
Testbed-12 PubSub / Catalog
Engineering Report

Table of Contents
1. Introduction . 6

1.1. Scope . 6

1.2. Document contributor contact points . 6

1.3. Future Work . 6

1.4. Foreword . 6

2. References . 7

3. Terms and definitions . 8

3.1. Broker | Brokering Publisher . 8

3.2. Message. 8

3.3. Publication . 8

3.4. Publisher . 8

3.5. Receiver . 8

3.6. Reliable Publisher . 8

3.7. Sender . 8

3.8. Subscriber . 9

3.9. Subscription. 9

4. Conventions . 10

4.1. Abbreviated terms . 10

4.2. UML notation . 10

5. Overview . 11

6. Specific PubSub 1.0 extension for CSW . 14

6.1. Conceptual model . 14

6.2. Required Capabilities components . 15

6.2.1. FilterCapabilities . 16

6.2.2. DeliveryCapabilities . 17

6.2.3. Publications . 17

6.3. Service interface. 19

6.3.1. Introduction. 19

6.3.2. Availability of a RESTful service interface . 19

6.3.3. Resources and resource URL . 20

6.4. CSW capabilities document with REST extensions . 24

6.4.1. OPTIONS method . 31

6.5. Specific adaptations. 33

6.5.1. CSW 2.0.2 . 33

6.5.2. CSW 3.0 . 34

7. Basic PubSub 1.0 extension for the generic OWS . 38

7.1. Conceptual model . 38

7.2. Required Capabilities components . 39

7.2.1. FilterCapabilities . 39

7.2.2. DeliveryCapabilities . 40

7.2.3. Publications . 41

7.3. Support to legacy components . 43

8. Report on the PubSub RESTful Binding . 46

Appendix A: XML Schema Documents . 48

Appendix B: Relevant findings . 49

B.1. Recommendations . 49

B.2. Use Case(s) . 49

B.3. Architectural schemes . 50

B.4. Change Requests . 50

Appendix C: Prototype PubSub-CSW implementation . 51

C.1. Publications . 51

C.2. Subscribe . 52

C.2.1. Subscribe request . 52

C.2.2. Subscribe response . 54

C.3. GetSubscription . 55

C.3.1. GetSubscription request . 55

C.4. GetSubscription response . 55

C.5. Unsubscribe. 56

C.5.1. Unsubscribe request . 56

C.5.2. Unsubscribe response . 56

Appendix D: Revision History . 58

Appendix E: Bibliography . 59

Publication Date: 2017-05-12

Approval Date: 2017-05-11

Posted Date: 2016-12-19

Reference number of this document: OGC 16-137r2

Reference URL for this document: http://www.opengis.net/doc/PER/t12-A074

Category: Public Engineering Report

Editor: Lorenzo Bigagli

Title: Testbed-12 PubSub / Catalog Engineering Report

Testbed-12 PubSub / Catalog Engineering Report (16-137r2)

COPYRIGHT

Copyright © 2017 Open Geospatial Consortium. To obtain additional rights of
use, visit http://www.opengeospatial.org/

WARNING

This document is an OGC Public Engineering Report created as a deliverable of
an initiative from the OGC Innovation Program (formerly OGC Interoperability
Program). It is not an OGC standard and not an official position of the OGC
membership.It is distributed for review and comment. It is subject to change
without notice and may not be referred to as an OGC Standard. Further, any
OGC Engineering Report should not be referenced as required or mandatory
technology in procurements. However, the discussions in this document could
very well lead to the definition of an OGC Standard.

1

http://www.opengis.net/doc/PER/t12-A074
http://www.opengeospatial.org/

LICENSE AGREEMENT

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"),
free of charge and subject to the terms set forth below, to any person obtaining a
copy of this Intellectual Property and any associated documentation, to deal in
the Intellectual Property without restriction (except as set forth below),
including without limitation the rights to implement, use, copy, modify, merge,
publish, distribute, and/or sublicense copies of the Intellectual Property, and to
permit persons to whom the Intellectual Property is furnished to do so, provided
that all copyright notices on the intellectual property are retained intact and
that each person to whom the Intellectual Property is furnished agrees to the
terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual
Property must include, in addition to the above copyright notice, a notice that
the Intellectual Property includes modifications that have not been approved or
adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY
RIGHTS UNDER ANY PATENTS THAT MAY BE IN FORCE ANYWHERE IN THE
WORLD. THE INTELLECTUAL PROPERTY IS PROVIDED "AS IS", WITHOUT
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE DO NOT
WARRANT THAT THE FUNCTIONS CONTAINED IN THE INTELLECTUAL
PROPERTY WILL MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF
THE INTELLECTUAL PROPERTY WILL BE UNINTERRUPTED OR ERROR FREE.
ANY USE OF THE INTELLECTUAL PROPERTY SHALL BE MADE ENTIRELY AT
THE USER’S OWN RISK. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR ANY
CONTRIBUTOR OF INTELLECTUAL PROPERTY RIGHTS TO THE INTELLECTUAL
PROPERTY BE LIABLE FOR ANY CLAIM, OR ANY DIRECT, SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING
FROM ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR UNDER ANY OTHER
LEGAL THEORY, ARISING OUT OF OR IN CONNECTION WITH THE
IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF THIS
INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by

2

destroying the Intellectual Property together with all copies in any form. The
license will also terminate if you fail to comply with any term or condition of
this Agreement. Except as provided in the following sentence, no such
termination of this license shall require the termination of any third party end-
user sublicense to the Intellectual Property which is in force as of the date of
notice of such termination. In addition, should the Intellectual Property, or the
operation of the Intellectual Property, infringe, or in LICENSOR’s sole opinion be
likely to infringe, any patent, copyright, trademark or other right of a third
party, you agree that LICENSOR, in its sole discretion, may terminate this license
without any compensation or liability to you, your licensees or any other party.
You agree upon termination of any kind to destroy or cause to be destroyed the
Intellectual Property together with all copies in any form, whether held by you
or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder
of a copyright in all or part of the Intellectual Property shall not be used in
advertising or otherwise to promote the sale, use or other dealings in this
Intellectual Property without prior written authorization of LICENSOR or such
copyright holder. LICENSOR is and shall at all times be the sole entity that may
authorize you or any third party to use certification marks, trademarks or other
special designations to indicate compliance with any LICENSOR standards or
specifications.

This Agreement is governed by the laws of the Commonwealth of Massachusetts.
The application to this Agreement of the United Nations Convention on
Contracts for the International Sale of Goods is hereby expressly excluded. In
the event any provision of this Agreement shall be deemed unenforceable, void
or invalid, such provision shall be modified so as to make it valid and
enforceable, and as so modified the entire Agreement shall remain in full force
and effect. No decision, action or inaction by LICENSOR shall be construed to be
a waiver of any rights or remedies available to it.

None of the Intellectual Property or underlying information or technology may
be downloaded or otherwise exported or reexported in violation of U.S. export
laws and regulations. In addition, you are responsible for complying with any
local laws in your jurisdiction which may impact your right to import, export or
use the Intellectual Property, and you represent that you have complied with
any regulations or registration procedures required by applicable law to make
this license enforceable.

3

Abstract

This document describes how the OGC PubSub standard can be used as a
mechanism to automatically notify analysts of data availability for CSW and
other OGC Web Services (e.g. WFS, WCS). In particular, this document proposes
the following:

• Specific PubSub 1.0 extensions for CSW 2.0.2 and 3.0, leveraging on standard
functionalities, data models, and semantics to enable sending notifications
based on user-specified area of interest and/or keywords;

• A general, basic mechanism for enabling PubSub for the generic OGC Web
Service over the existing request/reply OWS’s, i.e. usual requests as filters,
usual responses as appropriate updates/data pushes, existing semantics and
syntax expressiveness.

This document is the result of activity performed within the Large-Scale
Analytics (LSA) Thread of the OGC Testbed 12 Interoperability initiative, being
identified as document deliverable "A074 PubSub / Catalog Engineering Report".
This document also captures lessons learnt from the implementation of
component deliverable "A016 CSW 2.0.2 with PubSub Core Support Server".

Business Value

The implementation of efficient, push-based data discovery is necessary to
support the transition to advanced push-based service interaction styles and
enable the ubiquitous sensor-based applications envisioned by the Internet of
Things.

Technology Value

Much work has been conducted in the past (e.g. in previous Testbed Initiatives)
on event-based models and architectures. Recently, the PubSub 1.0 standard has
introduced an abstract model for Publish/Subscribe message exchange, along
with a SOAP binding. However, the current OGC Baseline only supports
synchronous web service request-response capabilities. This ER will address this
gap and exemplify the use of PubSub, particularly in conjunction with the
Catalog Service interface.

How this ER relates to the work of the Working Group

The extensions introduced in this ER are among the first applications of the OGC
PubSub 1.0 Specification. Hence, this ER is of great importance to assess and
validate the specification itself, in particular as regards the following aspects:

4

• Extensibility of the PubSub 1.0 specification;

• Experimentation of PubSub 1.0 with a variety of bindings and delivery
methods, in particular Server-Sent Events (SSE);

• Use of the OGC Filter Encoding 2.0 language to express subscription filters;

• Pluggability of filter languages and delivery methods.

This ER also contributes to some of the activities in the current scope for the
PubSub SWG, such as:

• Definition of a PubSub RESTful binding;

• Definition of a generic mechanism to PubSub-enable the existing OWSs;

• Definition of lexical constants (e.g. “ALL” to identify all the publications
offered by a Publisher).

SSE is a widely supported technology and should be considered for
standardization in the PubSub SWG. The ER authors are encouraged to
formalize a "SSE Delivery Method" Conformance Class and submit it to the SWG
for consideration and standardization.

Finally, the ER provides useful indications on future lines of work for the
PubSub specification, such as:

• Specific mechanisms for standardizing delivery methods;

• Integration of legacy components in an eventing architecture (cf. the PubSub
Brokering Publisher).

Keywords

ogcdocs, testbed-12, Publish/Subscribe, CSW

Proposed OGC Working Group for Review and Approval

The PubSub SWG has agreed to be the primary reviewer and commenter for this
Engineering Report. The Catalog DWG and the Catalog Services 3.0 SWG have
agreed to act as secondary reviewers.

5

Chapter 1. Introduction

1.1. Scope
This document addresses PubSub-enabled Catalogs, as a fundamental building block to advance the
current OGC standard baseline.

It aims at defining a specific PubSub extension for CSW 2.0.2 and 3.0, as well as a general, simple
mechanism for enabling PubSub in the generic OGC Web Service.

This OGC® document is applicable to all the OGC Web Services specifications, in particular to the
CSW 2.0.2 and 3.0 Implementation Specifications.

1.2. Document contributor contact points
All questions regarding this document should be directed to the editor or the contributors:

Table 1. Contacts

Name Organization

Lorenzo Bigagli (editor) CNR

Panagiotis (Peter) A. Vretanos
(contributor)

CubeWerx Inc.

Mark Lawrence (contributor) Compusult

Fabrizio Papeschi (contributor) CNR

Richard Martell (contributor) Galdos

1.3. Future Work
Parts of this document may be further elaborated in the future by the relevant SWGs. For example,
the PubSub SWG may incorporate (part of) chapter report_PSRB in the current Publish/Subscribe
RESTful Binding (PSRB) draft.

1.4. Foreword
Attention is drawn to the possibility that some of the elements of this document may be the subject
of patent rights. The Open Geospatial Consortium shall not be held responsible for identifying any
or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any
relevant patent claims or other intellectual property rights of which they may be aware that might
be infringed by any implementation of the standard set forth in this document, and to provide
supporting documentation.

6

Chapter 2. References
The following documents are referenced in this document. For dated references, subsequent
amendments to, or revisions of, any of these publications do not apply. For undated references, the
latest edition of the normative document referred to applies.

• OGC 06-121r3, OGC® Web Services Common Specification, version 1.1.0 (9 February 2007)

• OGC 13-131, OGC® Publish/Subscribe Interface Standard 1.0 - Core

• OGC 13-133, OGC® Publish/Subscribe Interface Standard 1.0 - SOAP Protocol Binding Extension

• OGC 13-132, OGC® Publish/Subscribe Interface Standard 1.0 - RESTful Protocol Binding
Extension (draft, in progress)

• OGC 07-006r1, OpenGIS® Catalogue Services Specification, version 2.0.2, corrigendum 2

• OGC 07-045, OpenGIS® Catalogue Services Specification 2.0.2 - ISO Metadata Application Profile,
version 1.0

• OGC 07-110r4, CSW-ebRIM Registry Service - Part 1: ebRIM profile of CSW, version 1.0.1,
corrigendum 1

• OGC 07-144r4, CSW-ebRIM Registry Service - Part 2: Basic extension package, version 1.0.1,
corrigendum 1

• OGC 08-103r2, CSW-ebRIM Registry Service - Part 3: Abstract Test Suite, version 1.0.1

7

Chapter 3. Terms and definitions
For the purposes of this report, the definitions specified in Clause 4 of the OWS Common
Implementation Standard [OGC 06-121r3] shall apply. In addition, the following terms and
definitions apply.

3.1. Broker | Brokering Publisher
Intermediary between Subscribers and other Publishers which have been previously registered
with the broker. The broker is not the original producer of messages, but only acts as a message
middleman, re-publishing messages received from other Publishers and decoupling them from
their Subscribers

3.2. Message
A container within which data (such as XML, binary data, or other content) is transported.
Messages may include additional information beyond data, including headers or other information
used for routing or security purposes

3.3. Publication
A uniquely identified aggregation of messages published by a Publisher over time. A Publisher may
offer any number of publications that Subscribers may subscribe to

3.4. Publisher
An entity that offers publications to Subscribers; supports subscription management (subscribe,
unsubscribe) and is responsible for filtering and matching messages of interest to active
subscriptions

3.5. Receiver
An entity that receives messages from Senders; may (but need not) be the original Subscriber

3.6. Reliable Publisher
A publisher of messages that offers capabilities to detect and recover from message delivery losses,
whether caused by network failures, software failures, hardware failures, or other causes

3.7. Sender
Entity that sends messages to Receivers; may (but need not) be the initial creator/producer of the
data in the message payload

8

3.8. Subscriber
Entity that creates a subscription at a Publisher; may (but need not) be the Receiver of delivered
messages

3.9. Subscription
Expression of interest in all or part of a publication offered by a Publisher. When a subscription has
been created, the Publisher delivers messages that match the subscription criteria to the Receiver
defined in the subscription

9

Chapter 4. Conventions

4.1. Abbreviated terms
• CFP Call for Participation

• DWG Domain Working Group

• HTTP Hypertext Transfer Protocol

• MEP Message Exchange Pattern

• OGC Open Geospatial Consortium

• RFQ Request for Quotation

• SSE Server-Sent Events

• SWG Standards Working Group

• UML Unified Modeling Language

• XML eXtensible Markup Language

4.2. UML notation
Most diagrams that appear in this document are presented using the UML 2 static structure
diagram, as described in Subclause 5.2 of [OGC 06-121r9].

All classes in this document are extensible and may be extended with application- or domain-
specific content via Extension blocks.

NOTE

The UML shown in this document is considered conceptual and abstract, and should
not be interpreted as an implementation strategy for bindings that extend and
implement a standard. For example, TM_Instant from ISO 19108 may be used to
represent time instants for conceptual clarity, but bindings and implementations of
this document may realize TM_Instant as a GML TimeInstant, an ISO 8601 date
string, or any other representation that is consistent with TM_Instant.

10

Chapter 5. Overview
The OGC has conducted significant work on event-based models and architectures in the past,
resulting in the Web Notification Service (WNS) Best Practice [1:
http://portal.opengeospatial.org/files/?artifact_id=18776], the proposed Sensor Alert and Sensor
Event Service, as well as several ERs produced in previous OGC interoperability initiatives. Starting
from 2010, these efforts have been subsumed under the scope of the PubSub SWG and resulted in
the adoption of the Publish/Subscribe Interface Standard 1.0 in February 2016.

Although the current OGC Baseline still supports only synchronous web service request-response
capabilities, there is wide consensus that standard solutions for push-based message exchange
patterns are fundamental enablers of the OGC vision, for example to implement the ubiquitous
sensor-based applications in the advanced proactive control scenarios envisioned by the Internet of
Things.

Several work items in the OGC Testbed 12 RFQ/CFP [2:
http://www.opengeospatial.org/standards/requests/139] address the means to incorporate forms of
asynchronous service interaction, including Publish/Subscribe message patterns, for example in
WPS, WCS, WFS, or in geospatial queries of aviation data.

In particular, the RFQ/CFP includes a specific Asynchronous Service Interaction subtask (see figure
Asynchronous Service Interaction subtask), part of a set of subtasks that aim at enhancing the OGC
Baseline, by extending OGC architectural designs through efforts that cross over several individual
standards and services and are applied in a much wider scope.

Asynchronous Service Interaction subtask

The subtask description in the RFQ/CFP distinguishes among three different approaches to handle
asynchronous interaction with OGC Web services:

1. WPS façades;

2. Specific extensions to each OGC Web Service with asynchronous request/response capabilities;

11

http://portal.opengeospatial.org/files/?artifact_id=18776
http://www.opengeospatial.org/standards/requests/139

3. OGC PubSub.

The document deliverable "A067 Implementing Asynchronous Service Response Engineering
Report" (OGC 16-023) elaborates on the above approaches in situations where big chunks of data
require asynchronous delivery. The ER focuses on the first and the second approach, with the goal
to summarize and compare the results from using a WPS facade and an extension for WFS for
asynchronous service responses, as well as to provide recommendations for future activities.

This document deliverable "A074 PubSub/Catalog Engineering Report" (OGC 16-137) focuses on the
third approach, OGC PubSub, in the specific case of catalogs, investigating the functional
requirements of an interoperable, push-based data discovery solution.

As underlined in the RFQ/CFP, it is important to provide methods that support notification (push) of
new data as opposed to search (pull), given the volume of data that will be available in catalogs in
the near future.

The recently approved OGC PubSub standard is intended as an overarching model to extend
services with Publish/Subscribe capabilities. The Publish/Subscribe model is distinguished from the
request/reply and client/server models by the asynchronous delivery of messages and the ability for
a Subscriber to specify an ongoing (persistent) expression of interest.

The PubSub standard is agnostic as regards delivery methods. It defines a Publisher role that may
support multiple delivery methods, such as ATOM, AMQP, or SOAP, as advertised in its Capabilities
document, in the DeliveryCapabilities section. By implementing the Publisher interface, a PubSub-
OWS may offer more than one method of delivery for each Publication, to be chosen by
Subscribers. Publish/Subscribe would imply push-style message delivery, however some methods
may actually be pull-based (e.g. polling), under the hood.

Hence, both the solutions investigated in ER OGC 16-023, the WPS façade and the specific WFS
extension for asynchronous responses, are compatible with the PubSub standard and may be
integrated in an application.

The application of OGC PubSub to OGC Catalogue Services allows an analyst to register and be
notified when new metadata records become available. Such new OGC-compliant PubSub-enabled
discovery service supports and promotes the system architecture of the Testbed 12 Initiative, as a
fundamental building block to advance the current OGC standard baseline. As a consequence, this
work may contribute to the enhanced availability of standards-based offerings in the marketplace.

In terms of the RFQ/CFP threads, the Asynchronous Service Interaction subtask is assigned to the
Large-Scale Analytics (LSA) thread, which addresses short- and long-term planning and analysis of
geospatial topics, domains, and questions. The LSA thread includes elements that help the
investigator to discover data in an optimal way. Hence, this document is mainly related to the LSA
thread. However, it may as well be of interest for the Aviation (AVI) thread (cf. E001 Catalog ER (16-
024r2); E003 Asynchronous Messaging ER (16-017r1); F003 CSW component implementation) and
the Linked Data and Advanced Semantics (LDS) thread (cf. the Catalog and SPARQL ER (16-062) and
related component implementation work items).

The rest of this document is organized as follows:

1. Specific PubSub 1.0 extension for CSW - how to implement the PubSub 1.0 Core Conformance

12

Classes on top of CSW instances, leveraging on their standard functionalities, data models, and
semantics;

2. Basic PubSub 1.0 extension for the generic OWS - a simple way to enable existing request/reply
OWS’s to Publish/Subscribe, by implementing the Capabilities components required by PubSub
1.0 Core;

3. Report on the PubSub RESTful Binding - how PubSub 1.0 Core operations, encodings and
messages are bound to a RESTful service interface;

4. Appendix - Additional XML Schema Documents introduced in this Engineering Report;

5. Appendix - Relevant findings, recommendations, Use Case(s), architectural schemes, Change
Request(s);

6. Appendix - Report on prototype PubSub-CSW implementation in LSA-A016: CSW 2.0.2 with
PubSub Core Support.

13

Chapter 6. Specific PubSub 1.0 extension for
CSW
This chapter introduces a PubSub extension for CSW. It describes how to implement the PubSub 1.0
Core Conformance Classes (see figure Figure 1) on top of CSW instances, leveraging on their
standard functionalities, data models, and semantics.

In particular, a CSW implementing this extension is capable of sending notifications based on user-
specified area of interest and/or keywords, as required by the Testbed 12 RFQ.

Figure 1. PubSub Core Conformance Classes

The primary target for this extension is CSW 2.0.2, a mature and widespread specification, for
which several profiles, bindings and extensions are defined. Possible specific adaptations to CSW
3.0, which has been formally approved in February 2016 and published in June 2016, are
considered.

To address interoperability issues in multi-catalog type scenarios, we also consider possible specific
adaptations to the ISO Application Profile, the ebRIM Application Profile, the OpenSearch
extension, the SOAP binding, and DCAT.

Lastly, this chapter introduces a message delivery method based on Server-Sent Events (SSE),
implementing an actual push-based (i.e. not simulated, polling-based) mechanism.

6.1. Conceptual model
The main functionality of a CSW is to hold a set of metadata records on geospatial resources, which
can be queried by clients specifying an arbitrary combination of query criteria, e.g. area of interest,
keyword, time interval.

Conceivably, a client may be interested in being notified when the record set matching her/his
criteria of interest changes, instead of having to repeat the query and look for the differences.

14

Possible changes in the record set include: new records created, existing records modified (e.g.
new/modified/deleted attribute), or deleted.

The PubSub specification is agnostic as to what constitutes a change, i.e. an event that should cause
a notification by a Publisher (aka its event model). It is only required that a Publisher instance
communicate what notifications it will emit by advertising them in the Publication section of its
Capabilities document (see below).

The main use-case supported by CSW’s functionalities is geospatial data discovery, for which the
main event of interest is the availability of new metadata records in the catalogue. Hence, the
extension introduced in this chapter mainly supports the notification of new records matching the
client’s criteria of interest, specified in his/her subscription. It partially supports the notification of
deletions and modifications of existing records, as detailed in chapter Notification encoding. The
precise definition of an event model for CSW is left to the relevant OGC Working Groups.

This event model can be implemented by standard mechanisms of the CSW specification, namely
the GetRecords and the Transaction operation. The proposed basic Message Exchange Pattern
(MEP) for a PubSub-CSW is represented in figure Figure 2 and can be summarized as follows:

1. The CSW client subscribes specifying a GetRecords request to be used as filter for the
notifications;

2. The CSW client obtains the Time-0 recordset via a standard Request/Reply GetRecords (same
request as above);

3. The PubSub-CSW notifies the client of subsequent updates using the standard CSW
TransactionResponse semantics, content model and syntax.

Figure 2. CSW Publish/Subscribe MEP

This MEP allows binding the PubSub 1.0 Core operations, encodings and messages to the standard
CSW functionalities, data models, and semantics. In particular, the GetRecords request supports
filtering notifications on user-specified area of interest and/or keywords, as per the RFQ/CFP
requirements.

6.2. Required Capabilities components
PubSub Core requires that a CSW advertise the implemented Conformance Classes in its
Capabilities document, namely in the Profile property of the ServiceIdentification section (as of
OWS Common 1.1). Besides, it requires that the additional Capabilities components represented in
Figure 2 are returned in the GetCapabilities response, but does not specify the specific mechanism
for incorporating these additional Capabilities components into the CSW Capabilities document.

15

These extension proposes to include these additional Capabilities components in the
ExtendedCapabilities of the PubSub-CSW, as detailed in the following chapters.

Figure 3. PubSub Capabilities components

6.2.1. FilterCapabilities

The FilterCapabilities section describes the filtering-related capabilities of the PubSub-CSW, i.e. the
filter languages it supports for matching events against subscriptions.

Figure 4. Filter Capabilities

The following Capabilities snippet declares that this PubSub-CSW instance accepts GetRecords
requests as subscription filters.

16

FilterCapabilities

<FilterCapabilities>
 <FilterLanguage>
 <Abstract>This PubSub-CSW accepts GetRecords requests as subscription filters.
 </Abstract>
 <Identifier>http://www.opengis.net/cat/csw/3.0/GetRecords
 </Identifier>
 </FilterLanguage>
</FilterCapabilities>

6.2.2. DeliveryCapabilities

The DeliveryCapabilities section describes the delivery methods supported by the PubSub-CSW, e.g.
SOAP, WS-Notification.

Figure 5. Delivery Capabilities

The following Capabilities snippet declares that this PubSub-CSW instance delivers notifications via
SOAP/HTTP, as defined by the PubSub SOAP Binding standard.

DeliveryCapabilities

<DeliveryCapabilities>
 <DeliveryMethod>
 <Abstract>This PubSub-CSW supports notification delivery via SOAP/HTTP.
 </Abstract>
 <Identifier>http://www.opengis.net/spec/pubsub/1.0/req/soap/http-delivery-
publisher</Identifier>
 </DeliveryMethod>
</DeliveryCapabilities>

6.2.3. Publications

The Publications section describes the contents offered by the PubSub-CSW, i.e. the sequences of
notifications that Subscribers can subscribe to.

17

Figure 6. Publications

The following Capabilities snippet declares a publication that notifies on new records from the
USGS Earthquake Catalog. Notifications can be filtered with the semantics of the GetRecords
request and are delivered as TransactionResponses via SOAP/HTTP.

Publications

<Publications>
 <Publication>
 <Abstract>This publication notifies on new records from the USGS Earthquake
Catalog, an implementation of the FDSN Event Web Service Specification, allowing
custom searches for earthquake information using a variety of parameters.</Abstract>
 <Identifier>EARTHQUAKE</Identifier>

<ContentType>http://www.opengis.net/cat/csw/3.0/TransactionResponse</ContentType>
 <SupportedFilterLanguage>http://www.opengis.net/cat/csw/3.0/GetRecords
 </SupportedFilterLanguage>
 <SupportedDeliveryMethod>http://www.opengis.net/spec/pubsub/1.0/req/soap/http-
delivery-publisher</SupportedDeliveryMethod>
 </Publication>
</Publications>

Notification encoding

The Catalog Service specification provides the optional Transaction operation, which allows clients
to request a specified set of “insert”, “update”, and “delete” actions on the content managed by a
Catalogue Service instance.

This operation provides the semantics and the syntax to support the core event model of a CSW, i.e.
the availability of new metadata records in the catalogue, as well as their modification and
deletion. In particular, the TransactionResponse contains the following elements:

• transaction‌Summary - a summary that includes the total number of records inserted, updated,
and deleted by a transaction;

• insert‌Results - a brief representation of the records created by a transaction, which includes the
record identifier.

18

By receiving a TransactionResponse, a Subscriber is able to easily retrieve the new records
matching the Subscription criteria, and to obtain a summary indication about deleted and modified
records. This fully supports the main use-case in geospatial data discovery, and partially supports
less common use-cases.

It is worth noting that the syntax of a TransactionRequest could allow a more explicit indication of
all inserted/updated/deleted records. However, its specification seems less clear and consolidated.
Besides, the normal flow of a TransactionRequest is from a client to a CSW, hence a
TransactionResponse seems more straightforward. Future evolutions of this extension may
evaluate the use of TransactionRequests for encoding PubSub notifications.

6.3. Service interface

6.3.1. Introduction

Interaction with an OGC web service commences with the retrieval of the service’s capabilities
document. It is the jumping off point from which a client can access an OGC web service’s
offerings.

The traditional OGC capabilities document, particularly for data services such as a CSW, is
composed of the following sections:

• a Service Identification section

• a Service Provider section

• an Operations Metadata section

• a Content section

• a Filter capabilities section

NOTE
All sections are optional so that they may be retrieved individually, severally or as a
complete capabilities document.

The current design of the capabilities document is based on an RPC view of a web service and so it
is not obvious how a resource-base service interface might be described by an OGC capabilities
document.

Before we consider the question of how to describe a RESTful service interface in an OGC
capabilities document, and specifically in the capabilities document of a CSW 3.0 service, we need
to consider what the goals of such a description should be. At the very least, a client inspecting an
OGC capabilities document should be able to:

a) Determine if the service offers a RESTful service interface b) Determine which resources the
services offers and their URLs

6.3.2. Availability of a RESTful service interface

There are several approaches that might be taken in order to allow a service to advertise the
availability of a RESTful service interface.

19

Approach 1: Conformance classes

OGC web service specifications define one or more conformance classes that encapsulate basic
units of capability that someone implementing the service might offer. Recent practice in OGC has
been to include, in the capabilities document, some means of allowing a service to explicitly declare
which conformance classes a service implements.

Thus, an obvious approach for advertising the availability of a RESTful service interface is for a
service specification to define one or more conformance classes encapsulating the elements of the
interface. A client inspecting a compliant server’s capabilities document can then explicitly
determine if the service offers a RESTful interface or not by inspecting the conformance class
declarations.

Approach 2: Hypermedia controls

Another approach for signaling to a client that a service offers a RESTful interface is the existence
of hypermedia controls in the capabilities document. This is the approach taken by the WMTS with
its ResourceURL element and the WFS 2.5 with its use of hypermedia controls encoded as ATOM
links. The presence of ATOM links pointing to offered resources implicitly signals the availability of
a RESTful service interface.

Approach 3: Alternative service description document

A third approach would be to define a specific element in the capabilities document that points to
an alternate, perhaps specialized, description document for the service. This is the approach that
was used in the CSW capabilities document, via an ows:Constraint named "WSDL", to point to a
WSDL description document. A similar approach could be taken for a RESTful interface; a specific
element or constraint might be defined that points to a REST-specific interface description
document such a Swagger or RSDL document. The existence of this element in capabilities
document would signal to a client that a REST interface is available.

It should be noted that these approaches are not mutually exclusive and one or more could be used
simultaneously in a capabilities document to signal the availability of a RESTful interface.

6.3.3. Resources and resource URL

There are several ways that a service, in its capabilities document, might advertise which resources
it offers and the URLs for those resource.

Predefined resource URLs

The first approach is for the service specification to describe predefined resource paths that a
service may offer. These may be tied to specific conformance classes and declaring that a service
implements such a conformance class implies that the service offers that resource. A current draft
specification, OGC® Publish/Subscribe Interface Standard 1.0 RESTful Protocol Binding Extension,
defines the "RESTful Basic Publisher" conformance class. A service declaring that it implements this
conformance class is implicitly declaring that it offers the /publications and /subscriptions
resources.

Hypermedia controls and opaque URLs

20

Hypermedia controls are simply links embedded in a service’s response that allow a client to
determine which next states are available. This is analogous to a web pages containing hyperlinks
that let a viewer know to which other pages or content they may move. Hypermedia controls are
encoded to include the URL of the target resource and also include an association type that
describes the relationship between the current resource and the target resource. Thus, hypermedia
controls in an OGC web service’s capabilities document may be used to let a client know which
other resources are offered by the service and what the relationship is between the service and
those resources. The following XML fragment from a WFS service that implements the draft WFS
2.5 specification is an example of how hypermedia controls are used in the description of a feature
type to advertise the resource’s access URL and the resource’s schema:

21

WFS FeatureType Example

 <FeatureType>
 <atom:link xmlns:atom="http://www.w3.org/2005/Atom"
 rel="collection"

href="https://tb12.cubewerx.com/a037/cubeserv/default/wfs/2.5.0/USGS/SfBuildings"/>
 <atom:link xmlns:atom="http://www.w3.org/2005/Atom"
 rel="describedBy"

href="https://tb12.cubewerx.com/a037/cubeserv/default/wfs/2.5.0/USGS/schema/SfBuilding
s"/>
 <Name>cw:SfBuildings</Name>
 <Title>San Francisco Buildings</Title>
 <DefaultCRS>urn:ogc:def:crs:EPSG::4326</DefaultCRS>
 <OtherCRS>urn:ogc:def:crs:EPSG::3857</OtherCRS>
 <OtherCRS>urn:ogc:def:crs:EPSG::3395</OtherCRS>
 <OtherCRS>urn:ogc:def:crs:EPSG::4267</OtherCRS>
 <OtherCRS>urn:ogc:def:crs:EPSG::4269</OtherCRS>
 <OtherCRS>urn:ogc:def:crs:EPSG::26709</OtherCRS>
 <OtherCRS>urn:ogc:def:crs:EPSG::26710</OtherCRS>
 <OtherCRS>urn:ogc:def:crs:EPSG::26711</OtherCRS>
 <OtherCRS>urn:ogc:def:crs:EPSG::26712</OtherCRS>
 <OtherCRS>urn:ogc:def:crs:EPSG::26909</OtherCRS>
 <OtherCRS>urn:ogc:def:crs:EPSG::26910</OtherCRS>
 <OtherCRS>urn:ogc:def:crs:EPSG::26911</OtherCRS>
 <OtherCRS>urn:ogc:def:crs:EPSG::26912</OtherCRS>
 <OtherCRS>urn:ogc:def:crs:EPSG::32609</OtherCRS>
 <OtherCRS>urn:ogc:def:crs:EPSG::32610</OtherCRS>
 <OtherCRS>urn:ogc:def:crs:EPSG::32611</OtherCRS>
 <OtherCRS>urn:ogc:def:crs:EPSG::32612</OtherCRS>
 <OtherCRS>urn:ogc:def:crs:OGC::CRS41001</OtherCRS>
 <OtherCRS>urn:ogc:def:crs:EPSG::42101</OtherCRS>
 <OtherCRS>urn:ogc:def:crs:EPSG::42103</OtherCRS>
 <OtherCRS>urn:ogc:def:crs:EPSG::42105</OtherCRS>
 <OtherCRS>urn:ogc:def:crs:EPSG::102002</OtherCRS>
 <ows:WGS84BoundingBox>
 <ows:LowerCorner>-122.514259401308 37.70524337916189</ows:LowerCorner>
 <ows:UpperCorner>-122.357630553475 37.8319653651556</ows:UpperCorner>
 </ows:WGS84BoundingBox>
 </FeatureType>

Notice that two hypermedia controls, encoded as atom:link elements, are included in this example.
The first one, with rel="collection" provides the base URL of the collection of San Francisco building
footprint features. The second one, with rel="describedBy" provides the URL to the schema of the
building footprint feature type. In all cases the resource URLs are opaque to the client.

22

NOTE

The schema for the atom:link element is defined in the OGC KML specification (see
OGC 12-07r2). Unlike XLinks, atom:link elements allow the URL of a resource to be
specified as well as the relationship of that resource to the offering service.

NOTE

Hypermedia controls may also be encoded in the HTTP headers using the Link
header. Using the headers has the advantage of not requiring modifications to the
existing capabilities schema. However, as the number of resources grows, the size
of the HTTP header becomes more awkward to manage. Furthermore, link encoded
in the header are removed from their context within the capabilities document
which tends to obfuscate their meaning and purpose.

URL templates

In some cases the opaque URL approach for pointing to the resources that a service offers is just not
feasible. Such is the case for a WMTS where literally billions of URLs would need to be listed to
point to the tiles that the service offers. In this case, rather than using opaque URLs, using URL
templates makes more sense. URL templates provide a recipe, using substitution variables, for
composing the URL to any resource that the service offers. The approach taken by the WMTS
standard is to define the ResourceURL element that is used to advertise the URL template for each
matrix set that the service offers:

23

WMTS Layer Example

 <Layer>
 <ows:Title xml:lang="en">National Land Cover</ows:Title>
 <ows:WGS84BoundingBox>
 <ows:LowerCorner>-127.9521005274938 30.57146092341947</ows:LowerCorner>
 <ows:UpperCorner>-113.3506260963461 45.01357346325526</ows:UpperCorner>
 </ows:WGS84BoundingBox>
 <ows:Identifier>National_Land_Cover.National_Land_Cover</ows:Identifier>
 <ows:BoundingBox crs="urn:ogc:def:crs:EPSG::42303">
 <ows:LowerCorner>-2493045 1317885</ows:LowerCorner>
 <ows:UpperCorner>-1713555 2497245</ows:UpperCorner>
 </ows:BoundingBox>
 .
 .
 .
 <TileMatrixSetLink>
 <TileMatrixSet>3395</TileMatrixSet>
 </TileMatrixSetLink>
 <TileMatrixSetLink>
 <TileMatrixSet>smerc</TileMatrixSet>
 </TileMatrixSetLink>
 <ResourceURL format="image/x-jpegorpng"
 resourceType="tile"
 template="https://tb12-
1.cubewerx.com/a042/OpenImageMap/tilesets/USGS/National_Land_Cover/National_Land_Cover
/default/{TileMatrixSet}/{TileMatrix}/{TileRow}/{TileCol}.jop"/>
 <ResourceURL format="image/x-jpegorpng"
 resourceType="simpleProfileTile"
 template="https://tb12-
1.cubewerx.com/a042/OpenImageMap/tilesets/USGS/National_Land_Cover/National_Land_Cover
/default/smerc/{TileMatrix}/{TileRow}/{TileCol}.jop"/>
 .
 .
 .
 <ResourceURL format="application/json"
 resourceType="TileJSON"

template="https://tb12.cubewerx.com/a042/cubeserv/default/wmts/1.0.0/tileJSON/National
_Land_Cover.National_Land_Cover"/>
 </Layer>

It should be noted that these approaches are not mutually exclusive and one or more could be used
simultaneously in a capabilities document to advertise the resources that a RESTful service offers.

6.4. CSW capabilities document with REST extensions
This clause proposes modifications to the existing CSW 3.0 capabilities document schema to allow a
client to determine if a RESTful service interface is available and to determine which resources a

24

PubSub CSW service offers.

Unlike an RPC-based system, in a resource-based system there is no need to explicitly describe
operations (i.e. the verbs) because the set of operations is fixed by the HTTP protocol (i.e. HEAD,
OPTIONS, GET, POST, PUT and DELETE). As such, there is no need for an Operations metadata
section to exist in the capabilities document of a service that only implements a RESTful service
interface.

Generating a valid capabilities document without an operations metadata section is possible since
the cardinality of the ows:OperationMetadata element is minOccurs=0.

The following XML-Schema fragment adds three new elements to the existing CSW 3.0 capabilities
schema:

25

CSW Capabilities Schema

 <xsd:element name="Capabilities"
 type="csw30:CapabilitiesType" id="Capabilities"/>
 <xsd:complexType name="CapabilitiesType" id="CapabilitiesType">
 <xsd:annotation>
 <xsd:documentation>
 This type extends ows:CapabilitiesBaseType defined in OGC 06-121r9
 to include information about supported OGC filter components. A
 profile may extend this type to describe additional capabilities.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexContent>
 <xsd:extension base="ows:CapabilitiesBaseType">
 <xsd:sequence>
 <xsd:element name="ServiceConstraints"
 type="csw30:ConstraintListType"
 minOccurs="0"/>
 <xsd:element name="Conformance"
 type="csw30:ConstraintListType"
 minOccurs="0"/>
 <xsd:element name="Content"
 type="csw30:ContentType"
 minOccurs="0"/>
 <xsd:element ref="fes:Filter_Capabilities" minOccurs="0"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:complexType name="ConstraintListType">
 <xsd:sequence>
 <xsd:choice>
 <xsd:element ref="ows:Constraint"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element ref="ows:Parameter"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:choice>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="ContentType">
 <xsd:sequence>
 <xsd:element ref="atom:link" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>

The first two elements, csw30:ServiceConstraints and csw30:Conformance, are used to decouple the
conformance and constraint information which is currently encoded in the
ows:OperationsMetadata section using ows:Constraint and ows:Parameter elements. Embedding
this information in the ows:OperationsMetadata section presents a problem for RESTful services
because the operations metadata section must include at least 2 ows:Operation elements and as has

26

already been mentioned, the ows:OperationsMetadata section is not required for a RESTful-only
service.

The third element, csw30:Content, is simply a list of hypermedia controls that point to the resources
that the service offers (e.g. the catalogue record collections). All RESTful CSW implementations
shall include at least one hypermedia control that points to the collection of csw:Record records.
Profiles of the CSW, such as the CSW:ebRIM profile, may include additional resources that point to
the resource collections from the additional information model(s) offered.

The following example illustrates the capabilities document from a pubsub-enabled CSW that only
implements a REST binding.

PubSub CSW Capabilities Example

 <?xml version="1.0" encoding="UTF-8"?>
 <csw:Capabilities
 version="3.0.0"
 xmlns="http://www.opengis.net/cat/csw/3.0"
 xmlns:csw="http://www.opengis.net/cat/csw/3.0"
 xmlns:fes="http://www.opengis.net/fes/2.0"
 xmlns:ows20="http://www.opengis.net/ows/2.0"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.opengis.net/cat/csw/3.0
 http://schemas.opengis.net/csw/3.0/cswAll.xsd
 http://www.w3.org/1999/xlink
 http://www.w3.org/1999/xlink.xsd">
 <ows20:ServiceIdentification>
 <ows20:Title>Catalogue Service for Spatial Information</ows20:Title>
 <ows20:Abstract>terraCatalog 3.2 based OGC CSW 3.0 Catalogue Service for OGC
core and ISO metadata (describing geospatial services, datasets and
series)</ows20:Abstract>
 <ows20:Keywords>
 <ows20:Keyword>OGC</ows20:Keyword>
 <ows20:Keyword>CSW</ows20:Keyword>
 <ows20:Keyword>Catalog Service</ows20:Keyword>
 <ows20:Keyword>metadata</ows20:Keyword>
 <ows20:Keyword>CSW</ows20:Keyword>
 <ows20:Type
codeSpace="http://www.someGeospatialVocabulary.com">theme</ows20:Type>
 </ows20:Keywords>
 <ows20:ServiceType>CSW</ows20:ServiceType>
 <ows20:ServiceTypeVersion>3.0.0</ows20:ServiceTypeVersion>
 </ows20:ServiceIdentification>
 <ows20:ServiceProvider>
 <ows20:ProviderName>con terra GmbH</ows20:ProviderName>
 <ows20:ProviderSite xlink:type="simple"
 xlink:href="http://www.conterra.de"/>
 <ows20:ServiceContact>
 <ows20:IndividualName/>
 <ows20:PositionName/>

27

 <ows20:ContactInfo>
 <ows20:Phone>
 <ows20:Voice>+49-251-7474-400</ows20:Voice>
 <ows20:Facsimile>+49-251-7474-100</ows20:Facsimile>
 </ows20:Phone>
 <ows20:Address>
 <ows20:DeliveryPoint>Marting-Luther-King-Weg
24</ows20:DeliveryPoint>
 <ows20:City>Muenster</ows20:City>
 <ows20:AdministrativeArea>NRW</ows20:AdministrativeArea>
 <ows20:PostalCode>48165</ows20:PostalCode>
 <ows20:Country>Germany</ows20:Country>

<ows20:ElectronicMailAddress>conterra@conterra.de</ows20:ElectronicMailAddress>
 </ows20:Address>
 <ows20:OnlineResource xlink:href="mailto:conterra@conterra.de"/>
 </ows20:ContactInfo>
 </ows20:ServiceContact>
 </ows20:ServiceProvider>
 <csw:ServiceConstraints>
 <ows20:Parameter name="ElementSetNames">
 <ows20:AllowedValues>
 <ows20:Value>brief</ows20:Value>
 <ows20:Value>summary</ows20:Value>
 <ows20:Value>full</ows20:Value>
 </ows20:AllowedValues>
 </ows20:Parameter>
 <ows20:Constraint name="CoreQueryables">
 <ows20:AllowedValues>
 <ows20:Value>Title</ows20:Value>
 <ows20:Value>Subject</ows20:Value>
 <ows20:Value>Abstract</ows20:Value>
 <ows20:Value>AnyText</ows20:Value>
 <ows20:Value>Type</ows20:Value>
 <ows20:Value>Identifier</ows20:Value>
 <ows20:Value>Modified</ows20:Value>
 <ows20:Value>TemporalExtent</ows20:Value>
 </ows20:AllowedValues>
 </ows20:Constraint>
 <ows20:Constraint name="CoreSortables">
 <ows20:AllowedValues>
 <ows20:Value>Title</ows20:Value>
 <ows20:Value>Type</ows20:Value>
 <ows20:Value>Modified</ows20:Value>
 </ows20:AllowedValues>
 </ows20:Constraint>
 <ows20:Constraint name="DefaultSortingAlgorithm">
 <ows20:AllowedValues>

<ows20:Value>http://www.sdisuite.de/terraCatalog/documentation/descriprionOfSortalgori
thm.html</ows20:Value>

28

 </ows20:AllowedValues>
 </ows20:Constraint>
 <ows20:Constraint name="FedeartedCatalogues">
 <ows20:AllowedValues>
 <ows20:Value/>
 </ows20:AllowedValues>
 </ows20:Constraint>
 <ows20:Constraint name="OpenSearch">
 <ows20:AllowedValues>
 <ows20:Value>http://www.sdisuite.de/terraCatalog</ows20:Value>
 </ows20:AllowedValues>
 </ows20:Constraint>
 </csw:ServiceConstraints>
 <csw:Conformance>
 ...
 <!-- RESTful Catalogue binding? -->
 <ows20:Constraint name="RESTCatalogueBinding">
 <ows20:AllowedValues>
 <ows20:Value>true</ows20:Value>
 </ows20:AllowedValues>
 </ows20:Constraint>
 ...
 <!-- RESTful Basic Publisher? -->
 <ows20:Constraint name="RESTfulBasicPublisher">
 <ows20:AllowedValues>
 <ows20:Value>true</ows20:Value>
 </ows20:AllowedValues>
 </ows20:Constraint>
 ...
 <!-- Support for OpenSearch query parameters? -->
 <ows20:Constraint name="OpenSearch">
 <ows20:AllowedValues>
 <ows20:Value>true</ows20:Value>
 </ows20:AllowedValues>
 </ows20:Constraint>
 ...
 <!-- CSW-Response support? -->
 <ows20:Constraint name="CSW-Response">
 <ows20:AllowedValues>
 <ows20:Value>true</ows20:Value>
 </ows20:AllowedValues>
 </ows20:Constraint>
 <!-- ATOM-response support? -->
 <ows20:Constraint name="ATOM-response">
 <ows20:AllowedValues>
 <ows20:Value>true</ows20:Value>
 </ows20:AllowedValues>
 </ows20:Constraint>
 </csw:Conformance>
 <csw:Content>
 <atom:link xmlns:atom="http://www.w3.org/2005/Atom"

29

 rel="collection"

href="https://tb12.cubewerx.com/a037/cubeserv/default/wrs/3.0/csw/Records"/>
 <atom:link xmlns:atom="http://www.w3.org/2005/Atom"
 rel="collection"

href="https://tb12.cubewerx.com/a037/cubeserv/default/wrs/3.0/ebRIM/Association"/>
 <atom:link xmlns:atom="http://www.w3.org/2005/Atom"
 rel="collection"

href="https://tb12.cubewerx.com/a037/cubeserv/default/wrs/3.0/ebRIM/AuditableEvent"/>
 <atom:link xmlns:atom="http://www.w3.org/2005/Atom"
 rel="collection"

href="https://tb12.cubewerx.com/a037/cubeserv/default/wrs/3.0/ebRIM/AffectedObject"/>
 <atom:link xmlns:atom="http://www.w3.org/2005/Atom"
 rel="collection"

href="https://tb12.cubewerx.com/a037/cubeserv/default/wrs/3.0/ebRIM/Classification"/>
 <atom:link xmlns:atom="http://www.w3.org/2005/Atom"
 rel="collection"

href="https://tb12.cubewerx.com/a037/cubeserv/default/wrs/3.0/ebRIM/ClassificationNode
"/>
 <atom:link xmlns:atom="http://www.w3.org/2005/Atom"
 rel="collection"

href="https://tb12.cubewerx.com/a037/cubeserv/default/wrs/3.0/ebRIM/ClassificationSche
me"/>
 <atom:link xmlns:atom="http://www.w3.org/2005/Atom"
 rel="collection"

href="https://tb12.cubewerx.com/a037/cubeserv/default/wrs/3.0/ebRIM/ExternalIdentifier
"/>
 <atom:link xmlns:atom="http://www.w3.org/2005/Atom"
 rel="collection"

href="https://tb12.cubewerx.com/a037/cubeserv/default/wrs/3.0/ebRIM/ExternalLink"/>
 <atom:link xmlns:atom="http://www.w3.org/2005/Atom"
 rel="collection"

href="https://tb12.cubewerx.com/a037/cubeserv/default/wrs/3.0/ebRIM/ExtrinsicObject"/>
 <atom:link xmlns:atom="http://www.w3.org/2005/Atom"
 rel="collection"

href="https://tb12.cubewerx.com/a037/cubeserv/default/wrs/3.0/ebRIM/Federation"/>
 <atom:link xmlns:atom="http://www.w3.org/2005/Atom"
 rel="collection"

href="https://tb12.cubewerx.com/a037/cubeserv/default/wrs/3.0/ebRIM/Organization"/>
 <atom:link xmlns:atom="http://www.w3.org/2005/Atom"

30

 rel="collection"

href="https://tb12.cubewerx.com/a037/cubeserv/default/wrs/3.0/ebRIM/RegistryPackage"/>
 <atom:link xmlns:atom="http://www.w3.org/2005/Atom"
 rel="collection"

href="https://tb12.cubewerx.com/a037/cubeserv/default/wrs/3.0/ebRIM/Registry"/>
 <atom:link xmlns:atom="http://www.w3.org/2005/Atom"
 rel="collection"

href="https://tb12.cubewerx.com/a037/cubeserv/default/wrs/3.0/ebRIM/Service"/>
 <atom:link xmlns:atom="http://www.w3.org/2005/Atom"
 rel="collection"

href="https://tb12.cubewerx.com/a037/cubeserv/default/wrs/3.0/ebRIM/ServiceBinding"/>
 <atom:link xmlns:atom="http://www.w3.org/2005/Atom"
 rel="collection"

href="https://tb12.cubewerx.com/a037/cubeserv/default/wrs/3.0/ebRIM/SpecificationLink"
/>
 <atom:link xmlns:atom="http://www.w3.org/2005/Atom"
 00 rel="collection"

href="https://tb12.cubewerx.com/a037/cubeserv/default/wrs/3.0/ebRIM/Subscription"/>
 <atom:link xmlns:atom="http://www.w3.org/2005/Atom"
 rel="collection"

href="https://tb12.cubewerx.com/a037/cubeserv/default/wrs/3.0/ebRIM/AdhocQuery"/>
 <atom:link xmlns:atom="http://www.w3.org/2005/Atom"
 rel="collection"

href="https://tb12.cubewerx.com/a037/cubeserv/default/wrs/3.0/ebRIM/User"/>
 </csw:Content>
 <fes:Filter_Capabilities xmlns:ows11="http://www.opengis.net/ows/1.1">
 ...
 </fes:Filter_Capabilities>
 </csw:Capabilities>

A CSW client can check the constraints named RESTCatalogueBinding and RESTfulBasicPublisher to
see of the service offers a RESTful interface. The csw:Content section contains the list of additional
resources that are available (in addition to any resource implicitly defined by the specification).

6.4.1. OPTIONS method

The HTTP OPTIONS method may be used on any resource to determine what HTTP methods may be
used with the resource and what representations are available. It is presented here because the
OPTIONS methods may be used to interrogate resources to determine information beyond what
might be presented in a capabilities document. The following sequence diagram illustrate the use of
the OPTIONS method.

31

Example 1: Determine what options are available for the capabilities document.

CLIENT SERVER
| |
| OPTIONS / HTTP/1.1 |
| Host: www.someserver.com <http://www.someserver.com> |
|-->|
| |
| HTTP/1.1 200 OK |
| Allow: OPTIONS, GET |
| Accept: application/xml, text/html |
|<--|

In this case, the available methods are the OPTIONS and GET methods and the available
representations are XML or HTML.

Example 2: Determine what options are available for the csw:Record resource.

CLIENT SERVER
| |
| OPTIONS /Record HTTP/1.1 |
| Host: www.someserver.com <http://www.someserver.com> |
|-->|
| |
| HTTP/1.1 200 OK |
| Allow: OPTIONS, GET |
| Accept: application/xml, text/xml, application/atom+xml |
|<--|

In this case, the available methods are the OPTIONS and GET methods and the resource may be
represented as XML or ATOM. It should be noted that for this server, the /Record resource is a read-
only resource.

Example 3: Determine what options are available to the /ExtrinsicObject resource.

CLIENT SERVER
| |
| OPTIONS /Record HTTP/1.1 |
| Host: www.someserver.com <http://www.someserver.com> |
|-->|
| |
| HTTP/1.1 200 OK |
| Allow: OPTIONS, GET, POST, PUT, DELETE |
| Accept: application/xml, text/xml, application/atom+xml |
|<--|

In this case, the available methods are OPTIONS, GET, POST, PUT and DELETE which indicates the

32

new instanced of an ExtrinsicObject may be created, modified and deleted. The available
representations are XML and ATOM.

6.5. Specific adaptations
This chapter describes specific adaptations for CSW 2.0.2, 3.0, and related specifications.

6.5.1. CSW 2.0.2

CNR has experimented with the implementation of PubSub on top of a CSW 2.0.2 instance (see also
Appendix Prototype).

Basic Publisher requires (Req 2) that a Publisher advertise the conformance classes which are
supported by the server. Each supported conformance class shall be identified by a unique value of the
Profile property of the ServiceIdentification section of the capabilities document, and the Publisher
shall pass all tests defined for each listed conformance class.

However, CSW 2.0.2 depends on OWS Common 1.0.0, which does not define the Profile property in
ServiceIdentification. To work around this issue, a CSW 2.0.2 shall include an additional OWS
Common 1.1 ServiceIdentification block in the ExtendedCapabilities, as exemplified below.

ServiceIdentification

<ExtendedCapabilities xmlns:ows1_1="http://www.opengis.net/ows/1.1"
xmlns:pubsub="http://www.opengis.net/pubsub/1.0">
 <ows1_1:ServiceIdentification>
 <ows1_1:ServiceType>CSW</ows1_1:ServiceType>
 <ows1_1:ServiceTypeVersion>2.0.2</ows1_1:ServiceTypeVersion>
 <ows1_1:Profile>http://www.opengis.net/spec/pubsub/1.0/conf/rest/basic-publisher
 http://www.opengis.net/spec/pubsub/1.0/conf/core/basic-publisher
 </ows1_1:Profile>
 </ows1_1:ServiceIdentification>
...

ISO Application Profile

CNR has experimented with the implementation of PubSub on top of a CSW-ISO instance (see also
Appendix Prototype). No specific adaptation was found to be needed to implement PubSub in
conjunction with the ISO Application Profile content model.

OASIS ebRIM Application Profile

Compusult has experimented with the implementation of PubSub on top of a CSW-ebRIM instance.
The rim:Subscription and the rim:AdhocQuery objects have proved useful to implement the PubSub
Subscribe operation and the PubSub Subscription concept, as detailed in chapter CSW3.0.

A9 OpenSearch extension

CNR has experimented with the implementation of PubSub in conjunction with the OpenSearch

33

extension for CSW 2.0.2 (see also Appendix Prototype). OpenSearch templates have proved a useful
syntax for the SupportedCapabilities element of a FilterLanguage, to describe restrictions of the
filter expressions allowed in Subscriptions, as exemplified in chapter OWSFilterCapabilities.

SOAP binding

Compusult has experimented with the implementation of PubSub on top of a CSW based on the
SOAP binding, by implementing the SOAP Basic Publisher Conformance Class (see also chapter
CSW3.0). No specific adaptation was found to be needed to implement PubSub in conjunction with
the SOAP binding.

W3C DCAT

W3C DCAT is an RDF vocabulary designed to facilitate interoperability between data catalogs
published on the Web. The use of DCAT to describe datasets increases discoverability and enables
applications to consume metadata from multiple catalogs. It also supports the implementation of
distributed queries across federated catalogs.

DCAT is complementary to the actual catalog content model, hence no specific adaptation is
anticipated to implement PubSub alongside DCAT. Future research may evaluate the use of DCAT
for notification encoding.

6.5.2. CSW 3.0

Compusult has experimented with the implementation of PubSub on top of a CSW 3.0 instance,
implementing a PubSub adapter conforming to the SOAP Basic Publisher Conformance Class
defined in the PubSub SOAP Binding extension.

Basic Publisher requires (Req 2) that a Publisher advertise conformance classes which are supported
by the server. Each supported conformance class shall be identified by a unique value of the Profile
property of the ServiceIdentification section of the capabilities document, and the Publisher shall pass
all tests defined for each listed conformance class.

Since CSW 3.0 is based on OWS Common 2.0, this is easily accomplished:

<ows20:ServiceIdentification>
 <Profile>http://www.opengis.net/spec/pubsub/1.0/conf/soap/basic-
publisher</Profile>
</ows20:ServiceIdentification>

The following snippet is a Subscribe request (mapped to the WS-BaseNotification
NotificationProducer Subscribe operation), with an OGC Filter specifying a keyword and an area of
interest.

Subscribe request

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:wsn="http://docs.oasis-open.org/wsn/b-2"

34

xmlns:wsa="http://www.w3.org/2005/08/addressing"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:fes="http://www.opengis.net/fes/2.0"
 xmlns:gml="http://www.opengis.net/gml/3.2"
 xmlns:pubsub="http://www.opengis.net/pubsub/1.0"
 xsi:schemaLocation="http://schemas.xmlsoap.org/soap/envelope/
http://schemas.xmlsoap.org/soap/envelope/
 http://docs.oasis-open.org/wsn/b-2 http://docs.oasis-open.org/wsn/b-2.xsd
 http://www.w3.org/2005/08/addressing http://www.w3.org/2006/03/addressing/ws-
addr.xsd
 http://www.opengis.net/fes/2.0 http://schemas.opengis.net/filter/2.0/filterAll.xsd
 http://www.opengis.net/gml/3.2 http://schemas.opengis.net/gml/3.2.1/gml.xsd
 http://www.opengis.net/pubsub/1.0
http://schemas.opengis.net/pubsub/1.0/pubsubAll.xsd">
 <soap:Header>
 <wsa:Action>http://docs.oasis-open.org/wsn/bw-
2/NotificationProducer/SubscribeRequest</wsa:Action>
 </soap:Header>
 <soap:Body>
 <wsn:Subscribe>
 <!--
 Identifier and location for the message consumer (receiver). Messages
(notifications) will be delivered here
 -->
 <wsn:ConsumerReference>
 <wsa:Address>mailto:somebody@someplace.com</wsa:Address>
 </wsn:ConsumerReference>
 <wsn:Filter>
 <wsn:MessageContent Dialect="http://www.opengis.net/fes/2.0">
 <fes:Filter>
 <fes:And>
 <fes:PropertyIsLike escapeChar="\" singleChar="_"
wildCard="%">
 <fes:ValueReference>csw:AnyText</fes:ValueReference>
 <fes:Literal>weather%</fes:Literal>
 </fes:PropertyIsLike>
 <fes:Intersects>

<fes:ValueReference>ows:BoundingBox</fes:ValueReference>
 <gml:Envelope srsName="urn:fes:def:crs:EPSG::4326">
 <gml:lowerCorner>13.0983 31.5899</gml:lowerCorner>
 <gml:upperCorner>35.5472 42.8143</gml:upperCorner>
 </gml:Envelope>
 </fes:Intersects>
 </fes:And>
 </fes:Filter>
 </wsn:MessageContent>
 </wsn:Filter>
 <wsn:InitialTerminationTime>2016-12-
11T00:00:00Z</wsn:InitialTerminationTime>
 <!-- Required for subscription creation -->

35

 <pubsub:PublicationIdentifier>urn:uuid:7f9vc445-9c3a-21d9-8679-
0400200c9a54</pubsub:PublicationIdentifier>
 <!-- The requested mime type for the published contents -->
 <pubsub:ContentType>text/xml</pubsub:ContentType>
 </wsn:Subscribe>
 </soap:Body>
</soap:Envelope>

When creating the Subscription, the PubSub-CSW maps it to a rim:Subscription object, which in
turn is mapped to a rim:AdhocQuery object containing the filter from the PubSub Subscription.

The rim:AdhocQuery is then executed periodically against the data published in the catalog, using
the filter criteria and a "last run date", to ensure only the latest new and updated records are
retrieved.

To optimize the performance of the PubSub-CSW (the overarching Testbed 12 thread for this
activity is Large-Scale Analytics, focussing on how to handle large amounts of data), it is
recommended to leverage the CSW 3.0 requestId mechanism, in combination with the SOAP
interface, and the Message Transmission Optimization Mechanism (MTOM), in combination with
XML-binary optimized packaging.

In practice, when the CSW executes the rim:AdhocQuery and discovers new and/or updated
records, their RegistryObject identifiers are cached and labeled with a given auto-generated UUID
(or with the id of the rim:AdhocQuery). This UUID will then be communicated to the Subscriber in
the requestId attribute of the TransactionResponse.

<TransactionResponse>
 <TransactionSummary requestId="SomeUUID">
 <totalInserted>3</totalInserted>
 <totalUpdated>5</totalUpdated>
 <totalDeleted>0</totalDeleted>
 </TransactionSummary
</TransactionResponse>

Clients can then use this requestId in subsequent GetRecords requests, to retrieve the matching
records:

36

<?xml version="1.0" encoding="ISO-8859-1" standalone="no"?>
<csw:GetRecords xmlns:rim="urn:oasis:names:tc:ebxml-regrep:xsd:rim:3.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:gml="http://www.opengis.net/gml"
 xmlns:csw="http://www.opengis.net/cat/csw/3.0" maxRecords="500"
 requestId="SomeUUID"
 outputFormat="application/xml" outputSchema="http://www.isotc211.org/2005/gmd"
 service="CSW" startPosition="1" version="3.0.0"
 xsi:schemaLocation="http://www.opengis.net/cat/csw/3.0
http://schemas.opengis.net/csw/3.0.0/cswGetRecords.xsd http://www.opengis.net/gml/3.2
http://schemas.opengis.net/gml/3.2.1/gml.xsd">
 <csw:Query typeNames="rim:RegistryObject">
 <csw:ElementSetName typeNames="rim:RegistryObject">full</csw:ElementSetName>
 </csw:Query>
</csw:GetRecords>

Because the requestId returned in the TransactionResponse was used to cache the records during
the initial internal query, the CSW does not need to query the database again, but simply returns
the objects associated with the cached identifiers.

37

Chapter 7. Basic PubSub 1.0 extension for
the generic OWS
This chapter introduces a PubSub extension for the generic OWS. This extension is conceived as a
simple way to enable the existing request/reply OWS specifications to Publish/Subscribe, by
implementing the OGC Publish/Subscribe Interface Standard 1.0.

An OWS implementing this extension is capable of accepting its usual requests as filters, and of
sending notifications about data/metadata updates, based on its existing semantics and syntax
expressiveness.

7.1. Conceptual model
This chapter describes how PubSub 1.0 Core operations, encodings and messages are modeled in
terms of the functionalities of the generic OWS. No assumption is made on the capabilities of the
target OWS, other than those defined by the OGC Web Services Common Standard. Hence this
extension may apply, for example, to WFS, WCS, and other OWS interfaces.

The PubSub specification is agnostic as to what constitutes a change, i.e. an event that should cause
a notification by a Publisher (aka its event model). It is only required that a Publisher instance
communicate what notifications it will emit by advertising them in the Publication section of its
Capabilities document (see below).

In general, a PubSub-OWS may be able to notify about changes to any component of its information
set. For example, it may notify about changes to its Capabilities document. The extension
introduced in this chapter addresses the most general case, at the expenses of efficiency and
semantic accuracy. The precise definition of an event model for the various OWS’s is left to the
relevant OGC Working Groups.

The basic PubSub-CSW MEP introduced in the previous chapter can be generalized as follows (see
figure Figure 4):

1. The OWS client subscribes specifying a request to be used as filter for the notifications;

2. The OWS client obtains the Time-0 response via a standard Request/Reply, with the same
request as above;

3. The OWS notifies the client of subsequent updates to the response, according to its existing
semantics and syntax.

Figure 7. OWS Publish/Subscribe MEP

38

This may be formalized in an “OWS Request/Reply Publisher” Conformance Class that:

• Accepts OWS requests as subscription filters

• The Publisher may constraint the filter expressions allowed in Subscriptions (e.g. by
imposing OpenSearch templates)

• Sends corresponding OWS responses to notify about data/metadata updates

This MEP is a simple way to enable existing OWSs to PubSub, allowing to bind the PubSub 1.0 Core
operations, encodings and messages to the standard OWS functionalities, data models, and
semantics.

7.2. Required Capabilities components
PubSub Core requires that the OWS advertise the implemented Conformance Classes in its
Capabilities document, namely in the Profile property of the ServiceIdentification section (as of
OWS Common 1.1). Besides, it requires that the additional Capabilities components represented in
figure Figure 2 are returned in the GetCapabilities response, but does not specify the specific
mechanism for incorporating these additional Capabilities components into the OWS Capabilities
document. These extension proposes to include these additional Capabilities components in the
ExtendedCapabilities of the OWS, as detailed in the following chapters.

Figure 8. PubSub Capabilities components

7.2.1. FilterCapabilities

The FilterCapabilities section describes the filtering-related capabilities of a PubSub-OWS, i.e. the
filter languages it supports for matching events against subscriptions (e.g., OGC Filter Encoding).
This allows the pluggability of filter languages.

39

Figure 9. Filter Capabilities

The SupportedCapabilities elements allows restricting the acceptable requests, possibly providing
templates. The following Capabilities snippet declares that this PubSub-OWS instance (namely, a
CSW) accepts as subscription filters GetRecords requests conforming to the specified OpenSearch
template. Multiple templates may be introduced, specifying multiple FilterLanguages.

FilterCapabilities

<FilterCapabilities>
 <FilterLanguage>
 <Abstract>This PubSub-OWS accepts requests as subscription filters, according to
the OpenSearch template specified in SupportedCapabilities.
 </Abstract>
 <Identifier>http://www.opengis.net/spec/pubsub/1.0/conf/ows/request-reply-
publisher</Identifier>
 <SupportedCapabilities>http://tb12.essi-lab.eu/pubsub-
csw/services/opensearch?ct={count?}&st={searchTerms?}&bbox={geo:box?}&ts={
time:start?}&te={time:end?}
 </SupportedCapabilities>
 </FilterLanguage>
</FilterCapabilities>

7.2.2. DeliveryCapabilities

The DeliveryCapabilities section describes the delivery methods supported by the PubSub-OWS, e.g.
SOAP, WS-Notification, ATOM, SSE, WebSockets, OAI-PMH. This allows the pluggability of delivery
methods.

40

Figure 10. Delivery Capabilities

The following Capabilities snippet declares that this PubSub-OWS instance delivers notifications via
SSE (see chapter Delivery methods, below).

DeliveryCapabilities

<DeliveryCapabilities>
 <DeliveryMethod>
 <Abstract>This PubSub-OWS supports notification delivery via SSE.
 </Abstract>
 <Identifier>http://www.w3.org/TR/eventsource/
 </Identifier>
 </DeliveryMethod>
</DeliveryCapabilities>

Delivery methods

The DeliveryCapabilities section describes the methods supported by the PubSub-OWS for
delivering notifications. Publishers may offer more than one method of delivery for each
Publication, to be chosen by Subscribers. Publish/Subscribe would imply push-style message
delivery, however some methods may actually be pull-based (e.g. polling), under the hood.

Examples include: SOAP and related technologies, such as WS-Notification (used by PSSB), ATOM
(polling using the “If-Modified-Since” and “start-index” parameters), PubSubHubbub, OAI-PMH
(polling using the “from” parameter), e-mail, SMS, WebSockets, SSE.

Server-Sent Events (SSE) is a pure push-style communication technology based on HTTP and the
SSE EventSource API standardized as part of HTML5 by the W3C. A SSE client (e.g. all modern
HTML 5.0 browsers) receives automatic updates from a server via HTTP connection, simply setting
the following parameters:

• ContentType: "text/event-stream;charset=UTF-8”

• Cache-Control: "no-cache”

• Connection: "keep-alive”

7.2.3. Publications

The Publications section describes the contents offered by the PubSub-OWS, i.e. the sequences of
notifications that Subscribers can subscribe to.

41

Figure 11. Publications

The following Capabilities snippet declares a publication that notifies on all the relevant events for
this PubSub-OWS. Notifications can be filtered with the semantics of the requests of this OWS and
are delivered via SSE, encoded in JSON (see chapter Notification encoding, below).

Publications

<Publications>
 <Publication>
 <Abstract>>This publication notifies on all the relevant events for this PubSub-
OWS.
 </Abstract>
 <Identifier>ALL</Identifier>
 <ContentType>application/json</ContentType>

<SupportedFilterLanguage>http://www.opengis.net/spec/pubsub/1.0/conf/ows/request-
reply-publisher</SupportedFilterLanguage>

<SupportedDeliveryMethod>http://www.w3.org/TR/eventsource/</SupportedDeliveryMethod>
 </Publication>
</Publications>

Notification encoding

For the generic OWS instance, no operation is defined that provides the basic semantics of “insert”,
“update”, and “delete” actions on the content managed by the instance.

The most generic mechanism to notify about updates is that the Publisher re-send the whole
response element corresponding to the request used as filter in the Subscription. For example, in
the case of WFS, if the client subscribes with a wfs:GetFeature request as a filter, the PubSub-WFS
should notify about any changes by delivering a standard wfs:FeatureCollection, in response to that
request.

By receiving the new response and comparing it with the previous one, a Subscriber can figure out
the changes. Future evolutions of this extension may evaluate more efficient and semantically
accurate encoding of notifications. A possible option for XML-based content types is XMLdiff (e.g.
XML Patch, RFC 5261), or annotations (XML attributes) to add simple CRUD semantics on top of the

42

existing XSDs.

7.3. Support to legacy components
The integration of legacy components in an eventing architecture is desirable in a number of
scenarios. However, legacy components may not be instrumented to monitor their state for the
purpose of notification, nor to react upon notifications from other components (or they may, but by
legacy, non-standard mechanisms).

Implementing the PubSub 1.0 Standard in a legacy component may not be feasible or practical. In
some cases, the legacy component can be adapted to the Publish/Subscribe MEP by an additional
functional entity that realize the Publish/Subscribe functionalities. Such mediating entity acts as a
proxy/adapter, i.e. a middleman between the source and the target of the message exchange,
implementing the behavior and/or the interfaces required by the PubSub specification.

This use case has been considered in the phase of requirement analysis for the PubSub 1.0 standard
[3: See also the Proxied Publish/Subscribe use case (access restricted to OGC Members):
https://portal.opengeospatial.org/wiki/PUBSUBswg/PubSubSwgUseCaseBrokeredPubSub] and is
supported by the Brokering Publisher Conformance Class of the PubSub 1.0 Standard.

Depending on the intended role of the legacy component, the use case is twofold:

• Proxied Subscribe – a proxy/adapter component subscribes to a Publisher on behalf of the
legacy system and acts appropriately upon receiving notifications of interest.

Figure 12. Proxied subscribe

• Proxied Publish – a proxy/adapter component monitors the legacy system and generates

43

https://portal.opengeospatial.org/wiki/PUBSUBswg/PubSubSwgUseCaseBrokeredPubSub

appropriate notifications upon relevant events (according to a given event model). The
proxy/adapter may act as a full-fledged Publisher, accepting Subscriptions against the sequence
of notifications, or just act as a pure Sender, relaying each notification to another Publisher
entity (see figure Figure 10).

Figure 13. Proxied publish

The Brokering Publisher Conformance Class of the PubSub 1.0 Standard supports this use case. In
fact, a Brokering Publisher (or, more simply, a broker), is an intermediary between Subscribers and
other Publishers which have been previously registered with the broker. The broker is not the
original producer of messages, but only acts as a message middleman, re-publishing messages
received from other Publishers and decoupling them from their Subscribers. A broker may shuffle
or aggregate messages into different publications, may offer publications with different delivery
methods than the original ones, or otherwise process the messages (e.g. converting their format). A
broker may also provide advanced messaging features, such as load balancing.

In general, a broker is a distinct third party that acts as a communication intermediary between the
source and the target of a communication, mediating their interfaces and in some cases adding new
behavior. Hence, a broker may conveniently act as a proxy/adapter for one or more legacy
components, flexibly implementing any combination of the above twofold use case.

The Brokering Publisher Conformance Class does not mandate any specific behavior to be
implemented, in particular as regards the support to Delivery Capabilities, Filtering Capabilities,
and Publications of the brokered Publishers. Brokers are free to interact with the brokered
Publishers as appropriate for their specific application. Interactions may include subscribing to the
offered publications, harvesting the data, decorating the capabilities, or other behavior (future
extensions of the Conformance Class may standardize the behavior of Brokering Publishers in
specific application scenarios).

Examples of Brokering Publisher applications include the following:

• Publisher Aggregation – a broker subscribes to several Publishers and relays their publications

44

(without modifications) to interested Subscribers, acting like a Proxy to multiple Publishers.
Optionally, the broker may adapt the service interface (binding) of the aggregated Publishers.

• Publication Aggregation – a broker receives messages generated by several Publishers (e.g.
dumb sensors) and publishes them to the interested Subscribers as a single publication at a
single endpoint, for the sake of simpler connectivity, or improved accountability, or easier
management of subscriptions, etc.

• GeoSynchronization (GSS) - GSS is a mediation service that controls transactional access to one
or more WFS’s (e.g. to moderate updates in crowdsourcing scenarios). A GSS maintains several
event channels, including one for changes applied to the WFS content. Clients can subscribe to
the channels (possibly specifying a filter) and be notified by the GSS whenever new entries
appear. A GSS may be used to monitor insert/update/delete operations performed on one or
more WFS’s and send appropriate notifications, implementing the PubSub 1.0 Brokering
Publisher Conformance Class. Whenever an event (i.e. a Transaction) occurs on a WFS, the GSS
will notify Subscribers of that event. In this way WFS’s that do not implement the PubSub 1.0
Standard can participate in an eventing architecture. There are plans to extend GSS to other
OGC access services, such as WCS.

45

Chapter 8. Report on the PubSub RESTful
Binding
The PSRB specifies how PubSub 1.0 Core operations, encodings and messages are bound to a
RESTful service interface. The specification is currently in draft state and is shared on the PubSub
SWG online folders, as document OGC 13-132. We have assessed, improved and experimented the
current PSRB specification, implementing a PubSub-enabled CSW with a RESTful interface.

To maximize our contribution to the work of the PubSub Standards Working Group (SWG), we
agreed with the Testbed-12 management to align with the SWG toolchain, annotating our comments
and observations in the PSRB document draft itself. This way, the draft has always remained
available to the PubSub SWG, which has also been identified as the primary Working Group to
review this ER.

The main findings from this activity are briefly summarized in the following:

• Consolidated design of the PubSub RESTful API interface (note: [endpoint] is the service
instance RESTful endpoint; the trailing '/' is optional):

Endpoint Resource Method Behavior Request
entity

[endpoint]/ PubSub
capabilities

GET Return
capabilities
document

-

[endpoint]/sub
scriptions

Collection of
(active?)
subscriptions
created by
user

GET Return
subscription
list

-

POST Create
subscription

application/x-
www-form-
urlencoded,
application/x
ml

[endpoint]/sub
scriptions/{id}

Subscription GET Return
subscription

-

PUT Update
(replace)
subscription

application/x
ml

PATCH Partial update
of
subscription

application/xq
uery (XQUF)

DELETE Delete
subscription
(unsubscribe)

-

46

• PATCH method not recommended because of unclear semantics and scarce support in
implementations (e.g. Java JAX-RS annotations);

• OPTION method recommended for resource browsing/discovery;

• HEAD method recommended for implementing security mechanisms (see also A065);

• Implemented RESTful Basic Publisher on top of a CSW-ISO instance, offering publications in
JSON and delivering notifications via Server-Sent Events (SSE).

47

Appendix A: XML Schema Documents
No additional XML Schema Documents are introduced in this Engineering Report.

48

Appendix B: Relevant findings
• OGC 13-131, OGC® Publish/Subscribe Interface Standard 1.0 - Core

• Typos in Basic Publisher requirement tables (§8, p. 22). These typos were fixed directly in
the document, before its first publication.

B.1. Recommendations
• The following activities may be considered in defining Testbed 13 requirements, mainly as part

of Work Items 2 and 3: [4:
http://www.opengeospatial.org/projects/initiatives/testbed13/#_work_items]

• PubSub-broker: the Brokering Publisher Conformance Class may be used to integrate
legacy components (not PubSub-enabled) into an event-based scenario. The activity may
implement a proxy component, implementing the behavior and/or the interface required by
the PubSub specification, and acting as a middleman between sources and targets of
message exchanges (see also chapter Legacy Components);

• PubSub-enabled OWS’s (other than Catalogs): e.g. access services like WCS, to notify
subscribers when new coverages are made available; or portrayal services like WMS. The
activity may regard the implementation of the PubSub extension for the generic OWS
introduced in chapter OWS PubSub Extension, or the definition of specific PubSub
conformance classes, like the one introduced for CSW in chapter CSW PubSub Extension);

• Machine-to-machine Publish/Subscribe (M2M-PubSub): when subscribers are services
themselves, instead of human users, advanced use-cases may be implemented involving an
interconnected and interchangeable set of loosely coupled actors (e.g. an analyst gets
imagery on a given region of interest, anytime it becomes available, by means of a
combination of Catalog, Web Event Processing, and Web Coverage Services). The activity
may also explore the interoperability of OGC PubSub with other orchestration technologies
(cf. choreography, workflows, WebHooks, etc.);

• For the PubSub SWG:

• Evaluate the Basic PubSub 1.0 extension for the generic OWS as a basis for a Best Practice
Paper;

• Consider incorporating (part of) chapter PSRB Report in the current Publish/Subscribe
RESTful Binding (PSRB) draft.

• For the Catalog DWG and the Catalog Services 3.0 SWG:

• Evaluate the Specific PubSub 1.0 extension for the CSW as a basis for a Best Practice Paper.

B.2. Use Case(s)
The main use-case addressed by the extensions introduced in this document is the notification
when new resources match the client’s criteria of interest, as specified in the client’s subscription.
Additional use-cases may include: the deletion or the modification of existing resources; the

49

http://www.opengeospatial.org/projects/initiatives/testbed13/#_work_items

modification of the Capabilities document itself; or changes in other pieces of information
retrievable from an OWS. Such use-cases may be investigated in a future edition of the Testbed
Initiative, or by the individual Working Groups interested.

B.3. Architectural schemes
None relevant.

B.4. Change Requests
• OGC 13-131, OGC® Publish/Subscribe Interface Standard 1.0 - Core

• Figure 1 shows a dependency of Basic Publisher from Basic Receiver, which is probably
incorrect and should be deleted;

• The title of chapter 15 reads "Requirements Class - Capabilities Filtering extends Basic
Publisher", whereas it should read "Requirements Class - Capabilities Filtering extends
Standalone Publisher";

• Add paragraph on GetCapabilities to the PublicationManager class (e.g. §14.2) and make
§14.1.1 (ProcessingCapabilities) a sub-paragraph, in analogy to §13.3 and §13.3.1;

• Figure 1 may detail the dependency of Basic Publisher on OWS clauses 8, 10, and Standalone
Publisher on OWS clause 7.

• OGC 06-121r3, OGC® Web Services Common Specification, version 1.1.0 (9 February 2007)

• As of OWS Common 1.1, an OWS can advertise the implemented conformance classes in its
Capabilities document, namely in the Profile property of the ServiceIdentification section.
However, some specifications (e.g. CSW 2.0.2) depend on OWS Common 1.0.0, which does
not define the Profile property in ServiceIdentification. An alternative mechanism should be
recommended to work around this issue, e.g. including an additional OWS Common 1.1
ServiceIdentification block in the ExtendedCapabilities;

• The PubSub Core 1.0 Standard requires additional Capabilities components to be returned in
the GetCapabilities response, but does not specify the specific mechanism for incorporating
these additional Capabilities components into the OWS Capabilities document. A specific
mechanism may be defined, e.g. including these additional Capabilities components in the
ExtendedCapabilities.

50

Appendix C: Prototype PubSub-CSW
implementation
Some of the solutions proposed in the ER have been experimented by CNR in the context of the
Testbed 12 A016 component deliverable: CSW 2.0.2 with PubSub Core Support.

The prototype instance [5: http://tb12.essi-lab.eu/pubsub-csw] implements CSW-ISO (OGC 07-006r1,
07-045) and features a PubSub adapter that provides a RESTful API satisfying the requirements for
a Basic Publisher. It offers publications in JSON, and delivers notifications via Server-Sent Events
(SSE). An associated prototype client (in-kind contribution) may be used to demonstrate it. The
following chapters describe specific design aspects of the implementation and provide examples of
publish/subscribe messages.

C.1. Publications
This instance offers the following publications in the JSON format, over a SSE stream:

• EARTHQUAKE - notifications on new records from the USGS Earthquake Catalog, an
implementation of the FDSN Event Web Service Specification, allowing custom searches for
earthquake information using a variety of parameters. As described in the capabilities
document, this publication supports only the spatial filter;

• RANDOM - random notifications forged for testing convenience, generated on regular frequency
(configured from GI-cat configuration manager; default is every 1 minute). Each notification
contains 1-5 records; the content of "reports" is a constant string (see the example below). As
described in the capabilities document, this publication supports only the empty filter;

• ROOT - notifications on new records added to the whole record set of this catalog. As described
in the capabilities document, this publication supports only the empty filter.

Note: a previous version of the service offered the following publication (now deprecated by IRIS):
IRIS - notifications on new records from the IRIS DMC FDSNWS Event Web service. The IRIS Event
service aggregates event data from a number of independently-operated catalogs of seismic events.

The following is an example of a notification, as shown by Chrome opening the DeliveryLocation
URL:

51

http://tb12.essi-lab.eu/pubsub-csw

event: e91930
retry: 300000
data: {"result":"{\"reports\":[{\"description\":\"The
abstract\",\"topic\":[\"documentFileGraphic\"],\"where\":[{\"east\":96,\"south\":-
30,\"north\":36,\"west\":-168}],\"id\":\"b6d247cd-aae0-4f14-a14b-
ba369fde0fef\",\"type\":\"simple\",\"title\":\"Random dataset b6d247cd-aae0-4f14-a14b-
ba369fde0fef\",\"keyword\":[\"Another keyword\",\"A
keyword\"],\"harvested\":true,\"geossCategory\":[\"documentFileGraphic\"]},{\"descript
ion\":\"The
abstract\",\"topic\":[\"documentFileGraphic\"],\"where\":[{\"east\":116,\"south\":-
90,\"north\":0,\"west\":-61}],\"id\":\"e8ec62ba-8de4-4fd9-bad5-
b248eefa8d7d\",\"type\":\"simple\",\"title\":\"Random dataset e8ec62ba-8de4-4fd9-bad5-
b248eefa8d7d\",\"keyword\":[\"Another keyword\",\"A
keyword\"],\"harvested\":true,\"geossCategory\":[\"documentFileGraphic\"]}],\"resultSe
t\":{\"pageCount\":1,\"size\":2,\"pageIndex\":1,\"start\":1,\"pageSize\":10}}","query"
:{"json":"http://tb12.essi-lab.eu/pubsub-csw/services/opensearch?reqID=43d77f&ts=2015-
01-01&te=2015-09-01&bbox=-10,-
10,10,10&st=water&parents=&sources=&outputFormat=application/json&from=1465996958756&u
ntil=1465997022431","atom":"http://tb12.essi-lab.eu/pubsub-
csw/services/opensearch?reqID=43d77f&ts=2015-01-01&te=2015-09-01&bbox=-10,-
10,10,10&st=water&parents=&sources=&outputFormat=application/atom+xml&from=14659969587
56&until=1465997022431"},"from":1465996958756,"until":1465997022431,"updates":"2"}

Note that:

• the "event" field corresponds to the subscription identifier (in this case "e91930");

• the "retry" field instructs the browser to attempt a new connection (in case of disconnection)
after 5 minutes (300.000 milliseconds);

• the "data" field contains a JSON object with the following properties:

• "result": this object contains the "reports" array, which in turn contains:

• the records which satisfy the subscription filter, 2 in this example (see this link for more
info about the "reports" field);

• a "resultSet" object (see this link for info about the "resultSet");

• "query": this object contains the URL to retrieve the updates from the GI-cat OpenSearch
interface in JSON or ATOM;

• "from" and "until": the time extent of the updates expressed in Unix time;

• "updates": the number of updates (corresponds to the length of the "reports" array).

C.2. Subscribe

C.2.1. Subscribe request

The following is an example of Subscribe request on the ROOT publication with an empty filter.

52

POST /pubsub-rest/subscriptions
Content-Type: application/xml

<?xml version="1.0" encoding="UTF-8"?>
<pubsub:Subscribe xmlns="http://www.opengis.net/pubsub/1.0"
 xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:gco="http://www.isotc211.org/2005/gco"
 xmlns:gml="http://www.opengis.net/gml/3.2"
xmlns:ows="http://www.opengis.net/ows/1.1"
 xmlns:gts="http://www.isotc211.org/2005/gts"
xmlns:gmd="http://www.isotc211.org/2005/gmd"
 xmlns:gsr="http://www.isotc211.org/2005/gsr"
xmlns:gss="http://www.isotc211.org/2005/gss"
 xmlns:pubsub="http://www.opengis.net/pubsub/1.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <pubsub:PublicationIdentifier>ROOT</pubsub:PublicationIdentifier>
 <pubsub:FilterLanguageId>empty_filter</pubsub:FilterLanguageId>
 <pubsub:Filter>http://tb12.essi-lab.eu/pubsub-
csw/services/opensearch?outputFormat=application/json</pubsub:Filter>
</pubsub:Subscribe>

Note that:

• the filter is empty in this case, but may contain parameters (see the table below, and the
"complete filter" in the Capabilities document); if so, the parameters must be separated by the
URL-encoded "&" character (otherwise the server throws a parsing exception);

• the "Content-Type" HTTP header must be set in the request, with the value "application/xml";

• this instance publisher allows a maximum of 50 subscriptions; this value can be configured in
the GI-cat configuration manager;

• this instance publisher is configured so that subscriptions expire in one hour, by default. A
different expiration time may be requested by adding the following element to the request (in
this case, the expiration would be set at the end of September 2016):

<pubsub:Expiration gml:id="6046bd">
 <gml:timePosition>2016-09-30T00:00Z</gml:timePosition>
</pubsub:Expiration>

The following table describes all the filter parameters theoretically supported by this instance
publisher (the actual subset depend on the publication, as indicated in the Capabilities).

Parameter name Parameter description

st One or more search terms. In case of
multiple search terms they can be
separated by the "AND" conjunction.
E.g: "water", "water AND snow"

53

Parameter name Parameter description

bbox A bounding box expressed in lon/lat
EPSG:4326: west, south, east, north.
For more info see the OpenSearch Geo
extension documentation of the "box"
parameter

ts The beginning of the time slice of the
search query. For more info and
examples see OpenSearch Time
extension documentation of the "start"
and "end" parameters

te The end of the time slice of the search
query. For more info and examples see
OpenSearch Time extension
documentation of the "start" and "end"
parameters

C.2.2. Subscribe response

The relevant part of the Subscribe response is the DeliveryLocation. A browser supporting Server-
Sent Events (SSE) technology, such as Chrome, can directly open the URL in the DeliveryLocation,
and listen to the generated events. In Chrome the events are showed directly in the web page (see
next section for an example), while other browsers like Firefox just open the stream. However, the
best way to manage Server-Sent events is by creating an EventSource Javascript object passing as
argument the DeliveryLocation URL.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<SubscribeResponse xmlns="http://www.opengis.net/pubsub/1.0"
xmlns:ns2="http://www.opengis.net/gml/3.2" xmlns:ns3="http://www.w3.org/1999/xlink"
xmlns:ns4="http://www.opengis.net/ows/1.1">
 <Subscription>
 <SubscriptionIdentifier>e91930</SubscriptionIdentifier>
 <PublicationIdentifier>ROOT</PublicationIdentifier>
 <Expiration ns2:id="6046bd">
 <ns2:timePosition>2030-09-29T15:19Z</ns2:timePosition>
 </Expiration>
 <FilterLanguageId>empty_filter</FilterLanguageId>
 <Filter xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xs="http://www.w3.org/2001/XMLSchema" xsi:type="xs:string">http://tb12.essi-
lab.eu/pubsub-csw/services/opensearch?outputFormat=application/json</Filter>
 <DeliveryLocation>http://tb12.essi-lab.eu/pubsub-
csw/services/pubsub?outputFormat=application%2Fjson&client=js&request=subscrib
e&label=OGC_PubSub_subscription_df45ca&clientID=CSWPublisher&subscriptionI
D=df45ca&init=true&creation=1465991415263&expiration=1916925540000&req
ID=096253</DeliveryLocation>
 </Subscription>
</SubscribeResponse>

54

Note that:

• since the Subscribe response is encoded in XML, the DeliveryLocation URL is URL-encoded. In
order to avoid possible parsing problems by browsers or other tools/applications, the
recommended practice is to replace the URL-encoded "&" with the "&" character; for example, in
Chrome the URL with URL-encoded "&" is accepted without errors, but the SSE event stream
seems not to be opened

• each delivery location can only be consumed once. So, for example, opening the same delivery
location in two different Chrome tabs will result in a "SUBSCRIPTION_REJECTED" error:

event: error
data: {"type":"SUBSCRIPTION_REJECTED"}

C.3. GetSubscription

C.3.1. GetSubscription request

The GetSubscription request is performed with a GET method on the following paths:

• path to get subscription with the given identifier:

/pubsub-rest/subscriptions/{subscriptionIdentifier}

• path to get all the active subscriptions:

/pubsub-rest/subscriptions/

Example of GetSubscription request:

http://tb12.essi-lab.eu/pubsub-csw/services/pubsub-rest/subscriptions/e91930

C.4. GetSubscription response
Example of GetSubscription response:

55

<GetSubscriptionResponse xmlns="http://www.opengis.net/pubsub/1.0"
 xmlns:ns2="http://www.opengis.net/gml/3.2" xmlns:ns3="http://www.w3.org/1999/xlink"
 xmlns:ns4="http://www.opengis.net/ows/1.1">
 <Subscription>
 <SubscriptionIdentifier>e91930</SubscriptionIdentifier>
 <PublicationIdentifier>ROOT</PublicationIdentifier>
 <Expiration ns2:id="6046bd">
 <ns2:timePosition>2030-09-29T15:19Z</ns2:timePosition>
 </Expiration>
 <FilterLanguageId>empty_filter</FilterLanguageId>
 <Filter xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xs="http://www.w3.org/2001/XMLSchema" xsi:type="xs:string"
 >http://tb12.essi-lab.eu/pubsub-
csw/services/opensearch?outputFormat=application/json</Filter>
 <DeliveryLocation>http://tb12.essi-lab.eu/pubsub-
csw/services/pubsub?outputFormat=application%2Fjson&client=js&request=subscribe&label=
OGC_PubSub_subscription_df45ca&clientID=CSWPublisher&subscriptionID=df45ca&init=true&c
reation=1465991415263&expiration=1916925540000&reqID=096253</DeliveryLocation>
 </Subscription>
</GetSubscriptionResponse>

C.5. Unsubscribe

C.5.1. Unsubscribe request

The Unsubscribe request is performed with a DELETE method on the following path:

/pubsub-rest/subscriptions/{subscriptionIdentifier}

Example of Unsubscribe request:

http://tb12.essi-lab.eu/pubsub-csw/services/pubsub-rest/subscriptions/e91930

C.5.2. Unsubscribe response

If the request is accepted and no errors occur, the Unsubscribe response is returned and the
notifications terminate with the "close" event. Example of Unsubscribe response:

<pubsub:UnsubscribeResponse xmlns:pubsub="http://www.opengis.net/pubsub/1.0">
</pubsub:UnsubscribeResponse>

Example of SSE close event:

56

event: close

57

Appendix D: Revision History
Table 2. Revision History

Date Editor Release Primary
clauses
modified

Descriptions

April 15, 2016 L. Bigagli r0 all Initial ER

June 30, 2016 L. Bigagli r1 all First full-draft
ER

October 7, 2016 L. Bigagli r2 all Draft ER

October 7, 2016 M. Lawrence r2 CSW 3.0

October 31, 2016 L. Bigagli r3 all Addressed IP
Team comments,
finalisation

November 15,
2016

M. Lawrence r4 CSW 3.0

November 15,
2016

P. Vretanos r4 Service Interface

November 15,
2016

L. Bigagli r4 all Final Draft ER
Addressed NGA
comments, final
revision

November 21,
2016

L. Bigagli r5 Relevant
findings, cross-
links, examples

Typos and fixes

December 19,
2016

L. Bigagli r5 Overview Addressed
further
comment by IP
Team and NGA
on relationship
with ER A067

58

Appendix E: Bibliography
No relevant bibliography entry.

59

	Testbed-12 PubSub / Catalog Engineering Report
	Table of Contents
	Chapter 1. Introduction
	1.1. Scope
	1.2. Document contributor contact points
	1.3. Future Work
	1.4. Foreword

	Chapter 2. References
	Chapter 3. Terms and definitions
	3.1. Broker | Brokering Publisher
	3.2. Message
	3.3. Publication
	3.4. Publisher
	3.5. Receiver
	3.6. Reliable Publisher
	3.7. Sender
	3.8. Subscriber
	3.9. Subscription

	Chapter 4. Conventions
	4.1. Abbreviated terms
	4.2. UML notation

	Chapter 5. Overview
	Chapter 6. Specific PubSub 1.0 extension for CSW
	6.1. Conceptual model
	6.2. Required Capabilities components
	6.2.1. FilterCapabilities
	6.2.2. DeliveryCapabilities
	6.2.3. Publications

	6.3. Service interface
	6.3.1. Introduction
	6.3.2. Availability of a RESTful service interface
	6.3.3. Resources and resource URL

	6.4. CSW capabilities document with REST extensions
	6.4.1. OPTIONS method

	6.5. Specific adaptations
	6.5.1. CSW 2.0.2
	6.5.2. CSW 3.0

	Chapter 7. Basic PubSub 1.0 extension for the generic OWS
	7.1. Conceptual model
	7.2. Required Capabilities components
	7.2.1. FilterCapabilities
	7.2.2. DeliveryCapabilities
	7.2.3. Publications

	7.3. Support to legacy components

	Chapter 8. Report on the PubSub RESTful Binding
	Appendix A: XML Schema Documents
	Appendix B: Relevant findings
	B.1. Recommendations
	B.2. Use Case(s)
	B.3. Architectural schemes
	B.4. Change Requests

	Appendix C: Prototype PubSub-CSW implementation
	C.1. Publications
	C.2. Subscribe
	C.2.1. Subscribe request
	C.2.2. Subscribe response

	C.3. GetSubscription
	C.3.1. GetSubscription request

	C.4. GetSubscription response
	C.5. Unsubscribe
	C.5.1. Unsubscribe request
	C.5.2. Unsubscribe response

	Appendix D: Revision History
	Appendix E: Bibliography

