Testbed-12 Multi-Tile Retrieval ER

Table of Contents

1 INTrOdUCTION ..ottt et e 6
I 00) 6
1.2. Document contributor contact POINtS.ottt i i 6
1.3 Future WOrK ..o 6
I 0} =10 7

2 RO T EIICES . .. e 8

R TR 00 0443 4 0 () 4 F 9
R I 00/ 8 D 4] U o) 9
3.2. Data dictionary tables 9

A OVEIVIEBW L oottt ettt et et e e e ettt e e 11
I 8 < o £ 11

4.1.1. Small-volume-of-data USe CASESttt 11
4.1.2. Big-data USE CASESottt ittt ittt ettt et ettt 13
4.1.3. Very big-data USe CaSES:ttt 15

5. WMTS GetTiles @XTENSION . ..o vttt ittt ettt ettt 18

5.1, GetTileS OPeratiOnttt ittt ittt ettt ettt ettt 18
5.1.1. GetTiles Operation ReqUEStttt it 18
5.1.2. GetTiles Operation reSPOIISEovttiitttt ittt 20
5.1.3. GetTiles @XCePLIONS ...ttt e 22
5.1.4. GetTiles KVP linked request example ... 23
5.1.5. GetTiles linked response eXxamplet 24
5.1.6. GetTiles KVP embedded request example ...ttt 25
5.1.7. GetTiles embedded response eXamplecooiiiiiiiiiiiiiiiiiiiiiiiiine... 25

6. WPS partial results eXtensIOon.uuu i 28

6.1. INTrOdUCTION ..\ v e e 28
6.1.1. The Problemo e 28
6.1.2. Technical ImMitation. i 28

6.2. WPS exXtension. Part 1....... ... oot e e 29
6.2.1. The proposal 29
6.2.2. The WMTS WPS combination USe CASEvvutiiiitttt i, 29

6.3. WPS eXtension. Part 2 oottt i e 30
6.3.1. The proposal 30

7. WPS instance implementationuu ittt e 32
7.1 INTOAUCTION o vv et e e e 32
7.2. The implemented WPS INStANCE.o vuuu i e aa 33
7.3. Description of the gs:GeoPackage ProCesSovuii e 34

7.3.1. Example of an execute POST MeSSage. ovviinniiie ettt 37

Appendix A: ReViSION HISTOTYttt it 40

Appendix B: Bibliography

Publication Date: 2017-06-16

Approval Date: 2017-03-23

Posted Date: 2016-12-26

Reference number of this document: OGC 16-049r1

Reference URL for this document: http://www.opengis.net/doc/PER/t12-A077
Category: Public Engineering Report

Editor: Joan Maso

Title: Testbed-12 Multi-Tile Retrieval ER

OGC Engineering Report
COPYRIGHT

Copyright © 2016 Open Geospatial Consortium. To obtain additional rights of
use, visit http://www.opengeospatial.org/

WARNING

This document is an OGC Public Engineering Report created as a deliverable of
an initiative from the OGC Innovation Program (formerly OGC Interoperability
Program). It is not an OGC standard and not an official position of the OGC
membership.It is distributed for review and comment. It is subject to change
without notice and may not be referred to as an OGC Standard. Further, any
OGC Engineering Report should not be referenced as required or mandatory
technology in procurements. However, the discussions in this document could
very well lead to the definition of an OGC Standard.

http://www.opengis.net/doc/PER/t12-A077
http://www.opengeospatial.org/

LICENSE AGREEMENT

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"),
free of charge and subject to the terms set forth below, to any person obtaining a
copy of this Intellectual Property and any associated documentation, to deal in
the Intellectual Property without restriction (except as set forth below),
including without limitation the rights to implement, use, copy, modify, merge,
publish, distribute, and/or sublicense copies of the Intellectual Property, and to
permit persons to whom the Intellectual Property is furnished to do so, provided
that all copyright notices on the intellectual property are retained intact and
that each person to whom the Intellectual Property is furnished agrees to the
terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual
Property must include, in addition to the above copyright notice, a notice that
the Intellectual Property includes modifications that have not been approved or
adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY
RIGHTS UNDER ANY PATENTS THAT MAY BE IN FORCE ANYWHERE IN THE
WORLD. THE INTELLECTUAL PROPERTY IS PROVIDED "AS IS", WITHOUT
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE DO NOT
WARRANT THAT THE FUNCTIONS CONTAINED IN THE INTELLECTUAL
PROPERTY WILL MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF
THE INTELLECTUAL PROPERTY WILL BE UNINTERRUPTED OR ERROR FREE.
ANY USE OF THE INTELLECTUAL PROPERTY SHALL BE MADE ENTIRELY AT
THE USER’S OWN RISK. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR ANY
CONTRIBUTOR OF INTELLECTUAL PROPERTY RIGHTS TO THE INTELLECTUAL
PROPERTY BE LIABLE FOR ANY CLAIM, OR ANY DIRECT, SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING
FROM ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR UNDER ANY OTHER
LEGAL THEORY, ARISING OUT OF OR IN CONNECTION WITH THE
IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF THIS
INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by

destroying the Intellectual Property together with all copies in any form. The
license will also terminate if you fail to comply with any term or condition of
this Agreement. Except as provided in the following sentence, no such
termination of this license shall require the termination of any third party end-
user sublicense to the Intellectual Property which is in force as of the date of
notice of such termination. In addition, should the Intellectual Property, or the
operation of the Intellectual Property, infringe, or in LICENSOR’s sole opinion be
likely to infringe, any patent, copyright, trademark or other right of a third
party, you agree that LICENSOR, in its sole discretion, may terminate this license
without any compensation or liability to you, your licensees or any other party.
You agree upon termination of any kind to destroy or cause to be destroyed the
Intellectual Property together with all copies in any form, whether held by you
or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder
of a copyright in all or part of the Intellectual Property shall not be used in
advertising or otherwise to promote the sale, use or other dealings in this
Intellectual Property without prior written authorization of LICENSOR or such
copyright holder. LICENSOR is and shall at all times be the sole entity that may
authorize you or any third party to use certification marks, trademarks or other
special designations to indicate compliance with any LICENSOR standards or
specifications.

This Agreement is governed by the laws of the Commonwealth of Massachusetts.
The application to this Agreement of the United Nations Convention on
Contracts for the International Sale of Goods is hereby expressly excluded. In
the event any provision of this Agreement shall be deemed unenforceable, void
or invalid, such provision shall be modified so as to make it valid and
enforceable, and as so modified the entire Agreement shall remain in full force
and effect. No decision, action or inaction by LICENSOR shall be construed to be
a waiver of any rights or remedies available to it.

None of the Intellectual Property or underlying information or technology may
be downloaded or otherwise exported or reexported in violation of U.S. export
laws and regulations. In addition, you are responsible for complying with any
local laws in your jurisdiction which may impact your right to import, export or
use the Intellectual Property, and you represent that you have complied with
any regulations or registration procedures required by applicable law to make
this license enforceable.

Abstract

With the consolidation of tiling services and the increasing number of instances
implementing the WMTS standard, there is a need for having a way to transfer a
collection of tiles from one service to another. This might also be useful to
transfer all necessary tiles from a WMTS service to a GeoPackage. Currently the
only available solution is a client that is able to resolve the identifiers of the tiles
needed and that builds a WMTS independent request for each tile. This ER
explores different solutions that are more appropriate depending on how many
tiles we need to move and the final application of them. Some of the proposed
solutions involve changes in the WMTS standard and the use of a WPS. The WPS
standard also shows some limitations and extensions that should be addressed.

In essence all solutions should describe two things: A request that contains a
filter to a collection of tiles filling regions of the space and a multipart response
that contains the tiles preferably in a single package. Depending on the
proposed architecture, these tasks are done directly in the client, in the WMTS
server or in an intermediate WPS.

Business Value

This ER has the objective of simplifying the transference of collections of tiles
from one service to another. It also proposes alternatives that can be useful to
download all the necessary tiles for ingesting them in a GeoPackage. Currently
this only can be done by requesting one tile at a time. This results in developers
having to program routines to download the tiles in the client side. It also
requires opening an HTTP connection for every tile, spending a lot of time in
setting the connections instead of transferring the necessary data. A more
efficient way of doing this is required.

Sometimes it is also necessary to be able to refer to all tiles that are included in a
BBOX (e.g. in a viewport) as a single URL. This gap was found in OWS Context
and GeoPackage and it is still not possible.

What does this ER mean for the Working Group and OGC in general

This ER is important for the GeoPackage SWG and the OGC in general because it
provides a solution for building a GeoPackage that contains tiles easily from a
WMTS in a single request.

How does this ER relate to the work of the Working Group

Many times, the data inside a GeoPackage is obtained from web services. It

could be good to have a manifest that contains the original service requests. This
is particularly useful in a intermittently connected environment. This way the
client using a static GeoPackage can request the data form the services to check
for updated information and even update the GeoPackage.

Keywords
ogcdocs, testbed-12, WMTS, Tile, GeoPackage

Proposed OGC Working Group for Review and Approval
GeoPackage SWG

Chapter 1. Introduction

1.1. Scope
This OGC® document proposes ways to get more that one tile at the same time for services.

This OGC® document describes an extension for WMTS that proposes the inclusion of a operation
called GetTiles. This OGC® document also describes an extension for WPS that proposes a way to be
able to get access to partial results while the WPS process is still running (this is complemented by
an additional extension to allow additional inputs while the process is still running).

This ER does not discusses security issues derived from having a WMTS secured that receives
chained/cascaded requests for other servers.

This OGC® document is applicable to WMTS and WPS services and to GeoPackages based on raster
tiles.

1.2. Document contributor contact points

All questions regarding this document should be directed to the editor or the contributors:

Table 1. Contacts
Name Organization

Joan Maso UAB-CREAF

1.3. Future Work

Experiment with a WMTS GetTiles request and submit the results of this experimentation to the
WMTS standards group for consideration.

In case that a WPS is acting as a client of a WTMS is secure protected, consider a solution with
front-end WPS that is able to deal with security information that is needed for invoking a secured
WMTS in the back-end.

Experiment with a WPS that can deliver preliminary results and accept new input parameters
while still running. In a future Testbed, experiment with two WPS instances that can exchange
information while both running complementary processes. For example, a WPS was running, but
now is waiting for a new input that another WPS will deliver as a preliminary result. A classic
example for this requirement is the interaction between a hydrological model and an atmospheric
model running a water cycle simulation. Both models need information coming from the
preliminary results of the other model. If they are implemented as WPS processes, adding the
capability to exchange intermediate results will make it possible to have the two models in two
independent WPS servers and still be able to exchange information. In this ER, we aim at a WPS
process that is able to retrieve tiles from a WMTS one by one and is able to deliver a partial
GeoPackage while still retrieving more tiles.

1.4. Foreword

Attention is drawn to the possibility that some of the elements of this document may be the subject
of patent rights. The Open Geospatial Consortium shall not be held responsible for identifying any
or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any
relevant patent claims or other intellectual property rights of which they may be aware that might
be infringed by any implementation of the standard set forth in this document, and to provide
supporting documentation.

Chapter 2. References

The following documents are referenced in this document. For dated references, subsequent
amendments to, or revisions of, any of these publications do not apply. For undated references, the
latest edition of the normative document referred to applies.

* OGC 14-065, OGC WPS 2.0 Interface Standard

* OGC 07-057r7, OGC Web Map Tile Service Standard

* OGC06-121r9, OGC® Web Services Common Standard

NOTE: This OWS Common Standard contains a list of normative references that are also applicable
to this Implementation Standard.

http://docs.opengeospatial.org/is/14-065/14-065.html
http://portal.opengeospatial.org/files/?artifact_id=35326
http://portal.opengeospatial.org/files/?artifact_id=38867

Chapter 3. Conventions

3.1. UML notation

Most diagrams that appear in this standard are presented using the Unified Modeling Language
(UML) static structure diagram, as described in Subclause 5.2 of [OGC 06-121r9].

3.2. Data dictionary tables

The UML model data dictionary is specified herein in a series of tables. The contents of the columns
in these tables are described in Table 1.

Table 2. Contents of data dictionary tables

Column title

Names (left column)

Definition (second
column)

Data type and value
(third column) or Data
type (if are no second
items are included in
rows of table)

Column contents

Two names for each included parameter or association
(or data structure). The first name is the UML model
attribute or association role name. The second name uses
the XML encoding capitalization specified in Subclause
11.6.2 of [OGC 06-121r3]. The name capitalization rules
used are specified in Subclause 11.6.2 of [OGC 06-121r3].
Some names in the tables may appear to contain spaces,
but no names contain spaces.

Specifies the definition of this parameter (omitting un-
necessary words such as “a”, “the”, and “is”). If the
parameter value is the identifier of something, not a
description or definition, the definition of this parameter
should read something like “Identifier of TBD”.

Normally contains two items: The mandatory first item is
often the data type used for this parameter, using data
types appropriate in a UML model, in which this
parameter is a named attribute of a UML class.
Alternately, the first item can identify the data structure
(or class) referenced by this association, and references a
separate table used to specify the contents of that class (or
data structure). The optional second item in the third
column of each table should indicate the source of values
for this parameter, the alternative values, or other value
information, unless the values are quite clear from other
listed information.

Column title Column contents

Multiplicity and use Normally contains two items: The mandatory first item
(right or fourth column) specifies the multiplicity and optionality of this parameter
or Multiplicity (if are no in this data structure, either “One (mandatory)”, “One or

second items are more (mandatory)”, “Zero or one (optional)”, or “Zero or
included in rows of more (optional)”. The second item in the right column of
table) each table should specify how any multiplicity other than

“One (mandatory)” shall be used. If that parameter is
optional, under what condition(s) shall that parameter be
included or not included? If that parameter can be
repeated, for what is that parameter repeated?

When the data type used for this parameter, in the third column of such a table, is an enumeration
or code list, all the values specified shall be listed, together with the meaning of each value. When
this information is extensive, these values and meanings should be specified in a separate table that
is referenced in the third column of this table row.

The data type of many parameters, in the third table column, is specified as “Character String type,
not empty”. In the XML Schema Documents specified herein, these parameters are encoded with
the xsd:string type, which does NOT require that these strings not be empty.

(These conditions may seem obvious to you, but they are rarely obvious to most readers.)
The contents of these data dictionary tables are normative, including any table footnotes.

(This means that these table footnotes should use the normative verbs "shall", "should", "may", and
"can", as defined in Subclause 5.3 "Document terms and definitions" of OWS Common [OGC 06-
121r9].)

10

Chapter 4. Overview

When thinking about use cases where a multitile retrieval is necessary, two big data ones (mostly
requiring a big number of tiles) come to our mind:

» Use case 1: A client application wants to store a subset of a tiled layer coming from a WMTS for
its later use offline

» Use case 2: A GeoPackage needs to be created containing a layer with tiles that will be provided
by a WMTS.

In addition, there are other use cases where multitile retrieval is useful even if the number of tiles
involved is limited in number:

» Use case 3: A client application wants to reduce the number of server requests by requesting all
the tiles needed to present a new view to a user at once;

* Use case 4: A OWS Context document wants to use a single link to a set of tiles that are useful to
present a common operational picture.

It is important to note that the time required to prepare a set of tiles can be long, so asynchronous
requests need to be taken into consideration when designing multitile approaches.

This ER examines some possibilities depending on the use case:

* Provide a transversal way to encapsulate more than one request to a service in a multi-request
approach: KVP encodings are not designed to do this but a POST operation can send a document
with a list of requests inside that can be responded by the server in a single MIME multipart file
(RFC1341).

* A WPS associated with the dataset: A WMTS service and a WPS are associated to the same
dataset. A WPS profile can offer a solution in the form of a process that is able to generate tiles
and encapsulate them in a MIME multipart file or in a GeoPackage. This solution offers the
asynchronous advantage.

4.1. Use cases

In this subclause we describe the previously mentioned use cases but in a more technical language.
The textual description of the cases is accompanied by UML sequence diagrams. The use cases are
classified by the volume of tiles involved into big-data use cases (making use of the big-data
expression that is so popular this days), a more modest ones in the volume of tiles that are called
small-volume-of-data (inventing an expression that wants to refer to a more modest volume of
data), and a fully scalable very-big-data use case.

4.1.1. Small-volume-of-data use cases

These use cases do not consider the big-data approach and are only addressing the multitile request
need for a modest number of tiles.

11

GetTiles new operation in WMTS:

We introduce a new operation into WMTS for retrieving more that one tile at the same time. This
operation works in a synchronous mode like the GetTile operation: This solution was initially
addressed by the subsection 7 of the OWS-9 Map Tiling Methods Harmonization IP Engineering
Report (OGC 12-157r1). This has been reproduced in the WMTS extension section for convenience
(with some corrections from the original text).

sd WMTS 1.4

% WMTS 1.1

WMTS Client

I
I
GetTiles{) |

I
I
I
i
‘ ‘ MultiTile file ‘ \
i

Figure 1. WMTS GetTiles UML sequence diagram

A single GetTiles request will NOT work in a big-data use case if it is synchronous because it can
take too much to serve the multitile response. Other alternatives are proposed later.

A synchronous WPS executing a sequence of WMTS GetTile requests

In this approach, a common WMTS 1.0 is requested several times by a WPS that internally
decomposes an area at different scale denominators in a sequence of several tiles requests and
accumulates the result in a multipart file format that is delivered at the end of the execution. The
WPS is responding synchronously so the client will wait to the end of the WPS execution to the the
package of tiles.

12

sd WPS WMTS GetTile synchronous /J

% WPS synchronous WMTS 1.0

MultiTile Client

Execute() |

loop n tiles /J

GetTile])

‘multitile file{s)

S
S

Figure 2. WMTS GetTile with a synchronous WPS UML sequence diagram

This use case does not require any modifications or extensions neither to the WMTS nor the WPS
standards. This approach was implemented in practice in the Testbed 12.

4.1.2. Big-data use cases

An asynchronous WPS executing a sequence of WMTS GetTile requests:

In this approach, a common WMTS 1.0 is requested several times by a WPS that internally
decomposes an area at different scale denominators in a sequence of several tiles requests and
accumulates the result in a multipart file format that is delivered at the end of the execution. The
WPS is responding asynchronously so the client can do other tasks while checking from time to
time the status of the WPS execution and informing the user until the execution actually ends and
the user can get access to the result as a single package.

13

sd WPS WMTS GetTile asynchronous /J

WPS WMTS 1.0
asynchronous

MultiTile Client

GetTile()

i | -
-
tile file
e —— ——
L

GetStatus(id) !

____________:?____

status=succeeded

GetResult{id) A

:multitile file{s)

Figure 3. WMTS GetTile with an asyncronous WPS UML sequence diagram

This use case does not require any modifications or extensions neither to the WMTS nor the WPS.
This approach was implemented in practice in the Testbed 12.

An asynchronous WPS that requests all tiles one by one using GetTile will require too many
individual requests in the back-end and is not considered scalable indefinitely. This is one of the
reasons for proposing a GetTiles operation to be included in the WMTS standard.

Add asynchronous behaviour to a WMTS GetTiles requests:

We assume that a synchronous response is not acceptable (too long wait) so we propose to use a
WMTS asynchronous that uses the same principle that as described by Peter Vretanos (Cubewex)
proposing for WFS and reported in the Testbed 12 - Web Feature Service Synchronization
Engineering Report.

There are two proposed approaches:

* A notification that transports the result directly.

» A notification that provides a URL that can be requested later

14

sd WMTS asynchronous REEP/J

% WMTS assic

MultiTile Client

I |
| |
| GetTiles{ResponseHandler, |
! ContentType=response) |

l Motification() :n1u|':iti||5fi||5I

“““““ T

Figure 4. WMTS GetTiles UML sequence diagram for an asynchronous request returning the multitile

file directly

sd WMTS asynchronous Hef/

% WMTS assic

fMultiTile Client

| |
| |
| GetTiles{ResponseHandler, |
! ContentType=reference) |

HTTP GET{URL)

‘multitile file

..;:_" ___________

Figure 5. WMTS GetTiles UML sequence diagram for an asynchronous request returning a reference

4.1.3. Very big-data use cases:

Combining a modified WMTS with an asynchronous WPS

A combination of a WPS process that calls a WMTS extended with the GetTiles request.

15

sd WPS WMTS GetTiles /’

WPS
asynchronous

MultiTile Client

WMTS 1.1

loop n multitiles /J

T GetTiles|)

‘multitile file

GetStatus(id) !

status=succeeded

GetResult{id) A

:multitile file{s)

Figure 6. WPS WMTS GetTiles UML sequence diagram combination

Combining a modified WMTS with an asynchronous WPS with intermediate results.

With the proposed solution above, the client needs to wait until the end of the WPS execution to get
all tiles as a single package and this could be hours or even days for a big area. Indeed, the current
WPS standard does not allow for delivering incremental results (where the client could start
exploring/showing the results before the process reaches completion, making use of the available
bandwidth). We can consider this behavior a limitation of the WPS. For that reason, in a following
section we will present a modification of the WPS to support delivery of intermediate results (or
even interacting with other processes in the same way that Open Modelling Interface standard
[OpenMI] enables the runtime exchange of data between process simulation models and also
between models and other modelling tools such as databases and analytical and visualization

applications).

16

sd Extended WPS WMTS /

Extended WPS WMTS 1.1
asynchronous

MultiTile Client

Execute() |

I
|
|
|
|
|
|
|
| !
| loop n tiles |
: " GetTiles]) |
[T =

loop partial resutls) : LlJ

7 GetStatus(id) = i
-

|
:status=results :
e — === =] F—— !
T |
GetResult{id) o | |
= |
|
‘multitile file(s) |
O F—— |
| |
| ! MultiTile file !

| < o
: 1 1
| GetStatus(id) : :
|
|
:status: succeeded |
- ————— i
|
GetResult{id) | |
|
|
-multitile file{s) |
T |
|
|
|

Figure 7. Extended WPS and WMTS combination UML sequence diagram

This proposal is further elaborated in the WPS partial results extension

Chapter 5. WMTS GetTiles extension

This solution was initially addressed by subsection 7 of the OWS-9 Map Tiling Methods
Harmonization IP Engineering Report (OGC 12-157r1). This is reproduced in this section for
convenience (with some corrections and amendments from the original text).

This section describes an extension of WMTS that defines a GetTiles operation. The objective of this
new operation is for the client to be able to request and get back all tiles that cover a particular
region (BBOX) at the needed scales (TileMatrices) in a single operation. This is what a KVP request
example will look like:

http://www.opengis.uab.es/cgi-bin/ICCTiled/MiraMon.cgi?
SERVICE=WMTS&VERSION=1.0.0&REQUEST=GetTiles&Layer=Topo250k_Vers5_ICC&
Style=&TileMatrixSet=Cat_topo250k_v5_EPSG23031&TileMatrices=200m&
BB0x=355000,4539000,475000,4619000&Format=image/jpeg&
CollectionFormat=application/xml&inclusion=linked

The return shall be a multi-part file.
Examples of use cases supporting the need for this approach are:
* A client that is designed for WMS that wants a simple way to receive the tiles that fit in a WMS

BBOX.

* A client so simple that is not able to calculate the tile positions in the screen, and needs the
server to tell how to arrange the tiles.

* Get an XML document that can be transformed into an XHTML visualization of the required
tiles (applying XSLT).

* A client that wants to harvest some/all tiles of a server layer and store them locally for viewing
them offline latter in a faster and efficient way.

* A GeoPackage Manifest needs to link tiles with the corresponding WMTS service using a single
URL and mimic what is currently possible with WCS or WFS.

5.1. GetTiles Operation

5.1.1. GetTiles Operation Request

A request to perform the GetTiles operation SHALL use the data structure specified in the following
table. This table also specifies the data type of values, and multiplicity of each listed parameter, plus
the default server behavior when an optional parameter is not included in the operation request.

Table 3. Parameters in GetTiles request operation

Names Definition Data type and values Multiplicity and use

service Service type identifier Character String type, One

Service not empty, SHALL be (mandatory)
"WMTS"

18

http://www.opengis.uab.es/cgi-bin/ICCTiled/MiraMon.cgi?

Names

request
Request

version
Version

layer
Layer

style
Style

format
Format

Other sample
dimensions *

tileMatrixSet
TileMatrixSet

tileMatrices
TileMatrices

bBox
BBox

Definition

Operation name

Standard version for
operation

Layer identifier

Style identifier

Output format of the

tiles

Value allowed for this

dimension

TileMatrixSet identifier

TileMatrix identifier
list b

Bounding box

Data type and values

Character String type,
not empty SHALL be
"GetTiles"

Character String type,
not empty SHALL
contain "1.1.0"

Character String type,
not empty. identifier
that is defined in the
ServiceMetadata
document

Character String type,
not empty. identifier
that is defined in the
ServiceMetadata
document

Character String type,
not empty. value that is
defined in the
ServiceMetadata
document

Character String type,
not empty. a single
value from a list or a
range defined in the
ServiceMetadata
document

Character String type,
not empty. identifier
that is defined in the
ServiceMetadata
document

Character String type,
not empty. a list of
coma separated values
for tile matrices
identifiers that are
defined in the
ServiceMetadata
document

Four Doubles type. a
Bounding Box that
defines the area to be
recovered. *

Multiplicity and use

One
(mandatory)

One
(mandatory)

One
(mandatory)

One
(mandatory)

One
(mandatory)

Zero or one
(optional)

One
(mandatory)

Zero or many
(optional)*

Zero or one
(optional)*

19

Names Definition Data type and values Multiplicity and use
width Display width Positive Integer type. Zero or one
Width The horizontal size of (optional)®
the visual display in
pixels
height Display height Positive Integer type. Zero or one
Height The vertical size of the (optional)®
visual display in pixels
collectionFormat Output format of the Character String type, One
CollectionFormat tile collection not empty. value thatis (mandatory)
defined in the
ServiceMetadata
document
inclusion Tile inclusion Enumeration type Zero or one
Inclusion "embedded" or "linked" (optional).
& Default value is
“embedded"

* The name of this parameter is, in fact, the identifier of the dimension specified in the
ServiceMetadata. See WMS 1.3.0 Annex C for reference. This parameter appears once for each
dimension specified for this Layer in the ServiceMetadata document.

" This will be the identifier for the TileMatrix of the desired scale denominator for the
TileMatrixSet requested.

¢ If the parameter is not provided, all TileMatrices of the TileMatrixSet will be returned.

All tiles that are entirely or partially contained in this bounding box will be returned. In other
words, the bounding box does not have to coincide with tile border positions. E.g. it could be the
screen veiwport in world coordinates that can be converted to screen coordinates if the
TileMatrices has a single identifier.

° If not provided, all tiles of the TileMatrices will be returned.

If included is “embedded”, MIME multi-part document or GeoPackage are recommended as
an output format. If Included is “linked”, application/text” is recommended.

¢ “linked” means the client request tiles URLs (in KVP/GetTile or RESTful/tile notation) that will
be requested later. “embedded” means that tiles will be embedded in the document format.

d

f

5.1.2. GetTiles operation response

The response of a GetTile operation is a text document describing the returned tiles and binary tiles
linked to it or embedded in a multi-part format.

The text format enumerates a TileCollection or a TileCollection data type elements (see the
following table).

Table 4. Parts of Tile data structure in a TileCollection

Names Definition Data type and values Multiplicity and use
identifier tile identifier within ows:CodeType, as Zero or one
Identifier the document adaptation of (optional) *

MD_Identifier class ISO
19115

20

Names

tileURL
TileURL

tileMatrix
TileMatrix

tileRow
TileRow

tileCol
TileCol

width
Width

height
Height

top
Top

left
Left

Definition

A URL of the tile

TileMatrix identifier

Row index in the tile
matrix

Column index of tile
matrix

Width of the tile

Height of the tile

Vertical position

Horizontal position

Data type and values Multiplicity and use

AnyURI, not empty. One
(mandatory) "

Character String type,
not empty. a value for
tile matrices identifiers
that are defined in the
ServiceMetadata
document

One (mandatory)

Non negative integer One

type. value between 0 (mandatory)
and MatrixHeight -1 of

this tile matrix defined

in the ServiceMetadata

document

Non negative integer One

type. a value between 0 (mandatory)
and MatrixWidth -1 of

this tile matrix defined

in the ServiceMetadata

document

Positive Integer type. Zero or one
width of the tile in (optional)
pixels

Positive Integer type. Zero or one
height of the tile in (optional)
pixels

Positive Integer type. it Zero or one
is the vertical position (optional) ©
from the visual display

in pixels. A negative

value means that the

left side of the tile is

outside the top-left

corner of the display

and should be cut when

displayed

Positive Integer type. it Zero or one
is the horizontal (optional) ©
position from the visual

display in pixels. A

negative value means

that the left side of the

tile is outside the top-

left corner of the

display and should be

cut

21

Names Definition Data type and values Multiplicity and use

*If the format does not support file identification or name, the order in the file will be considered.
" If tiles are linked, it will be an external link. If the tiles are embedded, it will be a link to the
internal data (e.g. in a MIME multi-part file).

‘ Populate only if the number of TileMatrices requested is one.

This format can be encoded in an XML file, a JSON file or even an HTML page. The file includes URL
links or links to parts of a multi-part file. Examples of a multi-part file are MIME multi-part, Open
Package Convention file, a ZIP file, or a GeoPackage file.

5.1.3. GetTiles exceptions

When a WMTS Server encounters an error while performing a GetTiles operation, it SHALL return
an exception report message as specified in subclause 7.4.1 of OWS Common [OGC 06-121r3]. The
allowed standard exception codes SHALL include those listed in following table. For each listed
exceptionCode, the contents of the “locator” parameter value SHALL be as specified in the right
column.

To reduce the need for readers to refer to other documents, four values listed below

NOTE are copied from Table 8 in subclause 7.4.1 of OWS Common [OGC 06-121r3].

Table 5. Exception codes for GetTile operation

exceptionCode value Meaning of code “locator” value
OperationNotSupported Request for an operation that is Name of operation not

not supported by this server. supported
MissingParameterValue Operation request does not Name of missing parameter

include a parameter value, and
this server did not declare a
default value for that

parameter.

InvalidParameterValue Operation request contains an Name of parameter with invalid
invalid parameter value. value

NoApplicableCode No other exceptionCode None, omit “locator” parameter

specified by this service and
server applies to this exception.

If the client sends a GetTiles request using unknown parameters (for example time, elevation or
any other dimension that are not advertised in the ServiceMetadata document) these unknown
parameters SHALL be ignored by the server and will not cause an exception to be generated.

A Bounding Box completely out of the area covered by the tiles will not be considered an exception,
thus it will return an empty tile collection.

When a WMTS server responds with an ExceptionReport and the report is transmitted via HTTP,
the WMTS server should set the status code of the HTTP response to the corresponding value for
the given exceptionCode values, as shown in the following Table. When the ExceptionReport

22

contains more than one Exception, then the HTTP status code value should be based upon the
exceptionCode of the first Exception in the ExceptionReport.

-- HTTP exception codes and
meanings on GetTile operation

Table 6. HTTP exception codes and meanings on GetTile operation

exceptionCode value HTTP Status Code Message
OperationNotSupported 501 Not implemented
MissingParameterValue 400 Bad request
InvalidParameterValue 400 Bad request
NoApplicableCode 500 Internal server error

5.1.4. GetTiles KVP linked request example

This example covers a Bounding Box (355000,4619000) x (475000,4539000) (EPSG:23031) and a
width of 600 and a 480 height at 200m of pixel size.

A Landsat ortophotographic map of the region can be obtained from a WMS server using this
request:

http://www.opengis.uab.cat/cgi-bin/SatCat/MiraMon.cgi?
SERVICE=WMS&VERSION=1.1.1&REQUEST=GetMap&
SRS=EPSG:23031&BB0X=355000,4539000,475000,4619000&
WIDTH=600&HEIGHT=400&LAYERS=TotCatalunyaED50&
FORMAT=image/jpeg&STYLES=opti_fals& TIME=2011-03

A WMTS GetTile request for a single 640x480 tile of a Catalan topographic map looks like this:
http://www.opengis.uab.es/cgi-bin/ICCTiled/MiraMon.cgi?
SERVICE=WMTS&VERSION=1.0.0&REQUEST=GetTile&

Layer=Topo250k_Vers5_ICC&Style=&
TileMatrixSet=Cat_topo250k_v5_EPSG23031&TileMatrix=200m
&TileRow=1&TileCol=1&Format=image/jpeg

An example of the proposed GetTiles operation request, encoded in KVP, resembles a mixture of the
previous two ones. Instead of specifying the TileRow and TileCol (from GetTile), we have a BBOX
(from GetMap) and TileMatrices as multiplicity more than one. In addition a CollectionFormat and
Inclusion parameter could ba added. The example encoded for HTTP GET is:
http://www.opengis.uab.es/cgi-bin/ICCTiled/MiraMon.cgi?
SERVICE=WMTS&VERSION=1.0.0&REQUEST=GetTiles&

Layer=Topo250k_Vers5_ICCStyle=&

TileMatrixSet=Cat_topo250k_v5_EPSG23031&
TileMatrices=200m&BBox=355000,4539000,475000,4619000&
Format=image/jpeg&CollectionFormat=application/xml&

inclusion=linked

23

http://www.opengis.uab.cat/cgi-bin/SatCat/MiraMon.cgi?
http://www.opengis.uab.es/cgi-bin/ICCTiled/MiraMon.cgi?
http://www.opengis.uab.es/cgi-bin/ICCTiled/MiraMon.cgi?

5.1.5. GetTiles linked response example

A GetTiles operation response for the GetTiles request example is exemplified in the following XML
document.

GetTiles response example with URL links

<?xml version="1.0"
encoding="UTF-8"?>

<?xml version="1.0" encoding="UTF-8"?>
<TileCollection
xmlns="http://www.opengis.net/wmts/1.0/get_tiles"
xmlns:wmts_gt="http://www.opengis.net/wmts/1.0/get_tiles"
xmlns:ows="http://www.opengis.net/ows/1.1"
xmlns:xlink="http://www.w3.0rg/1999/x1ink"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.opengis.net/wmts/1.0/get_tiles
..\wmtsGetTiles_response.xsd
http://www.opengis.net/ows/1.1
oo/ Jows/1.1.0/0wsAl1. xsd">">
<tile>
<ows:Identifier>200m_1_0</ows:Identifier>
<fileURL xlink:href=
"http://www.opengis.uab.es/SITiled/ICC/Topo250k_Vers5_ICC/default/Cat_topo250k_v5_EPSG
23031/200m/1/9.jpg" />
<TileMatrix>200m</TileMatrix>
<tileRow>1</tileRow>
<tileCol>0</tileCol>
<width>640</width>
<height>480</height>
<top>-185</top>
<left>-485</left>
</tile>
<tile>
<ows:Identifier>200m_1_1</ows:Identifier>
<fileURL xlink:href=
"http://www.opengis.uab.es/SITiled/ICC/Topo250k_Vers5_ICC/default/Cat_topo250k_v5_EPSG
23031/200m/1/1.3pg"/>
<TileMatrix>200m</TileMatrix>
<tileRow>1</tileRow>
<tileCol>1</tileCol>
<width>640</width>
<height>480</height>
<top>-185</top>
<left>155</1eft>
</tile>
<tile>
<ows:Identifier>200m_2_0</ows:Identifier>
<fileURL xlink:href=
"http://www.opengis.uab.es/SITiled/ICC/Topo250k_Vers5_ICC/default/Cat_topo250k_v5_EPSG

24

23031/200m/2/9.jpg" />
<TileMatrix>200m</TileMatrix>
<tileRow>2</tileRow>
<tileCol>0</tileCol>
<width>640</width>
<height>480</height>
<top>295</top>
<left>-485</left>
</tile>
<tile>
<ows:Identifier>200m_2_1</ows:Identifier>
<fileURL xlink:href=
"http://www.opengis.uab.es/SITiled/ICC/Topo250k_Vers5_ICC/default/Cat_topo250k_v5_EPSG
23031/200m/2/1.jpg" />
<TileMatrix>200m</TileMatrix>
<tileRow>2</tileRow>
<tileCol>1</tileCol>
<width>640</width>
<height>480</height>
<top>-295</top>
<left>-155</1left>
</tile>
</TileCollection>

This response is linking to 4 WMTS tiles that are deliberately not square tiling size (640x480), with
the origin at (258007, 4751992) and 200m of pixel size, which covers the requested Bounding Box
(355000,4619000) x (475000,4539000)

5.1.6. GetTiles KVP embedded request example

http://www.opengis.uab.es/cgi-bin/ICCTiled/MiraMon.cgi?
SERVICE=WMTS&VERSION=1.0.0&REQUEST=GetTiles&
Layer=Topo250k_Vers5_ICCStyle=&
TileMatrixSet=Cat_topo250k_v5_EPSG23031&TileMatrix=200m&
BB0x=355000,4539000,475000,4619000&Width=600&Height=400&
Format=image/jpeg&cCollectionFormat=Multipart/Related&
inclusion=linked

5.1.7. GetTiles embedded response example

A GetTiles operation response for the GetTiles request example will be the following MIME Multi-
part document fragment (contents of the tile parts are omitted):

GetTiles response example as a MIME multi-part file
Content-Type: Multipart/Related; boundary=wmts;
start="TileCollection-Part"
type="application/xml"

--wmts

25

http://www.opengis.uab.es/cgi-bin/ICCTiled/MiraMon.cgi?

Content-Type: application/xml

<?xml version="1.0" encoding="UTF-8"?>
<TileCollection
xmlns="http://www.opengis.net/wmts/1.0/get_tiles"
xmlns:wmts_gt="http://www.opengis.net/wmts/1.0/get_tiles"
xmlns:ows="http://www.opengis.net/ows/1.1"
xmlns:xLlink="http://www.w3.0rg/1999/x1ink"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.opengis.net/wmts/1.0/get_tiles
..\wmtsGetTiles_response.xsd
http://www.opengis.net/ows/1.1
http://www.opengis.net/ows/1.1.0/owsA1l.xsd">">
<tile>
<ows:Identifier>200m_1_0</ows:Identifier>
<fileURL xlink:href="cid:200m_1_0.jpg"/>
<TileMatrix>200m</TileMatrix>
<tileRow>1</tileRow>
<tileCol>0</tileCol>
<width>640</width>
<height>480</height>
<top>-185</top>
<left>-485</left>
</tile>
<tile>
<ows:Identifier>200m_1_1</ows:Identifier>
<fileURL xlink:href="cid:200m_1_1.jpg"/>
<TileMatrix>200m</TileMatrix>
<tileRow>1</tileRow>
<tileCol>1</tileCol>
<width>640</width>
<height>480</height>
<top>-185</top>
<left>155</1left>
</tile>
<tile>
<ows:Identifier>200m_2 0</ows:Identifier>
<fileURL xlink:href="cid:200m_2_0.jpg"/>
<TileMatrix>200m</TileMatrix>
<tileRow>2</tileRow>
<tileCol>0</tileCol>
<width>640</width>
<height>480</height>
<top>295</top>
<left>-485</left>
</tile>
<tile>
<ows:Identifier>200m_2 1</ows:Identifier>
<fileURL xlink:href="cid:200m_2_1.jpg"/>
<TileMatrix>200m</TileMatrix>
<tileRow>2</tileRow>

<tileCol>1</tileCol>
<width>640</width>
<height>480</height>
<top>-295</top>
<left>-155</1left>
</tile>
</TileCollection>
--wmts
Content-Type: image/jpeg
Content-Description: tile imatge
Content-Transfer-Encoding: baseb4
Content-ID: 200m_1_0.jpg
Content-Disposition: inline

--wmts

Content-Type: image/jpeg
Content-Description: tile imatge
Content-Transfer-Encoding: baseb4
Content-ID: 20@m_1_1.jpg
Content-Disposition: inline

--wmts

Content-Type: image/jpeg
Content-Description: tile imatge
Content-Transfer-Encoding: baseb4
Content-ID: 200m_2_0.jpg
Content-Disposition: inline

--wmts

Content-Type: image/jpeg
Content-Description: tile imatge
Content-Transfer-Encoding: baseb4
Content-ID: 200m_2_1.jpg
Content-Disposition: inline

--wmts--
Other formats can be more efficient in distributing tiles such as the Open Package Convention, a ZIP

file, or a GeoPackage due to they deliver compressed parts instead of expanded encodings such as
base64 needed in the MIME multi-part.

27

Chapter 6. WPS partial results extension

6.1. Introduction

In Testbed 12 we want to be able to retrieve big amounts of tiles from a WMTS. Moving tiles one by
one is impractical. Requesting a WMTS tile collection has been proposed (a GetTiles operation that
will return a “multitile” format such as SQLite). Requesting a WMTS to prepare millions of tiles in a
single file to be sent in the end on the preparation file as a huge file also seems inefficient (or even
impossible due to limitations on file size of some formats, such us the 2Gb limitation).

A solution based on a WPS that gets an asynchronous request and requests a sequence of GetTiles is
proposed. It has the advantage that a collection of files can be served as results of a WPS that acts as
a coordinator and that the client can request the tiles do other things meanwhile it wait for them to
able to download later.

In asynchronous WPS, there is a way to execute a WPS process and monitor the progress of the
process regularly. This is useful to inform the user about the status of the process and extrapolate
when it is going to be completed. In the last version of WPS, this mechanism has evolved a bit
adding the possibility to cancel the process.

6.1.1. The problem

If number of tiles involved in the tile collection initial request is huge, the WPS instance will
intensively communicate with the WMTS and several files will be created by the WMTS and will
become available as intermediate results of the WPS. Unfortunately, the client will not be able to
download any of them until the whole process has been completed and the results are returned to
the client.

6.1.2. Technical limitation

The WPS 2.0 OGC 14-065 defines the new approach for asynchronous operations based on the
existence of a Job identifier. This job identifier (and other time estimations and percentage of
competition) is returned by the service immediately after an asynchronous execution has been
requested in a StatusInfo document described on section 9.5. A StatusInfo document is also the
result of a GetStatus operation defined in 9.10. A WPS 2.0 client can request GetStatus updates each
time it needs them until the process is completed. After that, a GetResult operation will be
requested and the result will be a “Processing Result document”. There is no requirement saying
that a GetResult shall not be issued until the process is completed but there is enough evidence in
the document that GetResults does not return a valid result until the process has been completed
completely.

» Section 9.11 says: “The GetResult operation allows WPS clients to query the result of a finished
processing job. It is used in conjunction with asynchronous execution.”

» Section 9.11.3 says: “If, for some reason, GetResult was invoked too early and the results have
not been computed yet, the server shall respond with the exception defined in Table 50
(ResultNotReady).“

28

For that reason, it seems clear that the aim of the standards' authors was to discourage exchange of
input and outputs between the start and completion of a process.

6.2. WPS extension. Part 1

6.2.1. The proposal

The proposal here is to extend GetStatus and GetResult to be able to provide partial outputs during
a process execution while allowing for the process to continue. In addition, it could also be useful in
other use cases to use a similar mechanism to request new input.

Changes in GetStatus request:

None

Changes in GetStatus response

The “Table 3 — Basic status set for jobs” of the WPS 2.0 standard needs to be extended to incorporate
a new value:

Table 7. Extensions for status of a process returned by GetStatus (Part 1).

Value Description
Results There are partial results available. The process
is running

Changes in GetStatus exceptions

None

Changes in GetResult request

The GetResult operation allows WPS clients to query the result of a finished processing job or a
partial result of a process still running. It is used in conjunction with asynchronous execution.

Changes in GetResult response:

The document response does not change. Nevertheless in a partial result case, it is not required that
all results are present in the results file and only the available ones should be present.

6.2.2. The WMTS WPS combination use case

29

sd Extended WPS WMTS /

Extended WPS WMTS 1.1
-asynchronous

MultiTile Client

Execute() |

I
|
|
|
|
|
|
|
| !
| loop n tiles |
: " GetTiles]) |
[T =

loop partial resutls /J : LlJ

1 GetStatus(id] - 1 |
-

|
:status=results :
= ——————— F—— |
T |
GetResult{id) o | |
= |
|
‘multitile file(s) |
O F—— |
| |
| ! MultiTile file !

| o= o
: I I
| GetStatus(id) : :
|
|
:status: succeeded |
- ————— i
|
GetResult{id) | |
|
|
-multitile file{s) |
e - ———— = —— |
|
|
|

Figure 8. Extended WPS and WMTS combination UML sequence diagram

6.3. WPS extension. Part 2

This is an extension to request and send new inputs. There is no need for the multi-tile download
use case described in this document, but it is defined here for completeness.

6.3.1. The proposal

Changes in GetStatus response

The “Table 3 — Basic status set for jobs” of the WPS 2.0 standard needs to be extended to incorporate
a new value:

Table 8. Extensions for status of a process returned by GetStatus (Part 2).
Value Description

Inputs The process requires new inputs. The process is
running but it might be idle

The GetStatus response of WPS 2.0 will include an extra attribute:

Table 9. Extensions for the GetStatus response extra attribute.

30

Names Definition

Id
or name of an input
item

New operation

A new operation needs to be defined: SendInput

Table 10. SendInput new request extension.
Names Definition

JobID Job identifier

One (mandatory) Input

Zero or one (optional) Output

Data type and values

Unambiguous identifier URI

Data type and values

Character String

Data inputs provided to
this process execution

Specification of
additional outputs
expected from the
process execution,
including the desired
format and
transmission mode for
each output.

Multiplicity and use

Zero or more
(optional). Included if
Status is “Inputs”.

Multiplicity and use

This shall be a JobID
the client has received
during process
execution

DatalnputType
structure, see Table 43
of the WPS 2.0

OutputDefinitionType
structure, see Table 44
of the WPS 2.0

31

Chapter 7. WPS instance implementation

7.1. Introduction

In Testbed 12, two of the proposed alternatives in the Overview Clause were implemented and
tested. The two alternatives are the ones that do not require modifications in the involved
standards (WPS and WMTS).

These are the two UML sequence diagrams that show how the WPS client, the WPS server and the
WMTS server choose to interact:

sd WPS WMTS GetTile synchronous /J

% WPS synchronous WMTS 1.0

MultiTile Client

|
| I
! Execute() I

loop n tiles /J

:multitile file{s)

..::_ ___________

e
P ——

Figure 9. WMTS GetTile with a synchronous WPS UML sequence diagram

32

sd WPS WMTS GetTile asynchronous /J

WPS WMTS 1.0
asynchronous

MultiTile Client

Execute() |

GetTile()

i | -
-
tile file
e —— ——
L

GetStatus(id) !

____________:?____

status=succeeded

GetResult{id) |

:multitile file{s)

..::_ ___________

Figure 10. WMTS GetTile with an asyncronous WPS UML sequence diagram

The second approach is preferable because the client does not have to wait to the end of the process
and can do other things meanwhile.

7.2. The implemented WPS instance

Another testbed 12 participant (GIS Research Center, Feng Chia University, Taichung, Taiwan
[GIS.FCU]) developed a modification of the GeoServer implementation (supports both WPS 1.0 and
2.0) that has an additional process name called "gs:GeoPackage". The name of the process derives
from the fact that the return of the process execution will be a GeoPackage with multiple tiles
inside.

The following GetCapabilities fragment shows the GeoPackage process name available for WPS
Execute requests.

33

GetCapabilities fragment showing the new process available

<wps:Capabilities xmlns:xs="http://www.w3.0rg/2001/XMLSchema" xmlns:ows=
"http://www.opengis.net/ows/1.1" xmlns:wps="http://www.opengis.net/wps/2.0.0"
xmlns:xLlink="http://www.w3.0rg/1999/x1link" xmlns:xsi=
"http://www.w3.0rg/2001/XMLSchema-instance” xml:lang="en" service="WPS" version="'
2.0.0" xsi:schemalocation="http://www.opengis.net/wps/2.0.0
http://schemas.opengis.net/wps/2.0.0/wpsAll.xsd">
<ows:Serviceldentification>
<ows:Title>Prototype GeoServer WPS</ows:Title>
<ows:Abstract/>
<ows:ServiceType>WPS</ows:ServiceType>
<ows:ServiceTypeVersion>1.0.0</ows:ServiceTypeVersion>
<ows:ServiceTypeVersion>2.0.0</ows:ServiceTypeVersion>
</ows:Serviceldentification>
<ows:ServiceProvider>
<ows:ProviderName>GISFCU</ows:ProviderName>

</ows:ServiceProvider>
<wps:ProcessOfferings>

<wps:Process wps:processVersion="2.0.0">
<ows:Identifier>gs:GeoPackage</ows:Identifier>
<ows:Title>GeoPackage</ows:Title>
<ows:Abstract>generate geopackage from wmts.</ows:Abstract>
</wps:Process>
</wps:ProcessOfferings>
</wps:Capabilities>

Full capabilities can be obtained from this URL:
http://59.120.223.164:443/geoserver/ows?service=wps&version=2.0.0&request=GetCapabilities

7.3. Description of the gs:GeoPackage process

Currently, these are the accessible inputs that the WPS gs:GeoPackage process require in the form
of table.:

Name Description and Type Multiplicity Observations
minZoom define the min zoom in from one, It is related with the TileMatrix
1~23, default is 1. mandatory name with maximum scale

denominator. The use of
TileMatrixMin should be better.
This parameter could be defined
optional

34

http://59.120.223.164:443/geoserver/ows?service=wps&version=2.0.0&request=GetCapabilities

Name

maxZoom

tileFormat

bbox

layerName

outputName

Description and Type

define the max zoom in from
1~23, defaultis 1

define the tile format, default is
jpg

define the boundary box of the
geopackge, format:
LeftLng,LowerLat,RightLng,Uppe
rLat

define the layer name wants to be
tiled

define the output gpkg file name,
default output name is
output.gpkg

Multiplicity

one,
mandatory

one,
mandatory

one,
mandatory

one,
mandatory

one,
mandatory

Observations

It is related with the TileMatrix
name with minimum scale
denominator. The use of
TileMatrixMin should be better.
This parameter could be defined
optional

This parameter could be defined
optional

This parameter seems
unnecessary since the client can
find out the name of the output
file in the success status message
and change the name when
retrieving the data into the client
computer.

The objective of this process is to generate a sequence of WMTS requests that covers the area
defined by bbox and the scale range covered by maxZoom and minZoom. In this ER, we would like
to suggest that in a future version, maxZoom and minZoom be replaced by a TileMatrix parameter
with multiplicity one or more.

These are other parameters that are implicitly defined in the WPS and cannot be controlled in the
current version but could be included in future versions of the service:

Name Description and Type Multiplicity Internal value used

wmtsServerU defines the URL of the capabilites one, https://tb12.cubewerx.com/a042/c

RL document of the server. mandatory ubeserv

tileMatrixSet defines the name of the tile zero or one, 3395

matrix set. optional

style Style of the layer retrieved zero or one, default
optional

other Other dimensions and their Zero or one,

dimensions values in a string optional

outputType Type of the output zero or one, other values could be accepted a
optional part of gpkg such as ZIP or MIME

multi-part etc.

The following DescribeProcess shows the GeoPackage process current inputs and outputs

35

https://tb12.cubewerx.com/a042/cubeserv
https://tb12.cubewerx.com/a042/cubeserv

definition.

DescribeProcess fragment showing the new process inputs and outputs

<wps:ProcessDescriptions>
<ProcessDescription wps:processVersion="2.0.0" statusSupported="true"
storeSupported="true">
<ows:Identifier>gs:GeoPackage</ows:Identifier>
<ows:Title>GeoPackage</ows:Title>
<ows:Abstract>generate geopackage from wmts.</ows:Abstract>
<Datalnputs>
<Input maxOccurs="1" minOccurs="1">
<ows:Identifier>minZoom</ows:Identifier>
<ows:Title>minZoom</ows:Title>
<ows:Abstract>define the min zoom in from 1~23, default is
1.</ows:Abstract>
<LiteralData>
<ows:DataType>xs:int</ows:DataType>
<ows:AnyValue/>
</LiteralData>
</Input>
<Input maxOccurs="1" minOccurs="1">
<ows:Identifier>maxZoom</ows:Identifier>
<ows:Title>maxZoom</ows:Title>
<ows:Abstract>define the min zoom in from 1~23, default is
23.</ows:Abstract>
<LiteralData>
<ows:DataType>xs:int</ows:DataType>
<ows:AnyValue/>
</LiteralData>
</Input>
<Input maxOccurs="1" minOccurs="1">
<ows:Identifier>tileFormat</ows:Identifier>
<ows:Title>tileFormat</ows:Title>
<ows:Abstract>define the tile format, default is jpg.</ows:Abstract>
<LiteralData>
<ows:AnyValue/>
</LiteralData>
</Input>
<Input maxOccurs="1" minOccurs="1">
<ows:Identifier>bbox</ows:Identifier>
<ows:Title>bbox</ows:Title>
<ows:Abstract>define the boundary box of the geopackge, format:
LeftLng,LowerLat,RightLng,UpperLat</ows:Abstract>
<LiteralData>
<ows:AnyValue/>
</LiteralData>
</Input>
<Input maxOccurs="1" minOccurs="1">
<ows:Identifier>layerName</ows:Identifier>
<ows:Title>layerName</ows:Title>

36

<ows:Abstract>define the layer name wants to be tiled.</ows:Abstract>
<LiteralData>
<ows:AnyValue/>
</LiteralData>
</Input>
<Input maxOccurs="1" minOccurs="1">
<ows:Identifier>outputName</ows:Identifier>
<ows:Title>outputName</ows:Title>
<ows:Abstract>define the output gpkg file name, default output name is
output.gpkg.</ows:Abstract>
<LiteralData>
<ows:AnyValue/>
</LiteralData>
</Input>
</Datalnputs>
<ProcessQutputs>
<Qutput>
<ows:Identifier>GeoPackage</ows:Identifier>
<ows:Title>GeoPackage</ows:Title>
<LiteralOutput/>
</Output>
</ProcessOutputs>
</ProcessDescription>
</wps:ProcessDescriptions>

7.3.1. Example of an execute POST message

This is an example of a POST message that needs to be submitted to the this URL:
http://59.120.223.164:443/geoserver/wps to execute the GeoPackage process.

37

http://59.120.223.164:443/geoserver/wps

Execute example

<?xml version="1.0" encoding="UTF-8"7>
<wps:Execute version="2.0.0" service="WPS" >
<ows:Identifier>gs:GeoPackage</ows:Identifier>
<wps:Datalnputs>
<wps: Input>
<ows:Identifier>minZoom</ows:Identifier>
<wps:Data>
<wps:LiteralData>1</wps:LiteralData>
</wps:Data>
</wps:Input>
<wps:Input>
<ows:Identifier>maxZoom</ows:Identifier>
<wps:Data>
<wps:LiteralData>1</wps:LiteralData>
</wps:Data>
</wps:Input>
<wps: Input>
<ows:Identifier>tileFormat</ows:Identifier>
<wps:Data>
<wps:LiteralData>jpg</wps:LiteralData>
</wps:Data>
</wps:Input>
<wps:Input>
<ows:Identifier>outputName</ows:Identifier>
<wps:Data>
<wps:LiteralData>output.gpkg</wps:LiteralData>
</wps:Data>
</wps:Input>
<wps: Input>
<ows:Identifier>bbox</ows:Identifier>
<wps:Data>minLon,minLat,maxLon,maxLat
<wps:LiteralData>
-113.3506260963461,30.5714609234194,127.9521005274938,45.01357346325526
</wps:LiteralData>
</wps:Data>
</wps:Input>
<wps:Input>
<ows:Identifier>layerName</ows:Identifier>
<wps:Data>
<wps:LiteralData>National_Land_Cover</wps:LiteralData>
</wps:Data>
</wps:Input>
</wps:Datalnputs>
</wps:Execute>

The WPS process needs to internally transform the BBOX into a list of TileCol and TileRow pairs.
Annex H of the WMTS 1.0 standard document OGC 07-057r7 provides a pseudocode to translate a
bbox to tilecol and tilerow given a TileMatrix name. Then, a sequence of WMTS requests is

38

generated and the resulting tiles are retrieved. The result of process executions is a GeoPackage
with all retrieved tiles embedded in the file.

39

Appendix A: Revision History

Table 11. Revision History

Date

Sep 20, 2016

Nov 2, 2016

Dec 26, 2016

40

Release

Joan Maso

Joan Maso

Joan Maso

Editor

1.0

rl

Primary
clauses
modified

all
all

all

Descriptions

first full version

comments
integrated; text
finalized and
ready for TC
review.

comments
received and
integrated.

Appendix B: Bibliography

OGC 12-128r12, OGC Geopackage Encoding Standard

0OGC 11-014r3, OGC® Open Modelling Interface (OpenMI) Interface Standard

OGC 12-157r1, OWS-9 Map Tiling Methods Harmonization IP Engineering Report

OGC 16-044, Testbed 12 - Web Feature Service Synchronization Engineering Report

John T. Sample and Elias Ioup, 2010, Tile-Based Geospatial Information Systems. Springer. ISBN:
978-1-4419-7630-7 (Print) or 978-1-4419-7631-4 (Online).

* N. Borenstein and N. Freed, Innosoft, 1992 RFC 1341, MIME (Multipurpose Internet Mail
Extensions). Chapter 7.2 The Multipart Content-Type.

* X. Pons, J. Maso, 2016, A comprehensive open package format for preservation and distribution
of geospatial data and metadata. Computers & Geosciences 97 (2016) 89-97.

41

https://portal.opengeospatial.org/files/?artifact_id=64506
https://portal.opengeospatial.org/files/?artifact_id=59022
https://portal.opengeospatial.org/files/?artifact_id=52757
https://portal.opengeospatial.org/files/?artifact_id=71528
http://link.springer.com/book/10.1007%2F978-1-4419-7631-4
https://tools.ietf.org/rfc/rfc1341.txt
https://tools.ietf.org/rfc/rfc1341.txt
http://dx.doi.org/10.1016/j.cageo.2016.09.001
http://dx.doi.org/10.1016/j.cageo.2016.09.001

	Testbed-12 Multi-Tile Retrieval ER
	Table of Contents
	Chapter 1. Introduction
	1.1. Scope
	1.2. Document contributor contact points
	1.3. Future Work
	1.4. Foreword

	Chapter 2. References
	Chapter 3. Conventions
	3.1. UML notation
	3.2. Data dictionary tables

	Chapter 4. Overview
	4.1. Use cases
	4.1.1. Small-volume-of-data use cases
	4.1.2. Big-data use cases
	4.1.3. Very big-data use cases:

	Chapter 5. WMTS GetTiles extension
	5.1. GetTiles Operation
	5.1.1. GetTiles Operation Request
	5.1.2. GetTiles operation response
	5.1.3. GetTiles exceptions
	5.1.4. GetTiles KVP linked request example
	5.1.5. GetTiles linked response example
	5.1.6. GetTiles KVP embedded request example
	5.1.7. GetTiles embedded response example

	Chapter 6. WPS partial results extension
	6.1. Introduction
	6.1.1. The problem
	6.1.2. Technical limitation

	6.2. WPS extension. Part 1
	6.2.1. The proposal
	6.2.2. The WMTS WPS combination use case

	6.3. WPS extension. Part 2
	6.3.1. The proposal

	Chapter 7. WPS instance implementation
	7.1. Introduction
	7.2. The implemented WPS instance
	7.3. Description of the gs:GeoPackage process
	7.3.1. Example of an execute POST message

	Appendix A: Revision History
	Appendix B: Bibliography

