObject is defined in ISO 19117 as "an abstract specialization of
SY_GraphicElement as a graphic object defined in a graphic specification language.

NOTE Graphic objects are graphic elements, such as ovals, rectangles, or paths. A graphic
object in turn has properties, such as location attributes, size attributes, color
attributes, etc."

The :GraphicObject is the base class of a hierarchy illustrated below. The detail of each subclass is
described in next sections.

GraphicObject

JAN

Shape Text GraphicSymbol Mark ExternalGraphic

Circle Line Polygon

Figure 22. Graphic Object Hierarchy

Shape

A :Shape is a :GraphicObject defining a geometric figure.

The term :Shape is defined in SVG as an element defined by some combination of
NOTE straight lines and curves. Specifically:path, rect, circle, ellipse, line, polyline, and

polygon.

The description of the geometry of the shape can be defined in different geometry description
language such as GML, WKT and SVG. The ontology reuses the definition of GeoSPARQL
geosparql:asWKT, geosparql:asGML to represent respectively geometry encoded in WKT and
GML. GeoSPARQL introduces two datatypes to validate the encoding (geosparql:WKTLiteral and
geosparql:GMLLiteral). To accommodate more complex paths, the graphic ontology introduces an
additional property (asSVGPath) and datatype for encoding SVG Path (:svgPathLiteral), which uses
the syntax of path defined in SVG.

64

Table 20. Properties of the Shape Class

Property Usage Note Range

geosparq Define the geometry using Well-Known-Text Encoding geosparql
1:asWKT :wktLiter
al

geosparq Define the geometry using GML Geometry Encoding geosparql

l:asGML :gmlLiter
al
svgPath specifies a path of the shape using SVG graphic :svgPathL
language iteral
Graphic Symbol

Multiplicity and
use

0..1 (optional)

0..1 (optional)

0..1 (optional)

A :GraphicSymbol is a :GraphicObject with an inherent shape, color(s), and possibly size. A
:GraphicSymbol can be very informally defined as “a little picture” and can be of either a raster or
vector-graphic source type. The term “GraphicSymbol” is used since the term “symbol” is similar to

“Symbolizer” which is used in a different context in SE."

The term :GraphicSymbol is synonymous to Graphic in the SE Implementation
Specification, which is defined as a “graphic symbol” with an inherent shape,

NOTE

color(s), and possibly size. A “graphic” can be very informally defined as “a little

picture” and can be of either a raster or vector-graphic source type. The term
“graphic” is used since the term “symbol” is similar to “Symbolizer” which is used in

a different context in SE."

Table 21. Properties of the Graphic Symbol Class

Property Usage Note Range

:external external graphics contained a graphic symbol :External
Graphic Graphic

:mark Marks contained in a graphic symbol :Mark

:opacity opacity of the color or the content the current object is xsd:deci
filled with mal (0.0
to 1.0),
represent
ing
percent
opacity

:size Absolute size xsd:deci
mal, Non-
negative
real
number
in pixels

Multiplicity and
use
0..1 (optional)

0..1 (optional)
0..1 (optional)

0..1 (optional)

65

Property Usage Note Range Multiplicity and

use
:transfor Transform applied tot he graphic symbol :Transfor 0..* (optional)
m mation

:anchorP The location inside object to use for anchoring to :AnchorP 0..1 (optional)
oint main geometry point oint

:anchorP The location inside object to use for anchoring to :AnchorP 0..1 (optional)
oint main geometry point oint

External Graphic

An ExternalGraphic gives a reference to an external raster or vector graphical object. It allows a
reference to be made to an external graphic file with a Web URL or to in-line content. The
:onlineResource property gives the URL and the :format property identifies the expected
document MIME type of a successful fetch. Knowing the MIME type in advance allows the styler to
select the best-supported format from the list of URLs with equivalent content. The :inlineContent
property allows the content of an external graphic object to be included in-line as a
xsd:base64Binary datatype.

The term ExternalGraphic is defined in the SE Implementation Specification as an
NOTE element that "allows a reference to be made to an external graphic file with a Web

URL or to in-line content.”

Table 22. Properties of the ExternalGraphic Class

Property Usage Note Range Multiplicity and
use

:onlineRe URL of external graphic URL 0..1 (conditional)

source

:inlineCo Content of external graphic xsd:base6 0..1 (conditional)

ntent 4Binary

:format MIME type of external graphic xsd:string 1 (mandatory)

Mark

A :Mark is a :GraphicObject that describes a graphic symbol based on a shape with coloring
applied to it.

The term :Mark is defined in SE as an element that defines a “shape” which has
coloring applied to it. The Mark element serves two purposes. It allows the selection
of simple shapes, and, in combination with the capability to select and mix multiple
external-URL graphics and marks, it allows a style to be specified that can produce a
usable result in a best-effort rendering environment, provided that a simple Mark is
included at the bottom of the list of sources for every Graphic.

NOTE

Table 23. Properties of the Mark Class

66

Property Usage Note Range

fill Mark fill :Fill
:stroke Marks contained in a graphic symbol :Mark
:shape The shape associated with the Mark :Shape
:onlineRe URL of the graphic symbol URI
source
:inlineCo Content of the graphic symbol xsd:base6
ntent 4Binary
:format format or MIME type xsd:string
:markInd Index to an individual mark in a mark archive; xsd:string
ex include when needed to uniquely identify mark.
Text

Multiplicity and
use

0..1 (optional)
0..1 (optional)
0..1 (conditional)

0..1 (conditional)

0..1 (conditional)

0..1 (conditional)

0..1 (optional)

A :Text is a :GraphicObject that describes a graphic symbol based on a shape with coloring applied

to it.

The term :Text is defined in SVG as a "graphic element consisting of text. The

NOTE

attributes and properties on the text element indicate such things as the writing

direction, font specification and painting attributes which describe how exactly to

render the characters."

Table 24. Properties of the Text Class

Property Usage Note Range

:font The font information for the label :Font

:graphicS A graphic symbol to be displayed behind the label text :GraphicS

ymbol ymbol
:textLabe The text content for the label xsd:string
1
:labelPla sets the position of the label relative to its associated :LabelPla
cement geometry. cement
:halo Creates a colored background around the label text, :cssColor
for improved legibility. Literal
Aill The fill style of the label text :Fill

A.2.5.5 Graphic Datatypes

Multiplicity and
use

0..1 (optional)
0..1 (optional)

0..1 (optional)

0..1 (conditional)

0..1 (optional)

0..1 (optional)

The Graphic ontology introduces a couple of datatypes that are used to indicate to an RDF processor

how to convert and validate string literal to internal value.

cssColorLiteral

67

A.2.5.6 Graphic Properties

GraphicProperty

A :GraphicProperty is defined as a :GraphicElement that represents attributes that are used to
modify the appearance of the graphic objects, such as its size, orientation, color, outline stroke, fill
pattern, fonts, font size. While in several standards such as ISO 19117 and OGC SE, graphic
properties are encoded as name/value pairs, which provide flexibility to add future extensions with
new names, they do not provide any semantic information to the name and make it difficult to
define the adequate restrictions of graphic properties on specific graphic objects. It is also prone to
misinterpretation by implementers.

The use of ontology provides a clear semantic for each property and relationships to other
properties. For example, :font-color, :stroke-color and :fill-color are defined as subproperties of
:color. The graphic ontology introduces two ways to model graphic properties. The first one is by
defining subproperties of the datatype property :graphicProperty (for example :stroke-width,
:stroke-color, :font-size). The second way is by defining a subclass of the :GraphicProperty such
as :Stroke, :Color, :Font, :Fill, which are often used as reusable containers for of multiple graphic
properties.

The term GraphicProperty is defined in ISO 19117 as "a templatized specialization
of SY_GraphicElement used to define graphic properties, such as location

NOTE
attributes, size attributes, color attributes, etc. As such it shall implement all
inherited attributes, operations and associations. "
AnchorPoint

A :AnchorPoint gives the location inside of a Graphic Object to use for anchor the graphic object to
the main-geometry point. The coordinates are given as two floating-point numbers in the
AnchorPointX and AnchorPointY elements each with values between 0.0 and 1.0 inclusive. The
default point is X=0.5, Y=0.5, which is at the middle height and middle length of the graphic/label
text.

Table 25. Properties of the AnchorPoint Class

Property Usage Note Range Multiplicity and
use
:anchorP The x-coordinate location inside object to use for AnchorPo 0..1 (optional)
ointX anchoring to main geometry point int
:anchorP The y-coordinate location inside object to use for AnchorPo 0..1 (optional)
ointY anchoring to main geometry point int
Stroke

A :Stroke is a :GraphicProperty that describes a linear stroke. The :GraphicStroke element
describes graphics repeated linearly and is described below. There are three basic types of strokes:
solid-color, GraphicFill (stipple), and repeated linear GraphicStroke. A repeated linear graphic is
plotted linearly and has its graphic Symbolizer bent around the curves of the line string, and a
graphic fill has the pixels of the line rendered with a repeating area-fill pattern. If neither a

68

GraphicFill nor GraphicStroke element is given, then the LineStyle will render a solid color.

NOTE

The term :Stroke is defined in SE as a "graphical element of the LineSymbolizer that
encapsulates the graphical-Symbolization parameters for linear geometries."

Table 26. Properties of the Stroke Class

Property Usage Note

:graphicS A graphic to be used instead of a stroke

troke

:graphicF A graphic to be repeated in the area instead of a solid

ill
:stroke-

color

:stroke-
opacity

:stroke-
width

:stroke-
linecap

:stroke-
linejoin

:stroke-

fill color

Color

Opacity

Width

Linecap

Linejoin

Dash array - a sequence of distances (dash, space,

dasharra dash, etc.) to draw

y

Range

:GraphicS
troke

:GraphicF
ill

xsd:cssCo
lorLiteral

xsd:deci
mal, 0.0
to 1.0,
represent
ing
percent
opacity

xsd:deci
mal, Non-
negative
real
number
in pixels.

xsd:string
, either
“butt”,
“round”,
or
“square”
:Linejoin,
either
"miter",
"round",
or "bevel"

xsd:string
of
separated
non-
negative
real
numbers
in pixels

Multiplicity and
use

0..n (optional)

0..1 (optional)

0..1 (optional)

0..1 (optional)

0..1 (optional)

0..1 (optional)

0..1 (optional)

0..1 (optional)

69

Property Usage Note Range Multiplicity and

use
:stroke- Dash offset - the distance into the dasharray at which xsd:deci 0..1 (optional)
dashoffs to start drawing mal, Non-
et negative

real

number

in pixels
GraphicStroke

A :GraphicStroke is a :GraphicProperty that describes a graphic symbol repeated linearly. It
contains a Graphic symbol and may contain an InitialGap and/or Gap if relevant. The
:graphicSymbol specifies the linear :GraphicSymbol. Proper stroking with a linear graphic symbol
requires two “hot-spot” points within the space of the graphic symbol to indicate where the
rendering line starts and stops. In the case of raster images with no special mark-up, this line will
be assumed to be middle pixel row of the image, starting from the first pixel column and ending at
the last pixel column. GraphicStrokes should not be used for Strokes that are part of Marks

NOTE The term :GraphicStroke is defined in SE with the same definition.

Table 27. Properties of the GraphicStroke Class

Property Usage Note Range Multiplicity and
use
:graphicS The linear graphic symbol to be drawn :GraphicS 1.n (mandatory)
ymbol ymbol
:initialGa How far away the first graphic symbol will be drawn xsd:deci 0..n (optional)
P relative to the start of the rendering line mal, Non-
negative
real
number
in pixels
:gap Distance between two graphic symbols xsd:deci 0..n (optional))
mal, Non-
negative
real
number
in pixels
Fill

A :Fill is a :GraphicProperty that describes a graphic symbol repeated linearly. It contains a
Graphic symbol and may contain an InitialGap and/or Gap if relevant. The :hasGraphicSymbol
specifies the linear :GraphicSymbol. Proper stroking with a linear graphic symbol requires two
“hot-spot” points within the space of the graphic symbol to indicate where the rendering line starts
and stops. In the case of raster images with no special mark-up, this line will be assumed to be
middle pixel row of the image, starting from the first pixel column and ending at the last pixel
column. GraphicStrokes should not be used for Strokes that are part of Marks

70

NOTE The term :Fill is defined in SE with the same definition.

Table 28. Properties of the Fill Class

Property Usage Note Range Multiplicity and
use
:fill-color Color :cssColor 0..1 (optional)
Literal
Aill- Opacity xsd:deci 0..1 (optional)
opacity mal, 0.0
to 1.0,
represent
ing
percent
opacity
GraphicFill

A :GraphicFill is a :GraphicProperty that describes the graphic that will be used to fill the area of
a polygon. GraphicFills should not be used for Strokes that are part of Marks.

NOTE The term :GraphicFill is defined in SE with the same definition.

Table 29. Properties of the GraphicFill Class

Property Usage Note Range Multiplicity and
use

:graphicS The linear graphic symbol to be drawn. :GraphicS 1.n (mandatory)

ymbol ymbol

Font

A :Font is a :GraphicProperty used to represent text or symbols.
The term :Font is defined in SE as an element that "identifies a font of a certain
NOTE family, style, and size". Four types of SvgParameter are allowed, “font-family”,

“font-style”, “font-weight”, and “font-size”.

Table 30. Properties of the Font Class

Property Usage Note Range Multiplicity and
use

:font- gives the family name of a font to use :FontFam 0..n (optional)

family ily

71

Property Usage Note Range Multiplicity and
use

:font- gives the style to use for a font. xsd:string 0..1 (optional)
style , with the

allowed

values

being

“normal”,

“italic”,

and

“oblique”

:font-size gives the size to use for the font in pixels xsd:deci 0..1 (optional)
mal

:font- gives the amount of weight or boldness to use for a xsd:string 0..1 (optional)
weight font , with

allowed

values

being

"normal”

or "bold"

:fill-color Color :cssColor 0..1 (optional)
Literal

LabelPlacement

The :LabelPlacement element is used to position a label relative to a graphic object. It is superclass
of :PointPlacement and :LinePlacement.

LinePlacement

Table 31. Properties of the LinePlacement Class

Property Usage Note Range Multiplicity and
use

:initialGa How far away the first label will be drawn relative to xsd:deci 0..1 (optional)
P the start of the rendering line mal, Non-

negative

real

number

in pixels
:gap Distance between two labels xsd:deci 0..1 (optional))

mal, Non-

negative

real

number

in pixels
:perpend gives the perpendicular distance away from a lineto :uoms 0..1 (optional))
icularOff draw a label
set

72

Property Usage Note Range Multiplicity and

use
:generali The boolean generalizeLine property allows the xsd:boool 0..1 (optional))
zeLine actual geometry, be it a linestring or polygon to be ean
generalized for label placement. This is for example
useful for labeling polygons inside their interior when
there is need for the lavel to ressemble the shape of
polygon. (See OGC Symbology Encoding)
:isAligne boolean indicating is the label is aligned with the line xsd:boole 0..1 (optional))
d an
:isRepeat If IsRepeated is 'true’, the label will be repeatedly xsd:boole 0.1)
ed drawn along the line with InitialGap and Gap defining an
the spaces at the beginning and between labels.
PointPlacement
Table 32. Properties of the PointPlacement Class
Property Usage Note Range Multiplicity and
use
:rotation Clockwise rotation about the graphic object’s anchor xsd:deci 0..1 (optional)
point mal (real
number
in
degrees)
:anchorP The location inside object to use for anchoring to :AnchorP 0..1 (optional)
oint main geometry point oint
:displace Displacement from “hot-spot” point :Translati 0..1 (optional)
ment on

Halo

A :Halo is a type of Fill that is applied to the backgrounds of font glyphs. The use of halos greatly
improves the readability of text labels.

Table 33. Properties of the Halo Class

Property Usage Note Range Multiplicity and
use
fill Halo fill :Fill 0..1 (optional)
radius provides the absolute size of a halo radius in pixels xsd:deci 0..1 (optional)
encoded as a floating-point number. mal
Transformation

A :Transformation is a :GraphicProperty used to apply a type of transformation, such as scaling,
translation, or rotation, to a graphic object.

Size

73

The Size element gives the absolute size of the graphic object in uoms encoded as a floating-point
number. The default size for an object is context-dependent. Negative values are not allowed. The
default size of an image format (such as GIF) is the inherent size of the image. The default size of a
format without an inherent size (such as SVG which are not specially marked) is defined to be 16
pixels in height and the corresponding aspect in width. If a size is specified, the height of the
graphic object will be scaled to that size and the corresponding aspect will be used for the width. An
expected common use case will be for image graphics to be on the order of 200 pixels in linear size
and to be scaled to lower sizes. On systems that can resample these graphic objects “smoothly,” the
results will be visually pleasing.

Table 34. Properties of the Scale Class

Property Usage Note Range Multiplicity and
use
:scaleX Scale factor on the X-axis direction." The default value xsd:deci 1
is 0.0 mal
:scaleY Scale factor on the Y-axis direction." The default value xsd:deci 1
is 0.0 mal
Rotation

The Rotation element is a basic transformation that gives the rotation of a graphic object in the
clockwise direction about its center point in decimal degrees, encoded as a floating-point number.
Negative values mean counter-clockwise rotation. The default value is 0.0 (no rotation). Note that
there is no connection between source geometry types and rotations; the point used for plotting has
no inherent direction. Also, the point within the graphic object about which it is rotated is format
dependent. If a format does not include an inherent rotation point, then the point of rotation
should be the centroid.

Table 35. Properties of the Rotation Class

Property Usage Note Range Multiplicity and
use
rotation Rotation angle in the clockwise direction about its xsd:deci 1

center point in decimal degrees, encoded as a floating- mal
point number. Negative values mean counter-

clockwise rotation. The default value is 0.0 (no

rotation).

Translation

The Translation gives the X and Y displacements from the “hot-spot” point. This element may be
used to avoid over-plotting of multiple graphic objects used as part of the same point symbol. The
displacements are in units of measure above and to the right of the point. The default displacement
is X=0, Y=0. If Displacement is used in conjunction with Size and/or Rotation then the graphic object
shall be scaled and/or rotated before it is displaced. The term displacement, in this case, is
synonymous to translation.

Table 36. Properties of the Translation Class

74

Property Usage Note Range Multiplicity and

use
:displace Displacement on the X-axis direction." The default xsd:deci 1
mentX valueis 0.0 mal

:displace Displacement on the Y-axis direction." The default xsd:deci 1
mentY valueis 0.0 mal

Composite Transformation

A composite transformation is two or more transformations performed one after the other in
order of the list.

Table 37. Properties of the Composite Transformation Class

Property Usage Note Range Multiplicity and
use
:operatio Transformation operation list executed in order of the rdf:List of 1
ns list Transfor
mation
instance

A.2.6 Binding Microtheory

The Binding ontology defines a vocabulary for binding an Expression to a property. This ontology
is built on top of the Expression Ontology, which defines Expressions and their properties.

While Bindings are used only on instances of symbolizer:Symbolizer in the Portrayal service, the
ontology is highly flexible and allows for binding an Expression to any property on any object.

A.2.7 Namespaces

The default namespace prefix for the Binding ontology is defined below in the binding entry. Other
namespaces used by the ontology are defined thereafter.

Table 38. Namespace Prefixes

Prefix Namespace

binding http://www.opengis.net/ont/binding#
expression http://www.opengis.net/ont/expression#
xsd http://www.w3.0rg/2001/XMLSchema#

A.2.7.1 Binding Ontology Classes

This figure shows a UML Diagram of all classes and properties included in the Binding Ontology.

75

http://www.opengis.net/ont/binding#
http://www.opengis.net/ont/expression#
http://www.w3.org/2001/XMLSchema#

Paramerizable

1 - target
0. | _binding
1 .
Property Binding - BXPression | Expression
- property 1

Figure 23. Binding Ontology

A.2.8 Binding Hierarchy

The top and only concept of the Binding ontology is Binding. A Binding describes how an
Expression is bound to some property on some target object.

A.2.9 Binding

Binding is the top class of the Binding ontology.

Table 39. Properties of the Binding Class

JSON Property RDF Property Usage Note Range Multi
plicit
y and
use
expression :expression The bound Expression expression:E 1
Xpression
toProperty :toProperty URI of the property the Expression xsd:anyURI 1
is bound to
toTarget ‘toTarget URI of the target object, which xsd:anyURI 0..1

contains the bound property. If
the target URI is missing, it is
assumed that the target is
whatever object has the Binding.

In addition to the properties of the Binding object, the Binding ontology contains a property
hasBinding, which is used to indicate that some object has a Binding associated with it.

Table 40. Binding Class Related Properties

76

JSON Property RDF Property Usage Note Range Multi
plicit
y and

use

hasBinding :hasBinding The Bindings associated with this :Binding 0.n
object and its sub-objects

A.2.10 Expression Microtheory

The Expression ontology defines a way to store an expression in any machine-readable language.
This ontology is defined as a separate ontology as we anticipate that it could be used in a number of
standards that requires using expression for expressing conditions or derived values (for example
in Web Processing Service (WPS) or workflow-related services).

A.2.11 Namespaces

The default namespace prefix for the Expression ontology is defined below in the expression entry.
Other namespaces used by the ontology are defined thereafter.

Table 41. Namespace Prefixes

Prefix Namespace
expr http://www.opengis.net/ont/expression#
xsd http://www.w3.0rg/2001/XMLSchema#

A.2.11.1 Expression Ontology Classes

This figure shows a UML Diagram of all classes and properties included in the Expression Ontology.

77

http://www.opengis.net/ont/expression#
http://www.w3.org/2001/XMLSchema#

Expression

- e¥pressionLangage : String
- eXpressionBody : String

OGCExpression SPARQLExpression

Figure 24. Expression Ontology

A.2.12 Expression Hierarchy

The top concept of the Expression ontology is Expression. An Expression describes a machine-
readable expression and the language the expression is written in. While an Expression as defined
can store any machine-readable expression, it is extensible for more specific use cases.

We have created two subclasses of Expression for the Portrayal service, OGCExpression and
SPARQLExpression. These were created for ease of use and classification purpose for reasoning
and do not provide any additional functionality over the parent Expression concept.

A.2.13 Expression

Expression is the top class of the expression ontology, and its properties are inherited by all
subclasses.

Table 42. Properties of the Symbolizer Class

JSON Property RDF Property Usage Note Range Multi
plicit
y and

use

expressionLanguag expr:expressionLan Language of the expression. Itis xsd:anyURI 1

e guage defined an authoritative URI.

espressionBody expr:expressionBod Content of the expression xsd:string 1

y

78

A.2.14 OGC Expression

The OGCExpression class is a specialized class for holding an OGC Expression. It has the same
properties as its parent, Expression.

A.2.15 SPARQL Expression

The SPARQLExpression class is a specialized class for holding a SPARQL query. It has the same
properties as its parent, Expression.

A.2.16 Layer Microtheory

This microtheory was introduced at the end of the Testbed 13 implementation phase to support the
creation, update, cloning and search of map layers. As a consequence, it needs additional
refinements in future testbeds. This section should only be considered as informative and could be
used as a starting point for designing layer and map management in the portrayal service in future
testbeds.

The model differs from the ones defined in current OGC services, in the sense that it accommodates
different data sources using different models and format encodings (XML, JSON, CSV, Shape, WFS,
GML). These data sources are typically accessible from a URL. Each data source can have a number
of parameters that are represented as a set of key value pairs that are specific for each source types.
The definition of the source parameters needs to be published by the service through dedicated
endpoints (needs to be investigated in the future).

The focus of the modeling on the layer within the Portrayal Service was to capture the information
necessary to perform the rendering of the layer. The design was not focused on the capture of
metadata to enable search and discovery of layers in a semantic registry, which was investigated in
the Semantic Registry Testbed 13 Thread. While there are some overlaps between both models, our
focus was to capture the essential metadata needed to render the layer.

Future testbeds will need to investigate the reconciliation of the Layer/Map SRIM profile and the
layer description of the portrayal service needed to perform its rendering. The role of each service
should also need to be clarified, in particular, where metadata about layers should be captured.

A.2.16.1 Layer Concept

This concept defines a Map Layer that is defined from a DataSource of features (or coverage in the
future) and a style. A layer has descriptive metadata, a geographic bounding box, scaling hints and
reference to a data sources and one or more styles or symbolizers.

Mandatory properties

Table 43. Layer Mandatory Properties

JSON URI Range Usage Note Cardinal
Property ity
id none string Internal identifier used to refer in REST API 1

79

JSON
Property

uri

type

title

description

dataSource

URI

rdf:id

rdf:type

dct:title

dct:descr
iption

layer:dat
aSource

Range

URI

Fixed
value
layer:Lay
er

rdfs:Liter
al

rdfs:Liter
al

DataSour
ce

Usage Note

The URI of the resource (effort should done to
make it resolvable)

The RDFS Class that the item instantiates

This property contains a name given to the layer.
This property can be repeated for parallel language
versions of the name.

This property contains a free-text account of the
layer. This property can be repeated for parallel
language versions of the description.

Reference to Data Source specification

A.2.16.2 Recommended properties

Table 44. Layer Recommended Properties

Property

layerName

layerType

contactPoint

publisher

keyword/tag

theme/categor
y

creation date

80

URI

1

layer:lay
erType

dcat:cont
actPoint

dct:publi
sher

dcat:key
word

dcat:the
me,
subprope
rty of
dct:subje
ct

dct:creat
ed

Range

string

uri

vecard:VC
ard

foaf:Age
nt

rdfs:Liter
al

skos:Con
cept

rdfs:Liter
al typed
as
xsd:date
or
xsd:date
Time

Usage Note

Layer name used as identifier in API (example
WMS)

Concept uri of layer type taxonomy

This property contains contact information that
can be used for sending comments about the layer

This property refers to an entity (organization)
responsible for making the layer available

This property contains a keyword or tag describing
the layer

This property refers to a category of the layer. A
layer may be associated with multiple themes.

This property contains the date of creation of the
register item.

Cardinal
ity
1

1.n

Cardinal
ity
0.1

0.1(?

0.n

0.1

Property

release date

update/modifi
cation date

featureType

minScaleDeno
minator

maxScaleDeno
minator

supportedStyl
elds

supportedStyl
e
styles

stylelds

symbolizers

symbolizerIds

supportedCRS

geographicBo
undingBox

URI

dct:issue
d

dct:modi
fied

layer:fea
tureType

layer:mi
nScaleDe
nominat
or

layer:ma
xScaleDe
nominat
or

none

layer:sup
portedSt
yle

layer:styl
e

none

layer:sy
mbolizer

none

layer:sup
portedCR
S

extent:ge
ographic
Boundin
gBox

Range

rdfs:Liter
al typed
as
xsd:date
or
xsd:date
Time
rdfs:Liter
al typed
as
xsd:date
or
xsd:date
Time

string

xsd:integ
er

xsd:integ
er

string

Style

style:Styl
e

string

symboliz
er:Symb
olizer

string

string

extent:G

eographi
cBoundi

ngBox

Usage Note

This property contains the date of formal issuance
(e.g., publication) of the register item.

This property contains the most recent date on
which the register item was modified.

Feature type identifier

Suggested Minimum scale denominator for usage
of the layer

Suggested Maximum scale denominator for usage
of the layer

Reference to style identifiers managed by the
service

References to supported Styles (in RDF)

Reference to Style specification (inline or by uri) in
RDF

Reference to style identifiers (JSON) managed by
the service

Reference to Symbolizer Object (inline or by uri)

reference to symbolizer ids managed by service
(JSON)

Reference to standard identifier (use of URL)

Geographic Bounding Box of the layer (can be
calculated on server side when layer is submitted)

Cardinal
ity
0.1

0.1

0.1(

0.1

81

A.2.16.3 DataSource Concept

A DataSource represents an instance of a specific Data source type. A Data source can be accessed
through a URL or be inline (GeoJSON annotations for example). Each data source type can have a
set of parameters that can be defined as key/value pairs in GeoJSON or as RDF properties of the
Data Source Type definition in the ontology (needs to be investigated). The publication of the
parameters in the API needs to be determined in future testbed.

Table 45. DataSource Properties

JSON
Property

id

url

type

title

description

version

mimeType

config

inlineData

82

URI

none

dcat:acce
ssURL

rdf:type

dct:title

dct:descr
iption

dct:versi
on

dcat:mim
eType

none

layer:inli
neData

Range

string

URL

rdfs:Clas
S
subclass
of
DataSour
ce

rdfs:Liter
al

rdfs:Liter
al

string

string

Set of
key/valu
e pairs

string

Usage Note Cardinal
ity
Internal identifier used to refer in REST API 1
Access URL of the datasource 0.1
The RDFS Class that of the datasource 1
This property contains a name given to the 1.n

datasource. This property can be repeated for
parallel language versions of the name.

This property contains a free-text account of the 1.n
data source. This property can be repeated for
parallel language versions of the description.

version of the data source (for example 1.3 for 0.1
WMS)
mime type of the data source if downloadable 0.1

Map of key value pairs corresponding to parameter 0..1
bindings (for JSON)

inline encoding of the data (for example GeoJSON 0..1
for annotations)

Appendix B: Semantic Portrayal
Service REST API

83

B.1 Overview

This document describes the update of the RESTful Semantic Portrayal Service API, initially
designed during Testbed 12. It is anticipated that a variety of clients may be using the Semantic
Portrayal Service, and as a consequence it is difficult to accommodate the needs of every type of
client. It is almost certain that the REST API will evolve and be modified as more requirements and
features are added to the service. The hypermedia-driven API provides a robust approach to evolve
the API without breaking the client ecosystem, as long as the clients are using the semantics of the
link relation types. For this reason, the service has adopted a hypermedia-driven RESTful API by
default, which meets level 3 of the Richardson Maturity Model [http:/martinfowler.com/articles/
richardsonMaturityModel.html].

The default serialization of the information model in the service is JSON, as it is understood by most
programming languages. However, to support machine-processable information, the JSON model
was enforced to be compatible with Linked data by using JSON-LD Context. In this way, data can be
converted to Linked Data Representation and be reasoned on and linked to other information
expressed as Linked Data. The REST API does support content negotiation to return a response in
Linked Data Format (RDF/XML, Turtle, NTriple) when applicable. The REST API in this document
provides the core minimum functionalities that are based on the Portrayal Ontologies described
in Appendix A.

The example URL wused in this documentation used the hostname
http://localhost:port. This hostname should be replaced by the entry point (baseURL)
of the service that you want to access in the format: http:/{hostname}:{port}/
{rootPath}

NOTE

84

http://martinfowler.com/articles/richardsonMaturityModel.html
http://localhost:port
http://{hostname}:{port}/{rootPath}
http://{hostname}:{port}/{rootPath}

B.2 HTTP verbs

The RESTful API tries to adhere as closely as possible to standard HTTP and REST conventions in its
use of HTTP verbs. The following HTTP verbs are used by the Service.

Verb Usage

GET Used to retrieve a resource

POST Used to create a new resource

PUT Used to update an existing resource with a
complete update

DELETE

Used to delete an existing resource

85

B.3 HTTP status codes

The Service REST API tries to adhere as closely as possible to standard HTTP and REST conventions
in its use of HTTP status codes. The following table summarizes the status codes and usage.

Status code Usage
200 0K The request completed successfully
201 Created A new resource has been created successfully.

The resource’s URI is available from the
response’s Location header

204 No Content An update to an existing resource has been
applied successfully

400 Bad Request The request was malformed. The response body
will include an error providing further
information

404 Not Found The requested resource did not exist

405 Method not allowed The request was made of a resource using a

request method not supported by that resource;
for example, using GET on a form which
requires data to be presented via POST, or using
PUT on a read-only resource.

409 Conflict The request could not be completed due to a
conflict with the current state of the resource.
This code is only allowed in situations where it
is expected that the user might be able to resolve
the conflict and resubmit the request.

415 Unsupported media type The server is refusing to service the request
because the entity of the request is in a format
not supported by the requested resource for the
requested method.

500 Internal Server Error The Web server encountered an unexpected
condition that prevented it from fulfilling the
request by the client

86

B.4 Headers

Every response has the following header(s):

Name Description
Content-Type The Content-Type of the payload, e.g.
application/hal+json

Future headers may be added for managing access control to the resources managed by the service.

87

B.5 Errors

Whenever an error response (status code >= 400) is returned, the body will contain a JSON object
that describes the problem. The error object has the following structure:

Path Type
timestamp Number
status Number
error String
message String
path String

Description

The time, in milliseconds, at
which the error occurred

The HTTP status code, e.g. 400

The HTTP error that occurred,
e.g. Bad Request

A description of the cause of the
error

The path to which the request
was made

For example, a request that attempts to apply a non-existent resource to a symbolset item will

pr

88

oduce a 400 Bad Request response:

HTTP/1.1 400 Bad Request

Content-Type: application/json;charset=UTF-8

Content-Length: 189

{
"timestamp" : 1461855421813,

"status" : 400,
"error" : "Bad Request",

"message" : "The resource item 'http://localhost:8080/styles/123" does not exist",

"path" : "/schemas"

B.6 Paging and Sorting

B.6.1 Paging

Rather than return everything from a large result set, the REST API recognizes some URL
parameters that will influence the page size (size parameter) and starting page number (page
parameter) as well as sorting of the result set (sort parameter).

See the following example, where the page size is set to 5 and request the third page (page 2) as
page numbers are zero-indexed:

GET /symbolsets?page=2&size=5 HTTP/1.1
Host: localhost

The paginated results in HAL format returns the following response:

" embedded": {

...data...

Ifs
" links": {
"self": {
"href": "http://localhost:8080/symbolsets"”
Iy
"first": {
"href": "http://localhost:8080/symbolsets?page=0&size=5"
}

"prev": {
"href": "http://localhost:8080/symbolsets?page=1&size=5"
},
"next": {
"href": "http://localhost:8080/symbolsets?page=3&size=5"
IE
"last": {
"href": "http://localhost:8080/symbolsets?page=5&size=5"
b
)
"page”: {
"size": 5,
"totalElements": 27,
"totalPages": 6,
"number": 2

89

Each paged response will return links to the first, previous, next, and last page of results based on
the current page using the IANA defined link relations first [http://www.w3.org/TR/html5/links.html#link-
type-first], prev [http:/www.w3.org/TR/html5/links.html#link-type-prev], next [http://www.w3.org/TR/html5/
links.html#link-type-next], last [http:/www.w3.org/TR/html5/links.html#link-type-last]. If you are currently at
the first page of results, however, no prev link will be rendered. The same is true for the last page of
results: no next link will be rendered.

The paginated results also have extra data about the page settings , including the size of a page,
total elements, total pages, and the page number you are currently viewing. This extra information
makes it very easy for the consumer to configure UI tools like sliders or indicators to reflect the
overall position the user is in viewing the data. For example, the document above shows a
reference to the third page (with page numbers indexed to 0 being the first).

B.6.2 Sorting

The REST API recognizes sorting parameters. To have your results sorted on a particular property,
add a sort URL parameter with the name of the property you want to sort the results on. You can
control the direction of the sort by appending a , to the the property name plus either ascor desc.

The following examples will sort results by title in ascending order:

GET /symbolsets?sort=title,asc HTTP/1.1
Host: www.mydomain.com

To sort the results by more than one property, keep adding as many sort=PROPERTY parameters as
you need. They will be added in the order they appear in the query string.

90

http://www.w3.org/TR/html5/links.html#link-type-first
http://www.w3.org/TR/html5/links.html#link-type-prev
http://www.w3.org/TR/html5/links.html#link-type-next
http://www.w3.org/TR/html5/links.html#link-type-last

B.7 Search Results

A number of endpoints of the service return search results. They usually support Level 2 (JSON)
and Level 3 (HAL+JSON) responses. The search results contains the collection of matched items,
paging information and optionally faceted aggregation results. The following describes the
response structure for each format.

B.7.1 HAL+JSON Search Results

Path Type Description

_embedded Array The HAL embedded field that
contains a collection of
instances

embedded._collectionName|] Array The array of items instances

defined a given JSON schema.
The collectionName may varied
depending of the types of items
contained in the collection.

aggregations[] Array The aggregation results as
defined in the Aggregation J[SON
Schema. This field is optional is
no faceted search is performed
on the endpoint.

aggregations[].name String The name of the aggregation (or
facet)

aggregations[].metrics Object The metrics object containing
global statistics of the object

aggregations[].metrics.count Number The total count of the
aggregation

aggregations[].buckets[] Array The array of buckets of the
aggregation

aggregations[].buckets[].label String The label of the bucket

aggregations[].buckets[].count String The count of the label for the
bucket

_links Object Links to other states

page Object The page state. See Paging
section

page.size Number The page size

page.totalElements Number The total elements matched by
the search request

page.totalPages Number The total number of pages in

the results

page.number Number The current page number
(starts at 0)

91

Path Type Description

_links[] Array Array of hypermedia links to
other reachable states.

B.7.2 JSON Search results

When the JSON or JSON-LD response is retrieved, the matched items are placed in an array referred
to by the results field. Aggregations results are present only when faceted search is performed and
paging information are returned.

Path Type Description

results[] Array The array of vocabulary
instances that matches the
search criteria

aggregations[] Array The aggregation results as
defined in the Aggregation JSON
Schema. This field is optional is
no faceted search is performed
on the endpoint.

aggregations[].name String The name of the aggregation (or
facet)
aggregations[].metrics Object The metrics object containing
global statistics of the object
aggregations[].metrics.count Number The total count of the
aggregation
aggregations[].buckets[] Array The array of buckets of the
aggregation
aggregations[].buckets[].1abel String The label of the bucket
aggregations[].buckets[].count String The count of the label for the
bucket
page Object The page state. See
<<_paging,Paging section>
page.size Number The page size
page.totalElements Number The total elements matched by
the search request
page.totalPages Number The total number of pages in

the results

page.number Number The current page number
(starts at 0)

B.7.3 Aggregation JSON Schema

In many use cases, it is useful to aggregate the search results according some facets values (number
of items per topic, per publisher, etc). Each facet is composed of a name, global metrics (right now

92

only total count is supported), a set of buckets containing a label (unique value of the facet) and the
total count for each label within the context of the facet and search results. The JSON schema of the

Aggregation results is defined in the following table.

Path
aggregations|[]

aggregations[].name

aggregations[].metrics

aggregations[].metrics.count

aggregations[].buckets[]

aggregations[].buckets[].1label
aggregations[].buckets[].count

Type
Array
String
Object
Number

Array

String
String

Description
The aggregation results

The name of the aggregation (or
facet)

The metrics object containing
global statistics of the object

The total count of the
aggregation

The array of buckets of the
aggregation

The label of the bucket

The count of the label for the
bucket

93

B.8 Resources Summary

The following resources are the core resources supported by the Semantic Portrayal Service.

Resources Description Operations
Capabilities This resource describes the capabilities of the service GET
Items Represents any portrayal artifacts managed by a backend GET

portrayal registry and supports faceted search on
portrayal information.

StyleSets represents a collection of Styles and supports search ona GET
collection of StyleSet instances based on search criteria

StyleSet represents an instance of a StyleSet GET

Styles represents a collection of Styles and supports search ona GET
collection of Style instances based on search criteria

Style represents an instance of a Style GET

SymbolSets represents a collection of Symbol Sets and supports GET
search on a collection of symbol sets based on search
criteria

SymbolSet represents a collection of Symbol Sets and supports GET
search on a collection of symbol sets based on search
criteria

GlyphRenderer This resource supports rendering of a symbol or GET
symbolizer to support legend rendering and previous of
symbolizer/symbols

LayerRenderer This resource supports rendering of data for a given style GET, POST

MapRenderer This resource supports rendering of map composed of GET
multiple layers using WMS GetMap operation

Import Import portrayal information for well defined standard POST
(SLD, Linked Data)

Export Export Portrayal information to well defined standards GET
(RDF, SLD 1.0, SLD 1.1)

JSONLD Context This resource returns the JSON-LD context associated GET
with the JSON representation returned by the service

SPARQL This resource provides a SPARQL service query endpoint GET
that can accomodate more advanced query capabilities
on the portrayal information

Layers represents a collection of user defined layers and GET, POST
(experimental) supports search on a collection of Layer instances based
on search criteria

Layer represents an instance of a Layer GET, PUT, DELETE
(experimental)

94

B.9 Level 2 REST Endpoints

The following table describes the endpoint URL paths for each resource for a Level 2 REST APIL
These paths are considered NON-NORMATIVE but rather INFORMATIVE, as changes of path
templates may occur in the future, requiring updates of clients and version control of APIs. The use
of hypermedia REST API is advised to be isolated from these changes. However this information is
provided to support frameworks that work with Level 2 REST API (such as Angular]S)

Path HTTP Methods Consume Produce
/ GET,HEAD application/hal+js
on
/capabilities GET,HEAD application/hal
+json
application/jso
n

/items GETHEAD

/items POST * application/jso
n

* application/rdf
+xml,

o text/turtle,
* text/n3,

 application/n-
triples

application/hal
+json

application/jso
n

application/hal
+json

application/jso
n

application/rdf
+xml,

text/turtle,
text/n3,

application/n-
triples

95

Path
/items/{id}

/items/instance

/items/{id}

/items/{id}

/stylesets

96

HTTP Methods

GET,HEAD

GET,HEAD

PUT

DELETE
GET,HEAD

Consume

application/jso
n

application/rdf
+xml,

text/turtle,
text/n3,

application/n-
triples

Produce

application/hal
+json

application/jso
n

application/rdf
+xml,

text/turtle,
text/n3,

application/n-
triples

application/hal
+json

application/jso
n

application/rdf
+xml,

text/turtle,
text/n3,

application/n-
triples

application/hal
+json

application/jso
n

application/rdf
+xml,

text/turtle,
text/n3,

application/n-
triples

application/hal
+json

application/jso
n

Path

/stylesets/instance

/stylesets/{id}

/styles

/styles/instance

HTTP Methods Consume
GET,HEAD

GET,HEAD

GET,HEAD

GET,HEAD

Produce

application/hal
+json

application/jso
n

application/rdf
+xml,

text/turtle,
text/n3,

application/n-
triples

application/hal
+json

application/jso
n

application/rdf
+xml,

text/turtle,
text/n3,

application/n-
triples

application/hal
+json

application/jso
n

application/hal
+json

application/jso
n

application/rdf
+xXml,

text/turtle,
text/n3,

application/n-
triples

97

Path
[styles/{id}

/symbolsets

/symbolsets/instance

/symbolsets/{id}

98

HTTP Methods Consume
GET,HEAD

GET,HEAD

GET,HEAD

GET,HEAD

Produce

application/hal
+json

application/jso
n

application/rdf
+xml,

text/turtle,
text/n3,

application/n-
triples

application/hal
+json

application/jso
n

application/hal
+json

application/jso
n

application/rdf
+xml,

text/turtle,
text/n3,

application/n-
triples

application/hal
+json

application/jso
n

application/rdf
+xXml,

text/turtle,
text/n3,

application/n-
triples

Path
/symbols

/symbols/instance

/symbols/{id}

/layers

/layers/{id}

HTTP Methods

GET,HEAD

GET,HEAD

GET,HEAD

POST

GET,HEAD

Consume

 application/jso
n

Produce

application/hal
+json

application/jso
n

application/hal
+json

application/jso
n

application/rdf
+xml,

text/turtle,
text/n3,

application/n-
triples

application/hal
+json

application/jso
n

application/rdf
+xml,

text/turtle,
text/n3,

application/n-
triples

application/hal
+json

application/jso
n

application/hal
+json

application/jso
n

99

Path
/layers/{id}

/layers/{id}
/layers/{id}/render

/layers/{id}/render

/renderer/symbolizer

/renderer/symbol

/renderer/layer

/renderer/layer

/renderer/map

/renderer/map

100

HTTP Methods Consume

PUT application/jso
n

DELETE
GET

POST application/json

GET,HEAD

GET,HEAD

GET,HEAD

POST

GET,HEAD

POST

Produce

* application/hal
+json

* application/jso
n

» Supported
output graphic
formats

» Supported
output graphic
formats

* Supported
output graphic
formats

» Supported
output graphic
formats

» Supported
output graphic
formats

» Supported
output graphic
formats

* Supported
output graphic
formats

» Supported
output graphic
formats

Path
/sparql

/sparql

HTTP Methods

GET,HEAD

POST

Consume

 application/x-
www-form-
urlencoded

 application/sp
arql-query

Produce

application/sp
arql-
results+xml

application/sp
arql-
results+json

text/csv

text/tab-
separated-
values

application/rdf
+xml,

text/turtle,
text/n3,

application/n-
triples

application/sp
arql-
results+xml

application/sp
arql-
results+json

text/csv

text/tab-
separated-
values

application/rdf
+xXml,

text/turtle,
text/n3,

application/n-
triples

101

B.10 Link relation types

The following table describes the list of link relation types used by the Semantic Portrayal Service.
The OGC namespace is used to define for the relationships that can be reused by other services such
as capabilites, apiDocumentation. The links specific to the portrayal service have the following
relation type URI template: http://www.opengis.net/rels/portrayal/{rel}.

Relation URI Description

type

ogc:capabil http://www.opengis.net/ Reference to the capabilities of the service
ities rels/capabilities

portrayal:it http://www.opengis.net/ Reference to the portrayal item search endpoint
ems rels/portrayal/renderer/
symbol

portrayal:s http://www.opengis.net/ Reference to a collection of Style instances in the portrayal
tyles rels/portrayal/styles service

portrayal:s http://www.opengis.net/ Reference to an instance of Style in the portrayal service
tyle rels/portrayal/style

portrayal:s http://www.opengis.net/ Reference to a collection of SymbolSet instances in the

ymbolSets rels/portrayal/ portrayal service

symbolSets
portrayal:s http://www.opengis.net/ Reference to an instance of SymbolSet in the portrayal
ymbolSet rels/portrayal/ service

symbolSet

portrayal:s http://www.opengis.net/ Reference to a collection of Symbol instances in the portrayal
ymbols rels/portrayal/symbols service

portrayal:s http://www.opengis.net/ Reference to an instance of Symbol in the portrayal service
ymbol rels/portrayal/symbol

portrayal: http://www.opengis.net/ Reference to the portrayal map renderer
mapRende rels/portrayal/renderer/
rer map

portrayal:s http://www.opengis.net/ Reference to the portrayal symbol renderer
ymbolRend rels/portrayal/renderer/
erer symbol

portrayal:s http://www.opengis.net/ Reference to the portrayal symbolizer renderer
ymbolizer rels/portrayal/renderer/
Renderer symbolizer

portrayal:l http://www.opengis.net/ Reference to the portrayal layer renderer
ayerRende rels/portrayal/renderer/
rer layer

portrayal:i http://www.opengis.net/ Reference to the portrayal information importer
mporter rels/portrayal/import

portrayal:e http://www.opengis.net/ Reference to the portrayal information exporter
Xporter rels/portrayal/import

102

http://www.opengis.net/rels/portrayal/{rel}
http://www.opengis.net/rels/capabilities
http://www.opengis.net/rels/capabilities
http://www.opengis.net/rels/portrayal/renderer/symbol
http://www.opengis.net/rels/portrayal/renderer/symbol
http://www.opengis.net/rels/portrayal/renderer/symbol
http://www.opengis.net/rels/portrayal/styles
http://www.opengis.net/rels/portrayal/styles
http://www.opengis.net/rels/portrayal/style
http://www.opengis.net/rels/portrayal/style
http://www.opengis.net/rels/portrayal/symbolSets
http://www.opengis.net/rels/portrayal/symbolSets
http://www.opengis.net/rels/portrayal/symbolSets
http://www.opengis.net/rels/portrayal/symbolSet
http://www.opengis.net/rels/portrayal/symbolSet
http://www.opengis.net/rels/portrayal/symbolSet
http://www.opengis.net/rels/portrayal/symbols
http://www.opengis.net/rels/portrayal/symbols
http://www.opengis.net/rels/portrayal/symbol
http://www.opengis.net/rels/portrayal/symbol
http://www.opengis.net/rels/portrayal/renderer/map
http://www.opengis.net/rels/portrayal/renderer/map
http://www.opengis.net/rels/portrayal/renderer/map
http://www.opengis.net/rels/portrayal/renderer/symbol
http://www.opengis.net/rels/portrayal/renderer/symbol
http://www.opengis.net/rels/portrayal/renderer/symbol
http://www.opengis.net/rels/portrayal/renderer/symbolizer
http://www.opengis.net/rels/portrayal/renderer/symbolizer
http://www.opengis.net/rels/portrayal/renderer/symbolizer
http://www.opengis.net/rels/portrayal/renderer/layer
http://www.opengis.net/rels/portrayal/renderer/layer
http://www.opengis.net/rels/portrayal/renderer/layer
http://www.opengis.net/rels/portrayal/import
http://www.opengis.net/rels/portrayal/import
http://www.opengis.net/rels/portrayal/import
http://www.opengis.net/rels/portrayal/import

Relation URI Description

type
ogc:jsonldC http://www.opengis.net/ Reference to the JSON-LD context to apply to the JSON
ontext rels/jsonldContext content to transform it to Linked Data

ogc:docum http://www.opengis.net/ Reference to the REST documentation of the service
entation rels/restdoc

Due to the time constraints, the hypermedia links for all the endpoints have not
NOTE been all implemented during this testbed. Future testbeds will need to address the
use of hyperlinks once all the endpoints are stabilized.

103

http://www.opengis.net/rels/jsonldContext
http://www.opengis.net/rels/jsonldContext
http://www.opengis.net/rels/restdoc
http://www.opengis.net/rels/restdoc

B.11 Content negotiation

Most of the resource can serve multiple representations including:

Form
at

Mime type Description

HAL+] application/h It is the default format of the service. The JSON payload is compatible with

SON

JSON-
LD

JSON

RDF/X
ML

Turtle

N-
Triple
S

al+json JSON-LD and is aligned with the Portrayal Ontology Ontology.

application/ld Compliant with the Portrayal Ontology using the JSON-LD context.
+json

application/ljs Compliant with the Portrayal Ontology Ontology using the JSON-LD context.
on

application/rd Compliant with the Portrayal Ontology.
f+xml

text/turtle Compliant with the Portrayal Ontology.
text/ntriples Compliant with thePortrayal Ontology.

Renderers produce different formats depending of their type such as PNG, GIF, JPEG, SVG, KML etc.

104

B.12 Semantic Portrayal Resources

This section describes the list of resources made accessible by the Semantic Portrayal Service. The
RESTful API has an entry point (service root) which provides links which represents the current
state transitions supported by the service.

B.12.1 Service Root

The root is the entry point of the RESTful Semantic Portrayal service — it is what the client comes
into contact with when consuming the API for the first time. If the HATEOAS constraint is to be
considered and implemented throughout by clients, then this is the place to start. The root endpoint
provides a set of links with well-defined relation types that corresponds to the supported
capabilities of the service. As the Semantic Portrayal Service API evolves in the future, there would
be many more links, each with it’s own semantics defined by the type of link relation
[http://tools.ietf.org/html/rfc5988#section-5.3].

The API is considered as RESTful as it is fully discoverable from the root and with no prior
knowledge - meaning the client should be able to navigate the API by doing a GET on the root.
Moving forward, all state changes are driven by the client using the available and discoverable
transitions that the REST API provides in representations (hence Representational State Transfer).

B.12.1.1 Accessing the root endpoint

To get access to the root of the service and get the list of links, a GET request is sent to the base url of
the service.

B.12.1.2 Request structure

This request sends a 'GET' request to the base url of the service. Here the HTTP request associated
to get the list of links supported by the service:

GET / HTTP/1.1
Host: localhost

B.12.1.3 Query Parameters

None

B.12.1.4 Response structure

The response is returning a HAL response (application/hal+json) with the _links object that
contains links associated with relation types (used as property names in JSON).

Path Type Description

@context String JSON-LD Context applicable to
JSON response of the service

105

http://tools.ietf.org/html/rfc5988#section-5.3

Path Type Description

type String The type of the resource
(always Service)

title String Title of the service

description String Description of the service

categories Array Categories of the service

_links Object Links to other resources

B.12.1.5 Links

The following table describes the current link relation types supported by the service.

Relation Description

portrayal:capabilities Refers to the capabilities of this service.

portrayal:styles Refers to the style search endpoint supported by
this service

portrayal:symbols Refers to the symbol search endpoint supported
by this service

portrayal:symbolSets Refers to the symbolSet search endpoint
supported by this service

portrayal:renderer Refers to the renderer endpoint supported by
this service

portrayal:sparql Refers to the SPARQL endpoint supported by this
service

ogc:jsonLdContext Refers to JSON Context

curies The curies to use to expand the link relation
types to URI

B.12.1.6 Example response

The following example response shows the current links supported by the service.

HTTP/1.1 200 OK
Content-Type: application/hal+json
Content-Length: 921

{

"type": "srim:Service",

"title": "Semantic Portrayal Service",

"description”: "Semantic Portrayal Service prototype for 0GC Testbed12",

"category": [

"http://www.opengis.net/specs/testbed12/semanticPortrayalService"

1,
"publisher™: [{

"name": "Image Matters LLC",

106

"uri": "http://www.imagemattersllc.com",
"type": "org:0Organization”

H,

"version": "0.1",

" links": {
"self": {

"href":

}

}

}

}

}

}

}

}

}

}

}

}

}

}

ortrayal:
"href":

ortrayal:
"href":

ortrayal:
"href":

ortrayal:
"href":

ortrayal:
"href":

ortrayal:
"href":

ortrayal:
"href":

ortrayal:
"href":

ortrayal:
"href":

ortrayal:
"href":

ortrayal:
"href":

ortrayal:
"href":

ortrayal:
"href":

"http://localhost:

capabilities": {

"http://localhost:

items": {

"http://localhost:

layers": {

"http://localhost:

symbols": {

"http://localhost:

symbolsets": {

"http://localhost:

styles": {

"http://localhost:

mapRenderer": {

"http://localhost:

layerRenderer": {

"http://localhost:

symbolRenderer": {
"http://localhost

symbolizerRenderer
"http://localhost

legendRenderer": {
"http://localhost

import": {
"http://localhost

export": {
"http://localhost

gc:jsonldContext": {

8082"

8082/capabilities”

8082/1items"

8082/1ayers"

8082/symbols"

8082/symbolsets"

8082/styles"

8082/renderer/map"

8082/renderer/layer"

:8082/renderer/symbol"

Il: {

:8082/renderer/symbolizer"

:8082/renderer/legend"

:8082/import"

:8082/export"

"href": "http://localhost:8082/context"

}

ortrayal:

sparql": {

107

"href": "http://localhost:8082/sparql”

e

"curies": [{
"href": "http://www.opengis.net/rels/portrayal/{rel}",
"name": "portrayal",
"templated": true

}

B.12.2 Capabilities

This resource describes the capabilities of the service, including the supported portrayal items,
application profiles, formats.

B.12.2.1 Query Parameters

There is no query parameter to retrieve the capabilities.

B.12.2.2 Example request

The following is an example of GET Request performed on the Capability resource.

GET /capabilities HTTP/1.1
Accept: application/hal+json
Host: localhost

B.12.2.3 Response structure

The response of Capability request has the following structure:

Path Type Description

keywords[] Array Keywords associated with the
service description

itemClasses[] Array ItemClasses supported by the
registry

itemClasses[].id String The ID of the ItemClass

itemClasses[].uri String The URI of the ItemClass

itemClasses[].type String The RDF type of the ItemClass
(always srim:ItemClass)

itemClasses[].title String The human readable title of the
ItemClass

itemClasses[].description String The human readable

description of the ItemClass

108

Path

rendererFormats][]

importerFormats|]

importerFormats[].1id

importerFormats[].title

importerFormats[].description

importerFormats[].mimeType

importerFormats[].encoding

importerFormats[].schemas[]

supportedDataSourceTypes[]

supportedDataSourceTypes[].id

supportedDataSourceTypes[].tit

le

supportedDataSourceTypes[].des
cription

supportedDataSourceTypes[].mim
eType

supportedDataSourceTypes[].enc
oding

supportedDataSourceTypes[].sch
emas[]

defaultCRS

supportedCRSs[]
_links

B.12.2.4 Links

Type
Array

Array

“string

string

string

string

string

string

String

string

string

string

string

string

string

String

Array
Object

Description

Supported Renderer Formats
supported by the service

Supported Importer Formats by
the service

Identifier of the type of the
imported format

Title of the type of the imported
format

Description of the imported
format

Mime type the imported format
if applicable

Encoding of the imported
format if applicable

Supported Schemas of the
imported format

Supported DataSource Types by
the service

Identifier of the type of the data
source format

Title of the type of the data
source format

Description of the type of the
data source format

Mime type the data source
format if applicable

Encoding of the data source
format if applicable

Supported Schemas of the type
of the data source format

Default CRS supported by the
service

Supported RS by the service

The hypermedia links to other
states

The following table describes the current link relation types in the HAL capabilities response

Relation

service

Description

Reference to the entry point of the service

109

Relation Description
self Refers to this endpoint.

curies Refers to the curies defined for the links

B.12.2.5 Example response

The following example response shows how capabilities of the service is represented.

HTTP/1.1 200 0K
Content-Type: application/hal+json
Content-Length: 30456

{

"rendererFormats": [
"image/svg+xml",
"image/png",

"image/jpeq",
"image/qif",
"image/geotiff"
]I
"itemClasses": [{
"id": "style:Style",
"uri": "http://www.opengis.net/ont/portrayal/style#Style",
"type": "srim:ItemClass",
"title": "Style",
"description": "Style class"

"id": "style:StyleSet",

"uri": "http://www.opengis.net/ont/portrayal/style#StyleSet",
"type": "srim:ItemClass",

"title": "StyleSet",

"description": "StyleSet class"

|
"id": "style:SymbolSet",
"uri": "http://www.opengis.net/ont/portrayal/symbol#SymbolSet",
"type": "srim:ItemClass",
"title": "SymbolSet",

"description": "SymbolSet class"

"id": "style:PortrayalRuleSet",

"uri": "http://www.opengis.net/ont/portrayal/style#PortrayalRuleSet",
"type": "srim:ItemClass",

"title": "Portrayal RuleSet",

"description": "PortrayalRuleSet class"

|
"id": "style:FeatureTypeStyle",

"uri": "http://www.opengis.net/ont/portrayal/stylef#fFeatureTypeStyle",
"type": "srim:ItemClass",

"title": "FeatureType Style",

110

"description”: "FeatureType class"
oA
"id": "symbol:Symbol",
"uri": "http://www.opengis.net/ont/portrayal/symbol#Symbol",
"type": "srim:ItemClass",
"title": "Portrayal Symbol",
"description": "Symbol class"

"id": "symbol:SymbolSet",

"uri": "http://www.opengis.net/ont/portrayal/symbol#SymbolSet",
"type": "srim:ItemClass",

"title": "Symbol Set",

"description”: "SymbolSet Class"

"id": "style:PortrayalRule",

"uri": "http://www.opengis.net/ont/portrayal/style#PortrayalRule",
"type": "srim:ItemClass",

"title": "Portrayal Rule",

"description": "Portrayal Rule"

"id": "style:PortrayalRulelist",

"uri": "http://www.opengis.net/ont/portrayal/style#PortrayalRulelList",
"type": "srim:ItemClass",

"title": "Portrayal RuleList",

"description”: "Portrayal RulelList "

"id": "style:PortrayalRulelList",

"uri": "http://www.opengis.net/ont/portrayal/style#PortrayalRuleList",
"type": "srim:ItemClass",

"title": "Portrayal RuleList",

"description": "Portrayal Rulelist "

H,
"_links": {
"self": {
"href": "http://localhost:8082/capabilities”
},
"service": {
"href": "http://localhost:8082"
}
}

B.12.3 JSON-LD Context

The JSON produced by the Semantic Portrayal Service is compatible with the Portrayal SRIM
Application Profile using the Portrayal ontologies described in Appendix A, by using JSON-LD
context. The context is made accessible through an endpoint, so it can be referred to and imported
by JSON-LD processors to be converted into a Linked Data representation adhering to the Portrayal
SRIM Profile.

111

B.12.3.1 Query Parameters

There is no query parameter to retrieve the JSON-LD context.

B.12.3.2 Example request

The following is an example of GET Request performed on the JSON-LD context resource.

GET /context HTTP/1.1
Host: localhost

B.12.3.3 Response structure

The response of JSON-LD Context is conforming to the standard JSON-LD.

Path Type Description

@context Object JSON-LD Context applicable to
JSON response of the service

Due to time constraint, the JSON-LD context has not been updated during this

NOTE
testbed with the latest update in the model.

B.12.3.4 Example response

The following example response shows a JSON-LD context of the service.

HTTP/1.1 200 0K
Content-Type: application/json
Content-Length: 2222

{
"@context": {

"style": "http://www.opengis.net/ont/portrayal/style#",
"symbol": "http://www.opengis.net/ont/portrayal/symbol#",
"symbolizer": "http://www.opengis.net/ont/portrayal/symbolizer#",
"graphic": "http://www.opengis.net/ont/portrayal/graphic#",
"pav": "http://purl.org/pav/",
"dct": "http://purl.org/dc/terms/",
"owl": "http://www.w3.0rg/2002/07/owl#",
"xsd": "http://www.w3.0rg/2001/XMLSchema#",
"skos": "http://www.w3.0rg/2004/02/skos/core#",
"srim": "http://www.opengis.net/ont/testbed/12/srim#",
"rdfs": "http://www.w3.0rg/2000/01/rdf-schema#",
"dcat": "http://www.w3.org/ns/dcat#",
"150639-2": "http://id.loc.gov/vocabulary/is0639-2/",
"lingvoj": "http://www.lingvoj.org/ontology#",
"foaf": "http://xmlns.com/foaf/0.1/",
"ldp": "http://www.w3.org/ns/1dp#",

112

"locn": "http://www.w3.org/ns/locn#",

"adms": "http://www.w3.org/TR/vocab-adms/#",

"extent": "http://www.opengis.net/ont/extent#",

"idvoc": "http://www.opengis.net/ont/identifier#",

"link": "http://www.opengis.net/ont/link#",

"gr": "http://www.heppnetz.de/ontologies/goodrelations/v1#",

"org": "http://www.socialml.org/ontologies/organization#",

"schema": "http://www.opengis.net/ont/testbed12/srim/profile/schema#"
"vcard": "http://www.w3.0rg/2006/vcard/ns#",

Iltypell: ll@type",

"uri": {
"@id": "rdf:id",
"@container": "@language"

}

alue": "@value",
"lang": "@language",
"results": "ldp:contains",
"title": "dct:title",
"titleMap": {
"eid": "dct:title",
"@container": "@language"
I
"description": "dct:description",
"descriptionMap": {
"0id": "dct:description”,
"@container": "@language"
I#
"preflLabel": "skos:preflabel",
"preflabelMap": {
"@id": "skos:preflLabel",
"@container": "@language"

I

"category": {
"0id": "dct:type",
“@type": Il@_idll

I¥

"version": "pav:version",

"creator": {
"@id": "dct:creator",
“@type": Il@_idll

}

"versionNotesMap": {
"@id": "adms:versionNotes",
"@container": "@language"

}I

"contributor": {
"@id": "dct:contributor",
"@type": Il@_idll

H

I
ersionNotes": "adms:versionNotes",

r

113

"publisher": {
"0id": "dct:publisher",
"otype": "@id"

I

"language": {
"@id": "dct:language",
"@type": "@id"

}

is02Code": "lingvoj:isol1",
"is03Code": "lingvoj:iso2",
"label": "rdfs:label",
"name": "foaf:name",
"nameMap": {

"@id": "foaf:name",
"@container": "@language"

H

"sameAs": {
"@id": "owl:sameAs",
"@type": Il@_idll

I

"distribution": {
"@id": "dcat:distribution",
"@type": "@id"

I¥

"license": {
"@id": "dct:license",
"otype": "@id"

}

reated": "dct:created",
"issued": "dct:issued",
"modified": "dct:modified",

"mediaType": "dcat:mediaType",
"country-name": "vcard:country-name",
"region": "vcard:region",

"locality": "vcard:locality",
"postal-code": "vcard:postal-code",
"street-address": "vcard:street-address",

"inScheme": {
"@id": "skos:inScheme",
“@type": ll@_idll

j¥

"conformsTo": {
"@id": "dct:conformsTo",
"@type": ll@_idll

b

n agell: {
"eid": "foaf:page",
"@type": Il@_idll

I#

114

"rights": {
"0id": "dct:rights",
"@type": ll@_idll

I¥

"hasValue": {
"@id": "vcard:hasValue",
ll@typell: "@_idll

H

"landingPage": {
"@id": "dcat:landingPage",
“@type": "@_idll

}

ccrualPeriodicity": {

"0id": "dct:accrualPeriodicity"”,

"@type": ll@_idll
h

"purpose": "srim:purpose",

"itemClass": {
"@id": "srim:itemClass",
“@type": Il@_idll

+

"keyword": "dcat:keyword",

"identifier": "dct:identifier",

"theme": {
"@id": "dcat:theme",
"otype": "@id"

I

"audience": {
"@id": "dct:audience",
"@type": "@id"

iy

"function": {
"@id": "srim:function",
"otype": "@id"

H

"subject": {
"@id": "dct:subject",
"otype": "@id"

I

"project": {
"@id": "foaf:project",
"@type": "@id"

iy

"hasIdentifier": {
"@id": "id:hasIdentifier",
"otype": "@id"

H

115

"depiction": {
"@id": "foaf:depiction",
"otype": "@id"
I
"provenance": {
"@id": "dct:provenance",
"@type": "@id"
I
"contactPoint": {
"@id": "dcat:contactPoint",
"@type": "@id"
I
"hasGeographicExtent": {
"0id": "extent:hasGeographicExtent",
"otype": "@id"
I
"temporal": {
"eid": "dct:temporal”,
"@type": "@id"
I
"spatial": {
"@id": "dct:spatial”,
"@type": "@id"
I
"accessRights": {
"0id": "dct:accessrights",
"otype": "@id"
I

"rightsHolder": {
"0id": "dct:rightsHolder",
Il@typell: "@_idll

H

"subOrganizationOf": {
"@id": "org:subOrganizationOf",
ll@type": "@_idll

o

"item": {
"@id": "srim:item",
“@type": "@_idll

H

"status": "srim:status",

"itemType": {
"0id": "srim:itemType",
"@type": "@id"
b
"organization-name": "vcard:organization-name"
"address": {

116

"@id": "vcard:address",
"@type": "@id"
I#
"fn": "vcard:fn",
"hasEmail": {
"@id": "vcard:hasEmail",
"@type": "@id"
b
"veardTitle": "vecard:title",
"hasTelephone": {
"@id": "vcard:hasTelephone",
"@type": "@id"
b
"featureType": "style:featureType",
"rules": "style:hasRule",
"symbolSet": "symbol:symbolSet",
"hasRuleSet": "style:hasRuleSet",
"styles": "style:hasStyle",
"ruleset": "style:hasRuleSet",
"minScaleDenominator": "style:minScaleDenominator",
"maxScaleDenominator": "style:maxScaleDenominator",
"constraint": "style:hasConstraint"”,
"constraintlLanguage": "style:constraintLanguage"”,
"constraintlanguageVersion": "style:constraintlLanguageVersion",
"ruleCondition": "style:has",
"body": "style:body",
"browseGraphic": "symbol:browseGraphic",
"specification": "symbol:specification",
"denotes": "symbol:denotes",
"uom": "symbolizer:uom",
"comp-op": "symbolizer:comp-op",
"symbolizer": "symbolizer:symbolizer",
"geometryProperty": "symbolizer:geometryProperty",
"propertyName": "symbolizer:propertyName",
"hasGraphicContent": "graphic:hasGraphicContent",
"graphicObject": "graphic:graphicObject"”,
"graphicSymbol": "graphic:graphicSymbol",
"mark": "graphic:shape",
"shape": "graphic:graphicObject",
"hasGraphicProperty": "graphic:hasGraphicProperty"”,
"fontFamily": "graphic:fontFamily",
"fontStyle": "graphic:fontStyle",
"hasColor": "graphic:hasColor",
"fill": "graphic:fill",
"font": "graphic:font",
"graphicStroke": "graphic:graphicStroke",
"graphicFill": "graphic:graphicFill",
"onlineResource": "graphic:onlineResource",
"stroke": "graphic:stroke",
"wellKnownShape": "graphic:wellKnownShape",
"labelPlacement": "graphic:labelPlacement",

117

"pointPlacement": "graphic:pointPlacement”,
"linePlacement": "graphic:linePlacement",
"graphicContent": "graphic:graphicContent",
"externalGraphic": "graphic:externalGraphic",
"graphicProperty": "graphic:graphicProperty",
"colorName": "graphic:colorName",

"cssColor": "graphic:cssColor”,
"fill-property": "graphic:fill-property",
"fill-color": "graphic:fill-color",
"fill-opacity": "graphic:fill-opacity",
"font-property": "graphic:font-property"”,
"font-code": "graphic:font-code",
"font-size": "graphic:font-size",
"font-weight": "graphic:font-weight",
"format": "graphic:format",

"gap": "graphic:gap",

"halo": "graphic:halo",

"radius": "graphic:radius",

"asWKT": "graphic:asWKT",

"initialGap": "graphic:initialGap",
"perpendicularOffset": "graphic:perpendicularOffset",
"stroke-property": "graphic:stroke-property",
"stroke-color": "graphic:stroke-color",
"stroke-dasharray": "graphic:stroke-dasharray",
"stroke-dashoffset": "graphic:stroke-dashoffset",
"stroke-linecap": "graphic:stroke-linecap",
"stroke-linejoin": "graphic:stroke-linejoin",
"stroke-opacity": "graphic:stroke-opacity",
"stroke-linejoin": "graphic:stroke-linejoin",
"stroke-width": "graphic:stroke-width",
"svgPath": "graphic:svgPath",

"anchorPointX": "graphic:anchorPointX",
"anchorPointY": "graphic:anchorPointY",
"opacity": "graphic:opacity",
"inlineContent": "graphic:inlineContent",
"markIndex": "graphic:markIndex",
"textLabel": "graphic:textlLabel",
"isRepeated": "graphic:isRepeated",
"isAligned": "graphic:isAligned",
"generalizeline": "graphic:generalizeline";

B.12.4 Portrayal Items

For this testbed, a search endpoint for any portrayal items was introduced, in addition to the
dedicated endpoint for each type of portrayal artifacts (symbol, styles, symbolizers). This enables
faceted search across multiple types and facilitate the delegation of the search with the semantic
portrayal registry based on SRIM, as they use similar parameters. It also enables the creation,

118

update, deletion and retrieval of individual portrayal items by simply delegating the operation to
the Semantic Portrayal Registry.

For the sake of brevity and avoiding duplication, the endpoint specifications for items and item
resources are similar to the Semantic Registry API developed during the testbed 12. Please refer to
the Testbed 12 Semantic Registry ER for more details.

B.12.4.1 Styles

A Style defines the set of portrayal rules to apply to some geospatial data. Style has subclasses such
as style:FeatureTypeStyle and style:CoverageStyle. The Styles resource is used to search style
instances based on some search criteria.

JSON Schema

The following defines the JSON schema for the Style derived from the Style Ontology defined in
Appendix A. It can also be derived from the JSON-LD Context.

Path Type Description Card.

id String Internal identifier for 1
the symbol (which can
be used in Level 2 API)

uri String Linked Data URI for the 0..1
Style (equivalent to @id
in JSON-LD)

type String The type (class) of the 1
Style (symbol:Style
subclasses such as
style:FeatureTypeStyle).

title String The title of the Style

titleMap Object The title map for each 0..1
language of the title .
Each key corresponds
to the two letter
language identifier
name (for example
"en")

description String The description of the 0..1
Style

descriptionMap Object The description map 0..1
for each language of
the description. Each
key corresponds to the
two letter language
identifier name (for
example "en")

—

119

Path Type Description Card.

created String The date of creation 1
(XSD datetime format)
(generated by the
service)

modified String The date of the last 0.1

modification (XSD
datetime format)
(generated by the
service)

featureType uri URI of FeatureType 0.1
associated with a
FeatureTypeStyle
instance

rulesf] Object Array of PortrayalRule 1
URIs. See ontology for
Symbolizer in
Appendix C

Search Styles

The search of the Styles is performed by performing a HTTP GET request on the Styles resource. The
style search supports free text, by types, ids, or uris, CQL constraint and can return results with
aggregations on specific facets.

Query Parameters

The following query parameters are supported in the query:

Parameter Description Cardi
nality

q Text to search in textual fields 0.1

type One or more Style types (style:FeatureTypeStyle or other subclasses) 0.n

uri One or more URISs of Style instances 0.n

id One or more id of Style instances 0.n

includeFacet Boolean or list of facet names to include for aggregation computation. If the 0..1

value is true, include all facets supported by the server. If only a subset of
the facets are needed, a comma delimited of field names can be set.

facet.fieldna Constraint values of a given facet field name 0.n

me

constraint A constraint expressed in CQL. This is used to express more advanced 0..1
query filtering

fields One or more fields to be included in the response. Use JSON path dot 0.n
notation for referring paths

pageNumber The number of the current page as defined in Paging section 0..1

pageSize The count of items on the current page as defined in Paging section 0.1

120

Parameter Description Cardi

nality
sort The sorting parameters as defined in Sorting section. 0.n

Example request
The following request performs a style search of all types

GET /styles HTTP/1.1

Accept: application/hal+json

Host: localhost
The following request search styles for the featureType

'http.//www.opengis.net/testbed11/ont/incident/ems#EMSIncident using a CQL constraint

(featureType="http://www.opengis.net/testbed11/ont/incident/ems#EMSIncident")

GET
/styles?constraint=(featureType=%27http%3A%2F%2Fwww.opengis.net%2Ftestbed11%2Font%2Fin
cident%2Fems%23EMSIncident%27) HTTP/1.1

Accept: application/hal+json

Host: localhost

Response structure

The response search is structured according the Search Results Schema. The items of the results
conforms to the Style JSON Schema. The collection name used in the _ embedded section of the HAL
response is called portrayal:items.

Links

The following link relation types are provided in the response to allow the transition to others
states from the Style search results embedded in the response.

Relation Description

self Refers to this resource itself

service Refers to the root of the portrayal service
curies Refers to the curies defined for the links
first The first page of results

last The last page of results

next The next page of results

prev The previous page of results

121

Example HAL+JSON Response

The embedded objects in the response of the request conform to the Style JSON Schema.
collection name used in the _ embedded section of the HAL response is called portrayal:items.

rest of the response returns paging information and links to other states.

HTTP/1.1 200 0K
Content-Type: application/hal+json
Content-Length: 2707

{
" embedded": {
"portrayal:items": [{

"id": "345319896b477721787382742cc04770",

"uri":
"http://www.opengis.net/testbed/12/portrayal/ems/stylefEMSIncidentStyle",

"type": "style:FeatureTypeStyle",

"title": "EMS Incident Type Style",

"description”: "EMS Incident Type Style",

"created": "2016-11-18T703:18:12.661Z2",

"modified": "2016-11-18T03:18:15.0247",

"_links": {

"self": {
"href":
"http://localhost:8082/styles/345319896b477721787a82742cc04770"
}
}
b A

"id": "c7330cb460ad27d98fc4ddd303a7c4ab",

"uri":
"http://www.opengis.net/testbed/12/portrayal/hswg/style#HSWGIncidentStyle",

"type": "style:FeatureTypeStyle",

"title": "HSWG Incident Type Style",

"description”: "HSWG Incident Type Style",

"created": "2016-11-18T03:18:15.4577",

"modified": "2016-11-18T03:18:15.8427",

" Tlinks": {
"self": {
"href":
"http://localhost:8082/styles/c7a30cb460ad27d98fc4ddd303a7c4ab"
}
}
}H
I
" links": {
"self": {
"href": "http://localhost:8082/styles"
I
"service": {
"href": "http://localhost:8082"
I

122

The
The

"curies": [{
"href": "http://www.opengis.net/rels/portrayal/{rel}",
"name": "portrayal",
"templated": true
H
Iy
"aggregations": [],
"page”: {
"size": 20,
"totalElements": 2,
"totalPages": 1,
"number": 0

Example JSON Response

The result objects in the response of the request conforms to the Style JSON Schema. The rest of the
response returns paging information.

123

HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: 850

{
"results": [{
"id": "345a19896b477721787a82742cc04770",
"Uri"'

"http://www.opengis.net/testbed/12/portrayal/ems/style#EMSIncidentStyle",
"type": "style:FeatureTypeStyle",
"title": "EMS Incident Type Style",
"description”: "EMS Incident Type Style",
"created": "2016-11-18703:18:12.661Z",
"modified": "2016-11-18T03:18:15.024Z2"

oA
"id": "c7a30cb460ad27d98fc4ddd303a7c4ab",
"uri":
"http://www.opengis.net/testbed/12/portrayal/hswg/style#fHSWGIncidentStyle",
"type": "style:FeatureTypeStyle",
"title": "HSWG Incident Type Style",
"description”: "HSWG Incident Type Style",
"created": "2016-11-18T03:18:15.4577",

"modified": "2016-11-18703:18:15.8427"

il

"page": {
"size": 20,
"number": 0,
"totalElements": 2

}

}
B.12.4.2 Style

The Style resource is used to retrieve a Style instance.

Retrieve a Style

To retrieve a particular instance of Style, a HTTP GET request will get the details of a Style. They are
two ways to retrieve a instance of a style, using an internal id in the path or by using its Linked
Data URL (using uri as query parameter).

Query Parameters

Parameter Description Cardinality

uri URI of the style if the instance 0..1
needs to be retrieved by URL
URI should be encoded to
escape special characters.

124

Example request

The following HTTP request performs a GET Request to get an instance of a style identified by its
internal id 345a19896b477721787a82742cc04770

GET /styles/345a19896b477721787a82742cc@477@ HTTP/1.1
Accept: application/hal+json
Host: localhost

The following query gets the instance identified by the URI http:;//www.opengis.net/testbed/12/
portrayal/ems/style#EMSIncidentStyle

GET
/styles/instance?uri=http%3A%2F%2Fwww.opengis.net%2Ftestbed%2F12%2Fportrayal%2Fems%2Fs
tyle%23EMSIncidentStyle HTTP/1.1

Accept: application/hal+json

Host: localhost

Response structure

The response of the instance request can be retrieved in HAL+JSON, JSON-LD and Linked Data
formats. The JSON Structure of the reponse conforms to the Style JSON Schema. The Linked Data
formats conforms to the Style Ontology.

Links

The following table defines the link relation types accessible from a style instance that provide
transitions to other states related to the style instance.

Relation Description

self Refers to this resource itself

service Refers to the root of the portrayal service
portrayal:styles Refers to the style search endpoint
curies Refers to the curies defined for the links

Example HAL+JSON Format Response (Level 3 REST API)

The HAL+JSON response contains the description of the Style in JSON-LD (which can be converted
to Linked Data by applying the JSON-LD context of the service). In addition, it provides links to
other states that can be followed by clients following the semantic of the link relation types
described in the Style Link section.

HTTP/1.1 200 0K
Content-Type: application/hal+json
Content-Length: 1895

{

125

http://www.opengis.net/testbed/12/portrayal/ems/style#EMSIncidentStyle
http://www.opengis.net/testbed/12/portrayal/ems/style#EMSIncidentStyle

"id": "345319896b477721787382742cc04770",

"uri": "http://www.opengis.net/testbed/12/portrayal/ems/style#EMSIncidentStyle",
"type": "style:FeatureTypeStyle",

"title": "EMS Incident Type Style",

"description": "EMS Incident Type Style",

"created": "2016-11-18T03:18:12.661Z",

"modified": "2016-11-18T03:18:15.0247",

"featureType": "http://www.opengis.net/testbed11/ont/incident/ems#EMSIncident”,
"rules": [

"http://www.opengis.net/testbed/12/portrayal/ems/styleffems.incident.wind.strongWind-
portrayal-rule",

"http://www.opengis.net/testbed/12/portrayal/ems/styleffems.incident.geophysical.magnet
icStorm-portrayal-rule",

"http://www.opengis.net/testbed/12/portrayal/ems/styleffems.incident.crime.bombThreat-
portrayal-rule",

"http://www.opengis.net/testbed/12/portrayal/ems/styleffems.incident.hazardousMaterial.
biologicalHazard-portrayal-rule",
. truncated

"http://www.opengis.net/testbed/12/portrayal/ems/styleffems.incident.geophysical.earthg
uake-portrayal-rule",

"http://www.opengis.net/testbed/12/portrayal/ems/styleffems.incident.crime.bombExplosio
n-portrayal-rule"

1,
" Tinks": {
"self": {
"href": "http://localhost:8082/styles/345a19896b477721787a82742cc04770"
e
"portrayal:styles": {
"href": "http://localhost:8082/styles"
},
"service": {
"href": "http://localhost:8082"
I#
"curies": [{
"href": "http://www.opengis.net/rels/portrayal/{rel}",
"name": "portrayal",
"templated": true
}H
}

Example JSON(-LD) Format Response (Level 2 REST API)

The following HTTP request performs a GET Request to get an instance of a Style in JSON format.

126

HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: 1495

{
"id": "345319896b477721787a82742cc04770",

"uri": "http://www.opengis.net/testbed/12/portrayal/ems/style#EMSIncidentStyle",
"type": "style:FeatureTypeStyle",

"title": "EMS Incident Type Style",

"description": "EMS Incident Type Style",

"created": "2016-11-18T03:18:12.661Z",

"modified": "2016-11-18703:18:15.0247",

“featureType": "http://www.opengis.net/testbed11/ont/incident/ems#EMSIncident"”,
"rules": [

"http://www.opengis.net/testbed/12/portrayal/ems/styleffems.incident.wind.strongWind-
portrayal-rule",

"http://www.opengis.net/testbed/12/portrayal/ems/styleffems.incident.geophysical.magnet
icStorm-portrayal-rule",

"http://www.opengis.net/testbed/12/portrayal/ems/styleffems.incident.crime.bombThreat-
portrayal-rule",

"http://www.opengis.net/testbed/12/portrayal/ems/styleffems.incident.hazardousMaterial.
biologicalHazard-portrayal-rule"”,
. truncated

"http://www.opengis.net/testbed/12/portrayal/ems/styleffems.incident.geophysical.earthg
uake-portrayal-rule",

"http://www.opengis.net/testbed/12/portrayal/ems/styleffems.incident.crime.bombExplosio
n-portrayal-rule"

]
}

The JSON-(LD) response is identical to the HAL+JSON except it does not have the hyperlinks to other
states. The client will need to build the URL to reach other states (by reading documentation of API).

Example Turtle Format Response (Linked Data API)

The following HTTP request performs a GET Request to get an instance of a Style in Turtle format.

GET /styles/345a19896b477721787a82742cc@4770 HTTP/1.1
Accept: text/turtle
Host: localhost

The response returns a TTL document that can be processed and interpreted by machines using the

127

Style ontology.

HTTP/1.1 200 0K
Content-Type: text/turtle
Content-Length: 10395

@prefix dcterms: <http://purl.org/dc/terms/> .
@prefix style: <http://www.opengis.net/ont/portrayal/style#> .

<http://www.opengis.net/testbed/12/portrayal/ems/style#EMSIncidentStyle>
a style:FeatureTypeStyle ;
dcterms:created "2016-11-
18703:18:12.6612"AM<http://www.w3.0rg/2001/XMLSchema#dateTime> ;
dcterms:description "EMS Incident Type Style" ;

dcterms:modified "2016-11-
18703:18:15.0242"M<http://www.w3.0rg/2001/XMLSchemafdateTime> ;
dcterms:title "EMS Incident Type Style" ;

style:featureType
<http://www.opengis.net/testbed11/ont/incident/ems#EMSIncident> ;
style:hasRule

<http://www.opengis.net/testbed/12/portrayal/ems/styleffems.incident.wind.strongWind-
portrayal-rule> ,

<http://www.opengis.net/testbed/12/portrayal/ems/style#tems.incident.geophysical.magnet
icStorm-portrayal-rule> ,

<http://www.opengis.net/testbed/12/portrayal/ems/style#iems.incident.crime.bombThreat-
portrayal-rule> ,

. truncated.....

<http://www.opengis.net/testbed/12/portrayal/ems/styleftems.incident.crime.bombExplosio
n-portrayal-rule> .

B.12.4.3 Symbols

A Symbol defines a graphic representation of a feature. The Symbols resource is used to search
symbol instances based on some search criteria.

JSON Schema

The following defines the JSON schema for the Symbol derived from the Symbol Ontology defined
in Appendix A. The JSON-LD Context of the service can be used to convert the JSON document
compliant to this schema to the Linked Data Representation.

128

Path Type Description Cardinality

id String Internal identifier for 1
the symbol (which can
be used in Level 2 API)

uri String Linked Data URI for the 0..1
Symbol (equivalent to
@id in JSON-LD)

type String The type (class) of the 1
Symbol
(symbol:Symbol or
(future) subclasses).

title String The title of the symbol

titleMap Object The title map for each
language of the title .
Each key corresponds
to the two letter
language identifier
name (for example

(=
N

"en")

description String The description of the 0..1
item

descriptionMap Object The descriptionmap 0..1

for each language of
the description. Each
key corresponds to the
two letter language
identifier name (for
example "en")

created String The date of creation 1
(XSD datetime format)
(generated by the
service)

modified String The date of the last 0.1

modification (XSD
datetime format)
(generated by the
service)

symbolizers|] Array Array of symbolizers 1
used to render the
symbol. See ontology
for Symbolizer in
Appendix A

Search Symbols

The search of the Symbols is performed by performing a HTTP GET request on the Symbols resource.
The symbol search supports free text, by ids, by uris, CQL constraint and can return results with
aggregations on specific facets.

129

Query Parameters

The following query parameters are supported in the query:

Parameter Description Cardi
nality
q Text to search in textual fields 0..1
uri One or more URIs of Symbol instances 0.n
id One or more id of Symbol instances 0.n
includeFacet Boolean or list of facet names to include for aggregation computation. If the 0..1
value is true, include all facets supported by the server. If only a subset of
the facets are needed, a comma delimited of field names can be set.
facet.fieldna Constraint values of a given facet field name 0.n
me
constraint A constraint expressed in CQL. This is used to express more advanced 0..1
query filtering
fields One or more fields to be included in the response. Use JSON path dot 0.n
notation for referring paths
pageNumber The number of the current page as defined in Paging section 0..1
pageSize The count of items on the current page as defined in Paging section 0..1
sort The sorting parameters as defined in Sorting section. 0.n

Example request

The following performs a symbol search containing the keyword 'Rail'".

GET /symbols?q=Rail HTTP/1.1
Accept: application/hal+json
Host: localhost

Response structure

The response search is structured according to the Search Results Schema. The items of the results
conforms to the Symbol J[SON Schema. The collection name used in the _ embedded section of the
HAL response is called portrayal:items.

Links

The following link relation types are provided in the response to allow the transition to others
states from the symbol search results embedded in the response.

Relation Description

self Refers to this resource itself

service Refers to the root of the portrayal service
curies Refers to the curies defined for the links

130

Relation Description

first The first page of results
last The last page of results

next The next page of results
prev The previous page of results

Example HAL+JSON Response

The embedded objects in the response of the request conforms to the Symbol JSON Schema. The
collection name used in the _ embedded section of the HAL response is called portrayal:items. The
rest of the response returns paging information and links to other states.

HTTP/1.1 200 OK
Content-Type: application/hal+json
Content-Length: 2707

{
" embedded": {
"portrayal:items": [{
"id": "41f4b3ed5976016d071cf30498bf6358",
“uri":
"http://www.opengis.net/testbed/12/hswg/symbols#RailHijackingSymbol",
"type": "symbol:Symbol",
"title": "Rail Hijacking",
"created": "2016-11-17T15:41:35.4362",
"modified": "2016-11-17T715:41:35.951Z",
" Tinks": {
"self": {
"href":
"http://localhost:8082/symbols/41f4b3ed5976016d071cf30498bf6358"
}
by
b A
"id": "d6c8d924a629514d322bb25f56318948",
“urit:
"http://www.opengis.net/testbed/12/hswg/symbols#RailAccidentSymbol",
"type": "symbol:Symbol",
"title": "Rail Accident",
"created": "2016-11-17715:42:18.602Z2",
"modified": "2016-11-17715:42:18.7177",
" Tinks": {
"self": {
"href":
"http://localhost:8082/symbols/d6c8d924a629514d322bb25f56318948"
}
¥
oA
"id": "d6792c5cb@0@daa3b9e2c161846cc7efd",

uri .

131

"http://www.opengis.net/testbed/12/hswg/symbols#RailIncidentSymbol",
"type": "symbol:Symbol",
"title": "Rail Incident",
"created": "2016-11-17715:42:11.281Z2",
"modified": "2016-11-17715:42:11.712Z",
" Tinks": {
"self": {
"href":
"http://localhost:8082/symbols/d6792c5cb00daa3b9e2c161846cc7ef4”
}
}
}H
b
"_links": {
"self": {
"href": "http://localhost:8082/symbols?q=Rail"
I
"service": {
"href": "http://localhost:8082"
b
"curies": [{
"href": "http://www.opengis.net/rels/portrayal/{rel}",
"name": "portrayal",
"templated": true
}
b
"aggregations": [],
"page": {
"size": 20,
"totalElements": 3,
"totalPages": 1,
"number": 0

Example JSON Response

The result objects in the response of the request conforms to the Symbol JSON Schema. The rest of
the response returns paging information.

132

HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: 1007

{

"results": [{
"id": "41f4b3ed5976016d071cf30498bf6358",
"uri": "http://www.opengis.net/testbed/12/hswg/symbols#RailHijackingSymbol",
"type": "symbol:Symbol",
"title": "Rail Hijacking",
"created": "2016-11-17T15:41:35.4367",
"modified": "2016-11-17715:41:35.9512"

oA
"id": "d6c8d924a629514d322bb25f56318948",
"uri": "http://www.opengis.net/testbed/12/hswg/symbols#RailAccidentSymbol",
"type": "symbol:Symbol",
"title": "Rail Accident",
"created": "2016-11-17T15:42:18.6027",
"modified": "2016-11-17715:42:18.7172"

oA
"id": "d6792c5cb@0@daa3b9e2c161846cc7efd"”,
"uri": "http://www.opengis.net/testbed/12/hswg/symbols#RaillncidentSymbol",
"type": "symbol:Symbol",
"title": "Rail Incident",
"created": "2016-11-17T15:42:11.281Z2",
"modified": "2016-11-17715:42:11.7122"

H,

"page": {
"size": 20,
"number": 0,
"totalElements": 3

B.12.4.4 Symbol

The Symbol resource is used to retrieve a Symbol instance.

Retrieve a Symbol

To retrieve a particular instance of Symbol, a HTTP GET request will get the details of a Symbol.
There are two ways to retrieve a instance of a schema, using an internal id in the path or by using
its Linked Data URL (using uri as query parameter).

Query Parameters

133

Parameter Description Cardinality

uri URI of the symbol if the 0..1
instance needs to be retrieved
by URI. URI should be encoded
to escape special characters.

Example request

The following HTTP request performs a GET Request to get an instance of a symbol identified by its
internal id 06aab0337e96ea6e2535a2620b8e9a90

GET /symbols/06aab0337e96eabe2535a32620b8e9a90 HTTP/1.1
Accept: application/hal+json
Host: localhost

The following query gets the instance identified by the URI http:/www.opengis.net/testbed/12/ems/
symbols#ems.incident.wind-symbol

GET
/symbols/instance?uri=http%3A%2F%2Fwww.opengis.net%2Ftestbed%2F12%2Fems%2Fsymbols%23em
s.incident.wind-symbol HTTP/1.1

Accept: application/hal+json

Host: localhost

Response structure

The response of the instance request can be retrieved in HAL+JSON, JSON-LD and Linked Data
formats. The JSON Structure of the reponse conforms to the Symbol JSON Schema. The Linked Data
formats conform to the Symbol Ontology.

Links

The following table defines the link relation types accessible from a symbol instance that provide
transitions to other states related to the symbol instance.

Relation Description

self Refers to this resource itself

service Refers to the root of the portrayal service
portrayal:symbols Refers to the symbols search endpoint
portrayal:renderer Refers to the renderer of the symbol.
curies Refers to the curies defined for the links

Example HAL+JSON Format Response (Level 3 REST API)

The HAL+JSON response contains the description of the Symbol in JSON-LD (which can be
converted to Linked Data by applying the JSON-LD context of the service). In addition, it provides

134

http://www.opengis.net/testbed/12/ems/symbols#ems.incident.wind-symbol
http://www.opengis.net/testbed/12/ems/symbols#ems.incident.wind-symbol

links to other states that can be followed by clients following the semantic of the link relation types
described in the Symbol Link section.

HTTP/1.1 200 OK
Content-Type: application/hal+json
Content-Length: 1895

{
"id": "06aab0337e96eabe2535a2620b8e9390",
"uri": "http://www.opengis.net/testbed/12/ems/symbols#ems.incident.wind-symbol",
"type": "symbol:Symbol",
"register": [
"portrayal”
1.
"title": "wind",
"created": "2016-11-17715:39:40.261Z2",
"modified": "2016-11-17715:39:40.711Z",
"symbolName": "ems.incident.wind",
"specification": "https://cms.masas-x.ca.s3.amazonaws.com/EMS_Symbology_v1.0.pdf",
"symbolSet": "http://www.opengis.net/testbed/12/ems/symbols#EMSSymbolSet",
"browseGraphic": {
"type": "graphic:ExternalGraphic",
"uri": "http://ows.usersmarts.com/ems/icons/tier1/Base/ems.incident.wind.png",
"title": "ems.incident.wind icon",
"description": "icon for ems.incident.wind",
"onlineResource":
"http://ows.usersmarts.com/ems/icons/tier1/Base/ems.incident.wind.png",
"format": "image/png"
)
"symbolizers": [{
"uri": "http://www.opengis.net/testbed/12/ems/symbols#ems.incident.wind-
pointSymbolizer",
"type": "symbolizer:PointSymbolizer",
"title": "PointSymbolizer for wind symbol",
"graphicSymbol": {
"type": "graphic:GraphicSymbol",
"externalGraphic": {
"type": "graphic:ExternalGraphic",
“uri":
"http://ows.usersmarts.com/ems/icons/tier1/Base/ems.incident.wind.png",
"title": "ems.incident.wind icon",
"description": "icon for ems.incident.wind",
"onlineResource":
"http://ows.usersmarts.com/ems/icons/tier1/Base/ems.incident.wind.png",
"format": "image/png"
}
}
iy
"denotes": [
"http://www.opengis.net/taxonomy/ems#ems.incident.wind"

135

1,
"_links": {
"self": {
"href": "http://localhost:8082/symbols/@6aab0337e96eabe2535a2620b8e9a90"
}

"portrayal:render": {
"href":
"http://1localhost:8082/symbols/06aab0337e96eabe253532620b8e9a90/render”
Jis
"portrayal:symbols": {

"href": "http://localhost:8082/symbols"

},
"service": {
"href": "http://localhost:8082"
I#
"curies": [{
"href": "http://www.opengis.net/rels/portrayal/{rel}",
"name": "portrayal",
"templated": true
}H

Example JSON(-LD) Format Response (Level 2 REST API)

The following HTTP request performs a GET Request to get an instance of a Symbol in JSON format.

136

HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: 1495

{

"id": "06aab0337e96eabe253532620b8e9a90",
"uri": "http://www.opengis.net/testbed/12/ems/symbols#ems.incident.wind-symbol",
"type": "symbol:Symbol",
"register": [
"portrayal”
]I
"title": "wind",
"created": "2016-11-17T15:39:40.261Z2",
"modified": "2016-11-17T715:39:40.7117",
"symbolName": "ems.incident.wind",

"specification": "https://cms.masas-x.ca.s3.amazonaws.com/EMS_Symbology_v1.0.pdf",

"symbolSet": "http://www.opengis.net/testbed/12/ems/symbols#EMSSymbolSet",
"browseGraphic": {
"type": "graphic:ExternalGraphic",

"uri": "http://ows.usersmarts.com/ems/icons/tier1/Base/ems.incident.wind.png",

"title": "ems.incident.wind icon",

n . J n ne . . . n
description”: "icon for ems.incident.wind",
"onlineResource":

"http://ows.usersmarts.com/ems/icons/tier1/Base/ems.incident.wind.png",

"format": "image/png"
b
"symbolizers": [{
"uri": "http://www.opengis.net/testbed/12/ems/symbols#ems.incident.wind-

pointSymbolizer",

"type": "symbolizer:PointSymbolizer",
"title": "PointSymbolizer for wind symbol",
"graphicSymbol": {
"type": "graphic:GraphicSymbol",
"externalGraphic": {
"type": "graphic:ExternalGraphic",
"uri":

"http://ows.usersmarts.com/ems/icons/tier1/Base/ems.incident.wind.png",

"title": "ems.incident.wind icon",
"description": "icon for ems.incident.wind",
"onlineResource":

"http://ows.usersmarts.com/ems/icons/tier1/Base/ems.incident.wind.png",

"format": "image/png"
¥
}
H,
"denotes": [
"http://www.opengis.net/taxonomy/ems#ems.incident.wind"

]

137

The JSON-(LD) response is identical to the HAL+JSON except it does not have the hyperlinks to other
states. The client will need to build the URL to reach other states (by reading documentation of API).

Example Turtle Format Response (Linked Data API)

The following HTTP request performs a GET Request to get an instance of a Symbol in Turtle
format.

GET /symbols/@6aab@337e96eabe2535a2620b8e9a%@ HTTP/1.1
Accept: text/turtle
Host: localhost

The response returns a TTL document that can be processed and interpreted by machines using the
Portrayal ontology.

138

HTTP/1.1 200 0K
Content-Type: text/turtle
Content-Length: 1395

@prefix symbol: <http://www.opengis.net/ont/portrayal/symbol#> .
@prefix dcterms: <http://purl.org/dc/terms/> .

<http://www.opengis.net/testbed/12/ems/symbols#ems.incident.wind-symbol>

a symbol:Symbol ;

dcterms:title "wind" ;

symbol:browseGraphic
<http://ows.usersmarts.com/ems/icons/tier1/Base/ems.incident.wind.png> ;

symbol:specification <https://cms.masas-
X.ca.s3.amazonaws.com/EMS_Symbology_v1.0.pdf> ;

symbol:symbolName "ems.incident.wind" ;

symbol:symbolSet
<http://www.opengis.net/testbed/12/ems/symbols#EMSSymbolSet> ;

<http://www.opengis.net/ont/portrayal/symbolizer#symbolizer>

<http://www.opengis.net/testbed/12/ems/symbols#tems.incident.wind-

pointSymbolizer> .

<http://ows.usersmarts.com/ems/icons/tier1/Base/ems.incident.wind.png>
a
<http://www.opengis.net/ont/portrayal/graphic#ExternalGraphic> ;
dcterms:description "icon for ems.incident.wind" ;
dcterms:title "ems.incident.wind icon" ;
<http://www.opengis.net/ont/portrayal/graphic#format>
"image/png" ;
<http://www.opengis.net/ont/portrayal/graphic#fonlineResource>
"http://ows.usersmarts.com/ems/icons/tier1/Base/ems.incident.wind.png"

<http://www.opengis.net/testbed/12/ems/symbols#ems.incident.wind-pointSymbolizer>
a
<http://www.opengis.net/ont/portrayal/symbolizer#PointSymbolizer> ;
dcterms:title "PointSymbolizer for wind symbol" ;
<http://www.opengis.net/ont/portrayal/graphic#graphicSymbol>
[a <http://www.opengis.net/ont/portrayal/graphic#GraphicSymbol>

<http://www.opengis.net/ont/portrayal/graphic#externalGraphic>
<http://ows.usersmarts.com/ems/icons/tier1/Base/ems.incident.wind.png>

I

B.12.4.5 SymbolSets

A SymbolSet defines a set of Symbols. The SymbolSets resource is used to search SymbolSet
instances based on some search criteria.

139

JSON Schema

The following defines the JSON schema for the SymbolSet derived from the Symbol Ontology
defined in Appendix A. It can also be derived from the JSON-LD Context

Path Type Description Card.
id String Internal identifier for 1
the SymbolSet (which
can be used in Level 2
API)
uri String Linked Data URI for the 0..1
SymbolSet (equivalent
to @id in JSON-LD)
type String The type (class) of the 1
SymbolSet
(symbol:SymbolSet).
title String The title of the symbol 1
titleMap Object The title map for each 0..1

language of the title .
Each key corresponds
to the two letter
language identifier
name (for example

"en")

description String The description of the 0..1
item

descriptionMap Object The descriptionmap 0..1

for each language of
the description. Each
key corresponds to the
two letter language
identifier name (for
example "en")

created String The date of creation 1
(XSD datetime format)
(generated by the
service)

modified String The date of the last 0.1

modification (XSD
datetime format)
(generated by the
service)

specification URL The reference to a 0.1
specification document

symbols[] Array Array of symbols URIs. 0..1

140

Search SymbolSets

The search of the SymbolSets is performed by performing a HTTP GET request on the SymbolSets
resource. The symbolSet search supports free text, by ids, by uris, CQL constraint and can return
results with aggregations on specific facets.

Query Parameters

The following query parameters are supported in the query:

Parameter Description Cardi
nality

q Text to search in textual fields 0.1

uri One or more URIs of Symbol instances 0.n

id One or more id of Symbol instances 0.n

includeFacet Boolean or list of facet names to include for aggregation computation. If the 0..1
value is true, include all facets supported by the server. If only a subset of
the facets are needed, a comma delimited of field names can be set.

facet.fieldna Constraint values of a given facet field name 0.n

me

constraint A constraint expressed in CQL. This is used to express more advanced 0..1
query filtering

fields One or more fields to be included in the response. Use JSON path dot 0.n
notation for referring paths

pageNumber The number of the current page as defined in Paging section 0.1

pageSize The count of items on the current page as defined in Paging section 0..1

sort The sorting parameters as defined in Sorting section. 0.n

Example request
The following performs a symbolSet search containing the keyword 'Rail'.
GET /symbolsets HTTP/1.1

Accept: application/hal+json
Host: localhost

Response structure

The response search is structured according the Search Results Schema. The items of the results
conform to the SymbolSet JSON Schema. The collection name used in the _ embedded section of the
HAL response is called portrayal:items.

Links

The following link relation types are provided in the response to allow the transition to others
states from the symbolSet search results embedded in the response.

141

Relation Description

self Refers to this resource itself

service Refers to the root of the portrayal service
curies Refers to the curies defined for the links
first The first page of results

last The last page of results

next The next page of results

prev The previous page of results

Example HAL+JSON Response

The embedded objects in the response of the request conforms to the SymbolSet JSON Schema. The
collection name used in the _ embedded section of the HAL response is called portrayal:items. The
rest of the response returns paging information and links to other states.

HTTP/1.1 200 OK
Content-Type: application/hal+json
Content-Length: 2707

{
" embedded": {

"portrayal:items": [{
"id": "4cabf46007df9b652151927033e265c6",
"uri": "http://www.opengis.net/testbed/12/ems/symbols#EMSSymbolSet",
"type": "symbol:SymbolSet",
"description”: "Standard Canadian Emergency Mapping Symbology (EMS)
SymbolSet version 1.0",
"created": "2016-11-17715:38:35.856Z2",
"modified": "2016-11-17715:38:36.4577",
" links": {
"self": {
"href":
"http://localhost:8082/symbolsets/4cabf46007df9b652151927033e265c6"
}
}
b A
"id": "bf83c8b6f4033ffd4c93a2bel4ebed76",
"uri": "http://www.opengis.net/testbed/12/hswg/symbols#HSWGSymbolSet",
"type": "symbol:SymbolSet",
"description”: "Home Security Working Group (HSWG) SymbolSet version 1.0",
"created": "2016-11-17715:38:37.3572",
"modified": "2016-11-17715:38:37.786Z",
" Tinks": {
"self": {
"href":
"http://localhost:8082/symbolsets/bf83c8b6f4033ffd4c93a2bel4ebed76"
}
}

142

}

I
" Tinks": {
"self": {
"href": "http://localhost:8082/symbolsets"”
Iy
"service": {
"href": "http://localhost:8082"
Jis
"curies": [{
"href": "http://www.opengis.net/rels/portrayal/{rel}",
"name": "portrayal",
"templated": true
}H
lis
"aggregations": [],
"page": {
"size": 20,
"totalElements": 2,
"totalPages": 1,
"number": 0
}
}
Example JSON Response

The result objects in the response of the request conforms to the SymbolSet JSON Schema. The rest
of the response returns paging information.

143

HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: 850

{

"results": [{
"id": "4cabf46007df9b652151927033e265¢c6",
"uri": "http://www.opengis.net/testbed/12/ems/symbols#EMSSymbolSet",
"type": "symbol:SymbolSet",
"description": "Standard Canadian Emergency Mapping Symbology (EMS) SymbolSet

version 1.0",

"created": "2016-11-17723:13:47.1421",
"modified": "2016-11-17723:13:48.5347"
fi
"id": "bf83c8b6f4033ffd4c93a2beldebed76",
"uri": "http://www.opengis.net/testbed/12/hswg/symbols#HSWGSymbolSet",
"type": "symbol:SymbolSet",
"description": "Home Security Working Group (HSWG) SymbolSet version 1.0",
"created": "2016-11-17723:13:50.3547",
"modified": "2016-11-17723:13:50.9227"

H,

"page": {
"size": 20,
"number": 0,
"totalElements": 2

}

}
B.12.4.6 SymbolSet

The SymbolSet resource is used to retrieve a SymbolSet instance.

Retrieve a SymbolSet

To retrieve a particular instance of SymbolSet, a HTTP GET request will get the details of a
SymbolSet. They are two ways to retrieve an instance of a SymbolSet, using an internal id in the
path or by using its Linked Data URL (using uri as query parameter).

Query Parameters

Parameter Description Cardinality

uri

URI of the symbol if the 0..1
instance needs to be retrieved

by URI. URI should be encoded

to escape special characters.

Example request

The following HTTP request performs a GET Request to get an instance of a symbol identified by its

144

internal id 4cabf46007df9b652151927033e265¢c6

GET /symbolsets/4cabf46007df9b652151927033e265c6 HTTP/1.1
Accept: application/hal+json
Host: localhost

The following query gets the instance identified by the URI htip://www.opengis.net/testbed/12/ems/
symbols#EMSSymbolSet

GET
/symbolsets/instance?uri=http%3A%2F%2Fwww.opengis.net%2Ftestbed%2F12%2Fems%2Fsymbols%2
3EMSSymbo1Set HTTP/1.1

Accept: application/hal+json

Host: localhost

Response structure

The response of the instance request can be retrieved in HAL+JSON, JSON-LD and Linked Data
formats. The JSON Structure of the response conforms to the SymbolSet JSON Schema. The Linked
Data formats conforms to the Symbol Ontology.

Links

The following table defines the link relation types accessible from a symbolSet instance that
provide transitions to other states related to the symbolSet instance.

Relation Description

self Refers to this resource itself

service Refers to the root of the portrayal service
portrayal:symbolSets Refers to the symbols search endpoint
curies Refers to the curies defined for the links

Example HAL+JSON Format Response (Level 3 REST API)

The HAL+JSON response contains the description of the SymbolSet in JSON-LD (which can be
converted to Linked Data by applying the JSON-LD context of the service). In addition, it provides
links to other states that can be followed by clients following the semantic of the link relation types
described in the SymbolSet Link section.

HTTP/1.1 200 OK
Content-Type: application/hal+json
Content-Length: 1895

{

"id": "4cabf46007df9b652151927033e265¢c6",
"uri": "http://www.opengis.net/testbed/12/ems/symbols#EMSSymbolSet",

145

http://www.opengis.net/testbed/12/ems/symbols#EMSSymbolSet
http://www.opengis.net/testbed/12/ems/symbols#EMSSymbolSet

"type": "symbol:SymbolSet",
"register": [
"portrayal”
1.
"description”: "Standard Canadian Emergency Mapping Symbology (EMS) SymbolSet
version 1.0",
"created": "2016-11-17715:38:35.856Z",
"modified": "2016-11-17T15:38:36.4577",
"specification": "https://cms.masas-x.ca.s3.amazonaws.com/EMS_Symbology_v1.0.pdf",
"symbols": [
"http://www.opengis.net/testbed/12/ems/symbols#ems.incident.temperature-
symbol",

"http://www.opengis.net/testbed/12/ems/symbols#ems.incident.railway.railwayAccident-
symbol",

"http://www.opengis.net/testbed/12/ems/symbols#ems.incident.crime.industrialCrime-
symbol",

"http://www.opengis.net/testbed/12/ems/symbols#ems.incident.hazardousMaterial.infectio
usDisease-symbol",

"http://www.opengis.net/testbed/12/ems/symbols#ems.incident.wind.hurricaneForceWind-
symbol",

"http://www.opengis.net/testbed/12/ems/symbols#ems.incident.missingPerson.silver-
symbol",

"http://www.opengis.net/testbed/12/ems/symbols#ems.incident.hazardousMaterial.poisonou
sGas-symbol",

"http://www.opengis.net/testbed/12/ems/symbols#ems.incident.meteorological.hurricane-
symbol",
.... (truncated)
"http://www.opengis.net/testbed/12/ems/symbols#ems.incident.crime.retailCrime-
symbol",

"http://www.opengis.net/testbed/12/ems/symbols#ems.incident.animalHealth.animalDie0ff-
symbol"
]I
" links": {
"self": {
"href":
"http://localhost:8082/symbolsets/4cabf46007df9b652151927033e265¢6"
}I
"portrayal:symbolSets": {
"href": "http://localhost:8082/symbolsets"”

},
"service": {

"href": "http://localhost:8082"
I#

146

"curies": [{
"href": "http://www.opengis.net/rels/portrayal/{rel}",
"name": "portrayal",
"templated": true

}H

Example JSON(-LD) Format Response (Level 2 REST API)

The following HTTP request performs a GET Request to get an instance of a Symbol in JSON format.

147

HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: 1495

{
"id": "4cabf46007df9b652151927033e265¢c6",
"uri": "http://www.opengis.net/testbed/12/ems/symbols#EMSSymbolSet",
“type": "symbol:SymbolSet",
"register": [
"portrayal”
1,
"description": "Standard Canadian Emergency Mapping Symbology (EMS) SymbolSet
version 1.0",
"created": "2016-11-17715:38:35.8567",
"modified": "2016-11-17715:38:36.457Z",
"specification": "https://cms.masas-x.ca.s3.amazonaws.com/EMS_Symbology_v1.0.pdf",
"symbols": [
"http://www.opengis.net/testbed/12/ems/symbols#ems.incident.temperature-
symbol",

"http://www.opengis.net/testbed/12/ems/symbols#ems.incident.railway.railwayAccident-
symbol",

"http://www.opengis.net/testbed/12/ems/symbols#ems.incident.crime.industrialCrime-
symbol",

"http://www.opengis.net/testbed/12/ems/symbols#ems.incident.hazardousMaterial.infectio
usDisease-symbol",

"http://www.opengis.net/testbed/12/ems/symbols#ems.incident.wind.hurricaneForceWind-
symbol",

"http://www.opengis.net/testbed/12/ems/symbols#ems.incident.missingPerson.silver-
symbol",

"http://www.opengis.net/testbed/12/ems/symbols#ems.incident.hazardousMaterial.poisonou
sGas-symbol",

"http://www.opengis.net/testbed/12/ems/symbols#ems.incident.meteorological.hurricane-
symbol",
.... (truncated)
"http://www.opengis.net/testbed/12/ems/symbols#ems.incident.crime.retailCrime-
symbol",

"http://www.opengis.net/testbed/12/ems/symbols#ems.incident.animalHealth.animalDieOff-

symbol"

]
}

The JSON-(LD) response is identical to the HAL+JSON except it does not have the hyperlinks to other

148

states. The client will need to build the URL to reach other states (by reading documentation of API).

Example Turtle Format Response (Linked Data API)

The following HTTP request performs a GET Request to get an instance of a SymbolSet in Turtle
format.

GET /symbolsets/4cabf46007df9b652151927033e265c6 HTTP/1.1
Accept: text/turtle
Host: localhost

The response returns a TTL document that can be processed and interpreted by machines using the
Portrayal ontology.

HTTP/1.1 200 0K
Content-Type: text/turtle
Content-Length: 1395

<http://www.opengis.net/testbed/12/ems/symbols#EMSSymbolSet>
a <http://www.opengis.net/ont/portrayal/symbol#SymbolSet> ;
<http://purl.org/dc/terms/description>
"Standard Canadian Emergency Mapping Symbology (EMS) SymbolSet version
1.0" ;
<http://www.opengis.net/ont/portrayal/symbol#specification>
"https://cms.masas-x.ca.s3.amazonaws.com/EMS_Symbology_v1.0.pdf" ;
<http://www.opengis.net/ont/portrayal/symbol#symbol>

<http://www.opengis.net/testbed/12/ems/symbols#ems.incident.temperature-symbol> ,
<http://www.opengis.net/testbed/12/ems/symbols#fems.incident.railway.railwayAccident-
symbol> ,
<http://www.opengis.net/testbed/12/ems/symbols#ems.incident.crime.industrialCrime-
symbol>,

. truncated ...

<http://www.opengis.net/testbed/12/ems/symbols#ems.incident.crime.retailCrime-symbol>
<http://www.opengis.net/testbed/12/ems/symbols#ems.incident.animalHealth.animalDieOff-

symbol> .

B.12.4.7 Render a Layer

To render a particular dataset located at a URL, a HTTP GET request can be performed on the
renderer endpoint. The endpoint provides the ability to customize the style and size of the map
layer image provided in the response.

Render GET Request Query Parameters

149

Parameter Type Description Cardinality

id String Identifier of the layer 0..1
managed by the service
(optional if part of

path)

url String URL to access source 0..1
geospatial data

bbox String Bounding box of 1

geospatial dagiventa to
render in the given CRS

style String Identifier of the style to 0..1
render with (id). If this
parameter is present,
the symbolizer and
propertyName fields
must not be.

symbolizer String Comma-separated list 0..1
of symbolizer
identifiers. If this
parameter is present
the style parameter
must not be present.

propertyName String Comma-separated list 0..1
of propertyNames in
the format
{namespace}name (or
simply name). If this
parameter is present,
the symbolizer
parameter must also be
present (and of the
same list length) and
the style parameter
must not be present.

Ccrs String Target Coordinate 0..1
Reference System
(default is CRS:84)

width integer Width in pixels of the 0..1
rendered map layer

height integer Height in pixels of the 0..1
rendered map layer

Example GET Request

The following gets a GeoJSON file from a URL and renders it to a map layer using a style stored in
the portrayal service.

150

GET
/renderer?url=https://raw.githubusercontent.com/johan/world.geo.json/master/countries.
geo.json&sourceType=geojson&featureType=featureType&namespace&style=4decb2fa8cf327de8c
6cbe6806d653f0&bbox=-180,-90,180,90&crs=CRS:84&width=600 HTTP/1.1

Accept: 1image/png

Host: localhost

Example Response

The service responds with a PNG image depicting the desired featureType in the requested style.

Alternatively, a HTTP POST request can be performed on the layer renderer endpoint.

If a dataset from a URL is to be used, the body of the POST should be a JSON payload of type Layer
(as defined in Appendix A). If a dataset from an attached file is to be used, the body of the POST
should contain both a JSON Layer and the attached file.

Render POST Request Parameters

Parameter Type Description Cardinality

request Layer The user-defined Layer 1
description (see Layer
model in Appendix A)

file File File containing 0..1
geospatial data in a
format supported by
the renderer

B.12.4.8 Symbol Renderer

The Symbol Renderer resource is used to render a symbol into a graphic representation such as
SVG, PNG, TIFF, JPEG using its symbolizer definitions. This endpoint provides the ability to render

151

the symbol into different formats and size.

Render a Symbol

To render a particular instance of Symbol, a HTTP GET request is performed on the symbol renderer
endpoint. The request should accept one of the supported graphic formats advertised in the
capabilities by the service. The endpoint provides the ability to customize the size of the graphic
returned in the response.

Query Parameters

Parameter Type Description Cardinality
id String Identifier of the symbol 0..1
(optional if symbol id
part the REST path)
uri String URI of the symbol (only 0..1

for generic renderer
endpoint). URL can be
retrieved remotely if
not resolved locally
(using Linked data
representation)

width integer Width in pixel of the 0..1
rendered symbol

height integer Height in pixel of the 0..1
rendered symbol

Response Structure

The Response of the render action is according to the mime format accepted by the renderer, which
is defined in the capabilities resource.

Examples

The following example requests the renderer to render the symbol Wind Incident to a PNG image
of size 512x 512, using the renderer endpoint of the symbol

GET /symbols/06aab@337e96eabe2535a2620b8e9a90/render?width=512&height=512 HTTP/1.1
Accept: image/png
Host: localhost

An alternative way to get the rendering of the symbol is by using the generic symbol renderer by
providing its id or uri.

GET /renderer/symbols?id=06aab@337e96eabe2535a2620b8e9a90&width=512&height=512
HTTP/1.1
Accept: image/png

152

The image produces is the following:

B.12.4.9 Symbolizer Renderer

The Symbolizer Renderer resource is used to render a symbolizer into a graphic representation
such as SVG, PNG, TIFF, JPEG using its symbolizer definitions. This endpoint provides the ability to
render the symbolizer into different formats and size that can be used for preview of symbolizer or
generate legend items for styles.

Render a Symbolizer

To render a particular instance of Symbolizer, a HTTP GET request is performed on the symbolizer
renderer endpoint. The request should accept one of the supported graphic formats advertised in
the capabilities by the service. The endpoint provides the ability to customize the size of the graphic
returned in the response.

Query Parameters

Parameter Type Description Cardinality
id String Identifier of the 0..1
symbolizer (optional if
symbol id part the REST
path)

153

Parameter Type Description Cardinality

uri String URI of the symbolizer 0..1
(only for generic
renderer endpoint).
URL can be retrieved
remotely if not resolved
locally (using Linked
data representation)

width integer Width in pixel of the 0.1
rendered symbolizer

height integer Height in pixel of the 0..1
rendered symbolizer

Response Structure

The Response of the render action is according to the mime format accepted by the renderer, which
is defined in the capabilities resource.

Examples

The following example requests the renderer to render the symbol Wind Incident to a PNG image
of size 512x 512, using the renderer endpoint of the symbol

GET /symbolizer/dsds96deabdd35a2620b8e9a9@/render?width=512&height=512 HTTP/1.1
Accept: image/png
Host: localhost

An alternative way to get the rendering of the symbolizer is by using the generic symbol renderer
by providing its id or uri.

GET /renderer/symbolizer?id=dsds96deabdd35a2620b8e9a90&width=512&height=512 HTTP/1.1
Accept: image/png

Custom symbolizer rendering can also possibly be achieved by POSTing a Symbolizer specification
to the generic symbolizer renderer endpoint. However this aspect was not tested during the
testbed. Custom symbolizer were posted to the item endpoint to generate a unique id and this id
was used by the renderer to generate its representation.

Render a Map

To render a Map composed of layers managed by the server, the GetMap operation parameters of
WMS was adopted. The layer identifiers used by the API corresponds to the layerName property
associated with the Layer object. The STYLE parameter was used to reference a Style, or a list of
symbolizers or symbols. For more details about this operation, refer to the OGC Web Map Service
specification.

154

B.12.4.10 SPARQL Service

The Semantic Portrayal Service provides a SPARQL service endpoint, which implements the
SPARQL Protocol [https://www.w3.org/TR/spargl11-protocol], that can accept a SPARQL query on portrayal
managed by the service. Both HTTP GET and HTTP POST are supported. This endpoint was not
tested during the testbed.

Query Parameters
HTTP Query String Request Content Type Request Message Body
Method Parameters
query via GET GET query None None
(exactly 1)

query via URL-encoded POST None application/X-www- » URL-encoded,

POST form-urlencoded ampersand-
separated query
parameters.

* query (exactly 1)
query via POST directly POST None application/sparql- Unencoded SPARQL

query query string

Example Request

The following is an example of a SPARQL query to fetch symbol instances URI and symbol names
that belongs to the SymbolSet identified with the URI http:/www.opengis.net/testbed/12/ems/
symbols#EMSSymbolSet

PREFIX symbol:<http://www.opengis.net/ont/portrayal/symbol#>
SELECT ?symbol ?symbolName WHERE {
?symbol a symbol:Symbol;
symbol:symbolName ?symbolName;
symbol:symbolSet
<http://www.opengis.net/testbed/12/ems/symbols#EMSSymbolSet>.

}
LIMIT 10

The request can be done using a HTTP Get request

155

https://www.w3.org/TR/sparql11-protocol
http://www.opengis.net/testbed/12/ems/symbols#EMSSymbolSet
http://www.opengis.net/testbed/12/ems/symbols#EMSSymbolSet

GET
/sparql?query=PREFIX%20symbo1%3A%3Chttp%3A%2F%2Fwww.opengis.net%2Font%2Fportrayal%2Fsy
mbo1%23%3E%0ASELECT%20%3Fsymbo1%20%20%3FsymbolName%20WHERE%20%7B%0A%20%20%3F symbo1%20a
%20symbo1%3ASymbo1%3B%0A%20%20%20%20%20%20%20%20%20%20symbo1%3Asymbo1Name%20%3FsymbolN
ame%3B%0A%20%20%20%20%20%20%20%20%20%20symbo1%3Asymbo1Set%20%3Cht tp%3A%2F%2Fwww.opengi
s.net%2Ftestbed%2F12%2Fems%2Fsymbols%23EMSSymbo1Set%3E . %0A%70%20%0ALIMIT%2010 HTTP/1.1
Accept: application/sparql-results+json

Host: localhost

Response Structure

The SPARQL response conforms to the SPARQL specification. The SPARQL Protocol uses the
response status codes defined in HTTP to indicate the success or failure of an operation.

The response body of a successful query operation with a 2XX response is either:

* A SPARQL Results Document in XML, JSON, or CSV/TSV format (for SPARQL Query forms SELECT
and ASK); or,

* A RDF graph serialized, in the RDF/XML syntax or an equivalent RDF graph serialization (for
SPARQL Query forms DESCRIBE and CONSTRUCT). The content type of the response to a
successful query operation must be the media type defined for the format of the response body.

Example response

The following example shows a SPARQL query response
HTTP/1.1 200 OK

Content-Type: application/sparql-results+json
Content-Length: 2352

{
"head": {
"vars": ["symbol" , "symbolName"]
}
"results": {
"bindings": [
{

"symbol": { "type": "uri" , "value":
"http://www.opengis.net/testbed/12/ems/symbols#ems.incident.airQuality-symbol" } ,
"symbolName": { "type": "literal" , "value": "ems.incident.airQuality" }
}
{
"symbol": { "type": "uri" , "value":
"http://www.opengis.net/testbed/12/ems/symbols#ems.incident.animalHealth-symbol" } ,
"symbolName": { "type": "literal" , "value": "ems.incident.animalHealth" }
}
{
"symbol": { "type": "uri" , "value":
"http://www.opengis.net/testbed/12/ems/symbols#ems.incident.animalHealth.animalDie0ff-
symbol" } ,

156

"symbolName": { "type": "literal" , "value":

"ems.incident.animalHealth.animalDieOff" }
Y
{

"symbol": { "type": "uri" , "value":

"http://www.opengis.net/testbed/12/ems/symbols#ems.incident.animalHealth.animalFeed-

symbol" } ,

"symbolName": { "type": "literal" , "value":

"ems.incident.animalHealth.animalFeed" }
Y
{

"symbol": { "type": "uri" , "value":

"http://www.opengis.net/testbed/12/ems/symbols#ems.incident.aviation-symbol" } ,
"symbolName": { "type": "literal" , "value": "ems.incident.aviation" }

} I
{

"symbol": { "type": "uri" , "value":

"http://www.opengis.net/testbed/12/ems/symbols#ems.incident.

symbol" } ,

"symbolName": { "type": "literal" , "value":

"ems.incident.aviation.aircraftCrash" }
Y
{

"symbol": { "type": "uri" , "value":

"http://www.opengis.net/testbed/12/ems/symbols#ems.incident.

-symbol" } ,

"symbolName": { "type": "literal" , "value":

"ems.incident.aviation.aircraftHijacking" }
}o
{

"symbol": { "type": "uri" , "value":

"http://www.opengis.net/testbed/12/ems/symbols#ems.incident.

symbol" } ,

"symbolName": { "type": "literal" , "value":

"ems.incident.aviation.airportClosure" }
Y
{

"symbol": { "type": "uri" , "value":

"http://www.opengis.net/testbed/12/ems/symbols#ems.incident.

symbol" } ,

"symbolName": { "type": "literal" , "value":

"ems.incident.aviation.airspaceClosure" }
Y
{

"symbol": { "type": "uri" , "value":

"http://www.opengis.net/testbed/12/ems/symbols#ems.incident.

symbol" } ,

"symbolName": { "type": "literal" , "value":

"ems.incident.aviation.noticeToAirmen" }
}
]

aviation.

aviation.

aviation.

aviation.

aviation.

aircraftCrash-

aircraftHijacking

airportClosure-

airspaceClosure-

noticeToAirmen-

157

B.12.4.11 Layers

At the end of the testbed, endpoints were added to perform CRUD Operations for Layer. The initial
model for Layer is described in Appendix A. The endpoints for the Layer management
implemented for this testbed are described in the following table. This API will need more

refinement in future testbeds, so detailed description of the operations is not provided.

Path HTTP Methods Description Consume Produce
/layers POST Create a new -« application/jso e application/hal
Layer n +json
* application/jso
n
/layers/{id} GET,HEAD Get the details of application/hal
Layer identified +json
e * application/jso
n
Nlayers/{id} PUT Updated layer e application/jso e« application/hal
with given id n +json
* application/jso
n
Nayers/{id} DELETE Delete layer with
given Id
/layers/{id}/render GET Render a layer * Supported
with given id output graphic
formats

158

Appendix C: Revision History

Table 46. Revision History

Date Release Editor Primary Descriptions
clauses
modified

May 31,2016 Stephane Fellah .1 all initial version

159

Appendix D: Bibliography
[1] OGC,: OGC Testbed 11 Demonstration. (2015).

[2] Testbed-11 Symbology Mediation Engineering Report, OGC document 15-058

[3] Implementing Linked Data and Semantically Enabling OGC Services Engineering Report, OGC
document 15-054

[4] CCI Ontology Engineering Report,0GC document 14-049
[5] Guidelines for Successful OGC Interface Standards, OGC document 00-014r1

[6] SKOS Reference, W3C Recommendation, 18 August 2009. Latest version available at
http://www.w3.0org/TR/skos-reference .

[7] RDF 1.1 Turtle: Terse RDF Triple Language. W3C Recommendation, 25 February 2014. The latest
edition is available at http://www.w3.org/TR/turtle/

[8] Gruber, Thomas R. "Toward principles for the design of ontologies used for knowledge sharing?"
International journal of human-computer studies 43, no. 5 (1995): 907-928.

[9] Stuckenschmidt, Heiner, and Michel Klein. "Structure-based partitioning of large concept
hierarchies." In The Semantic Web-ISWC 2004, pp. 289-303. Springer Berlin Heidelberg, 2004.

[10] Stuckenschmidt, Heiner, Christine Parent, and Stefano Spaccapietra, eds.Modular ontologies:
concepts, theories and techniques for knowledge modularization. Vol. 5445. Springer, 2009.

[11] McCann, S., Brackin, R., Hobona, G.: OGC Testbed-13: DCAT/SRIM Engineering Report, OGC 17-
040, Open Geospatial Consortium (2018)

160

http://www.w3.org/TR/skos-reference
http://www.w3.org/TR/turtle/

	{title}
	Table of Contents
	Chapter 1. Summary
	1.1. Requirements
	1.2. Key Findings and Prior-After Comparison
	1.3. What does this ER mean for the Working Group and OGC in general
	1.4. Document contributor contact points
	1.5. Future Work
	1.5.1. Map and Layer Profile
	1.5.2. Coverage Portrayal
	1.5.3. Composite Symbology Semantic Portrayal Service.

	1.6. Foreword

	Chapter 2. References
	Chapter 3. Terms and definitions
	3.1. feature
	3.2. interoperability
	3.3. layer
	3.4. linked data
	3.5. map
	3.6. model
	3.7. ontology
	3.8. portrayal
	3.9. semantic interoperability
	3.10. semantic mediation
	3.11. symbol
	3.12. symbology encoding
	3.13. syntactic interoperability

	Chapter 4. Conventions
	4.1. Abbreviated terms

	Chapter 5. Overview
	Chapter 6. Portrayal Ontologies
	6.1. Background
	6.2. Goals for Testbed 13
	6.3. Findings
	6.3.1. Tight Coupling of SLD/SE with XML Model
	6.3.2. Identifications
	6.3.3. Expression Bindings
	6.3.4. Feature Type modeling
	6.3.5. Layer
	6.3.6. Legend

	6.4. Design
	6.4.1. Expression Ontology
	6.4.2. Binding Ontology
	6.4.3. Legend Ontology
	6.4.4. Layer Model

	Chapter 7. Semantic Portrayal Service
	7.1. Findings
	7.2. Design
	7.2.1. REST API Design
	7.2.2. Importing Portrayal Information
	7.2.3. Import SLD
	7.2.4. Linked Data Import
	7.2.5. Export SLD
	7.2.6. Integration with Portrayal Registry
	7.2.7. Rendering
	7.2.8. Layer Management API

	Chapter 8. Portrayal Demonstration
	8.1. Datasets
	8.1.1. GeoJSON
	8.1.2. Shapefile
	8.1.3. Web Feature Service
	8.1.4. GeoSPARQL endpoint

	8.2. Import/Export of Portrayal Information
	8.3. Portrayal Information Search
	8.4. Symbolizer Editor
	8.5. Layer Management
	8.5.1. Layer Creation
	8.5.2. Integration with Web Map Client
	8.5.3. Faceted Layer Search
	8.5.4. Layer Detail Page

	8.6. Demonstration Workflow

	Appendix A: Semantic Portrayal Ontologies
	A.1 Overview
	A.1.1 Namespaces

	A.2 Ontologies
	A.2.1 Style Ontology
	A.2.1.1 Style
	A.2.1.2 FeatureTypeStyle
	A.2.1.3 CoverageStyle
	A.2.1.4 PortrayalRuleSet
	A.2.1.5 PortrayalRule
	A.2.1.6 RuleCondition
	A.2.1.7 PortrayalRuleList and RuleItem

	A.2.2 Legend Ontology
	A.2.2.1 Legend Object
	A.2.2.2 Legend Item

	A.2.3 Symbology Ontology
	A.2.3.1 SymbolSet
	A.2.3.2 Symbol

	A.2.4 Symbolizer Microtheory
	A.2.4.1 Symbolizer Hierarchy
	A.2.4.2 Symbolizer
	A.2.4.3 Point Symbolizer
	A.2.4.4 Line Symbolizer
	A.2.4.5 Polygon Symbolizer
	A.2.4.6 Text Symbolizer
	A.2.4.7 Raster Symbolizer
	A.2.4.8 Composite Symbolizer
	A.2.4.9 Custom Symbolizer

	A.2.5 Graphics Microtheory
	A.2.5.1 Context
	A.2.5.2 Scope
	A.2.5.3 Terminology used in the Graphics Ontology
	A.2.5.4 Graphics Ontology Classes
	A.2.5.5 Graphic Datatypes
	A.2.5.6 Graphic Properties

	A.2.6 Binding Microtheory
	A.2.7 Namespaces
	A.2.7.1 Binding Ontology Classes

	A.2.8 Binding Hierarchy
	A.2.9 Binding
	A.2.10 Expression Microtheory
	A.2.11 Namespaces
	A.2.11.1 Expression Ontology Classes

	A.2.12 Expression Hierarchy
	A.2.13 Expression
	A.2.14 OGC Expression
	A.2.15 SPARQL Expression
	A.2.16 Layer Microtheory
	A.2.16.1 Layer Concept
	A.2.16.2 Recommended properties
	A.2.16.3 DataSource Concept

	Appendix B: Semantic Portrayal Service REST API
	B.1 Overview
	B.2 HTTP verbs
	B.3 HTTP status codes
	B.4 Headers
	B.5 Errors
	B.6 Paging and Sorting
	B.6.1 Paging
	B.6.2 Sorting

	B.7 Search Results
	B.7.1 HAL+JSON Search Results
	B.7.2 JSON Search results
	B.7.3 Aggregation JSON Schema

	B.8 Resources Summary
	B.9 Level 2 REST Endpoints
	B.10 Link relation types
	B.11 Content negotiation
	B.12 Semantic Portrayal Resources
	B.12.1 Service Root
	B.12.1.1 Accessing the root endpoint
	B.12.1.2 Request structure
	B.12.1.3 Query Parameters
	B.12.1.4 Response structure
	B.12.1.5 Links
	B.12.1.6 Example response

	B.12.2 Capabilities
	B.12.2.1 Query Parameters
	B.12.2.2 Example request
	B.12.2.3 Response structure
	B.12.2.4 Links
	B.12.2.5 Example response

	B.12.3 JSON-LD Context
	B.12.3.1 Query Parameters
	B.12.3.2 Example request
	B.12.3.3 Response structure
	B.12.3.4 Example response

	B.12.4 Portrayal Items
	B.12.4.1 Styles
	B.12.4.2 Style
	B.12.4.3 Symbols
	B.12.4.4 Symbol
	B.12.4.5 SymbolSets
	B.12.4.6 SymbolSet
	B.12.4.7 Render a Layer
	B.12.4.8 Symbol Renderer
	B.12.4.9 Symbolizer Renderer
	B.12.4.10 SPARQL Service
	B.12.4.11 Layers

	Appendix C: Revision History
	Appendix D: Bibliography

