
Testbed-12 General Feature Model
Engineering Report

Table of Contents
1. Introduction . 6

1.1. Scope . 6

1.2. Document contributor contact points . 7

1.3. Future Work . 7

1.4. Foreword . 8

2. References . 9

3. Terms and definitions. 10

3.1. Abbreviated terms . 10

4. Overview . 11

5. Initial Requirements, Assumptions and Concepts . 12

5.1. Integration of Data, Analytical Observations and Judgments . 12

5.2. Correlation does not necessarily mean causation . 13

5.3. Making Judgments on Facts . 13

5.4. Interaction with an Integrated Information Environment . 13

5.4.1. Activity Based Intelligence (ABI) . 14

5.4.2. Object Based Production (OBP) . 14

5.4.3. Structured Observation Management (SOM) . 14

5.5. Relationships - Features and Associations . 14

5.6. Use Case Scenario. 14

5.7. Available Scenario Phases . 15

5.8. Scenario Script . 16

5.9. Accommodating Associations in GFM . 17

5.10. WOS Approaches . 19

5.10.1. CSW ebRIM based WOS Approach . 20

5.10.2. WFS based WOS Approach . 21

5.11. Client Requirements . 21

5.12. Initial Implementation Experiences . 22

5.12.1. Data Availability . 22

5.12.2. Data Georeferencing . 22

6. The General Feature Model . 23

6.1. Geographic Information: Key Principles . 23

6.2. Metamodel for Geographic Information: The General Feature Model . 23

7. CSW-eb-RIM based WOS Implementation . 27

7.1. Interaction Model. 28

7.2. Searching for WOS Objects . 28

7.3. Interrogation of a WOS Object . 28

7.4. Object Insertion . 29

7.5. Update and Deletion . 29

8. WFS based Web Object Service . 30

8.1. Introduction . 30

8.2. Requirements . 30

8.3. Architecture. 31

8.4. Basic Service Elements . 31

8.4.1. Service Root . 31

8.4.2. Object Representation . 31

8.4.3. Content Negotiation . 32

8.4.4. Exceptions . 32

8.5. Authentication and Access Control . 32

8.6. Hypermedia Controls . 33

8.6.1. Introduction. 33

8.6.2. Hypermedia Control in a WOS' Capabilities Document . 33

8.6.3. Hypermedia Controls in a WOS' Query Response . 33

8.7. Summary of Resources . 33

8.8. MIME Types . 34

8.9. A Word about Examples . 34

8.10. Service Metadata . 35

8.10.1. Introduction. 35

8.10.2. Resources . 35

8.10.3. Query Parameters . 35

8.10.4. Representations . 35

8.10.5. Methods . 36

8.10.6. Examples . 36

8.11. Object Access & Management (GetObject/Transaction) . 41

8.11.1. Introduction. 41

8.11.2. Resources . 41

8.11.3. Query parameters . 42

8.11.4. Representations . 42

8.11.5. Methods . 43

8.11.6. Examples: . 44

8.12. Associations . 47

8.12.1. Introduction. 47

8.12.2. Resources . 47

8.12.3. Methods . 49

8.12.4. Examples . 50

8.13. Classifications . 52

8.13.1. Introduction. 52

8.13.2. Resources . 53

8.13.3. Methods . 56

8.13.4. Examples . 58

9. Future Work . 61

Appendix A: Revision History . 63

Appendix B: Bibliography . 64

Publication Date: 2017-05-12

Approval Date: 2016-12-07

Posted Date: 2016-11-21

Reference number of this document: OGC 16-047r1

Reference URL for this document: http://www.opengis.net/doc/PER/t12-A075

Category: Public Engineering Report

Editor: Martin Klopfer

Title: Testbed-12 General Feature Model Engineering Report

Testbed-12 General Feature Model Engineering Report (16-047r1)

COPYRIGHT

Copyright © 2017 Open Geospatial Consortium. To obtain additional rights of
use, visit http://www.opengeospatial.org/

WARNING

This document is an OGC Public Engineering Report created as a deliverable of
an initiative from the OGC Innovation Program (formerly OGC Interoperability
Program). It is not an OGC standard and not an official position of the OGC
membership.It is distributed for review and comment. It is subject to change
without notice and may not be referred to as an OGC Standard. Further, any
OGC Engineering Report should not be referenced as required or mandatory
technology in procurements. However, the discussions in this document could
very well lead to the definition of an OGC Standard.

1

http://www.opengis.net/doc/PER/t12-A075
http://www.opengeospatial.org/

LICENSE AGREEMENT

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"),
free of charge and subject to the terms set forth below, to any person obtaining a
copy of this Intellectual Property and any associated documentation, to deal in
the Intellectual Property without restriction (except as set forth below),
including without limitation the rights to implement, use, copy, modify, merge,
publish, distribute, and/or sublicense copies of the Intellectual Property, and to
permit persons to whom the Intellectual Property is furnished to do so, provided
that all copyright notices on the intellectual property are retained intact and
that each person to whom the Intellectual Property is furnished agrees to the
terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual
Property must include, in addition to the above copyright notice, a notice that
the Intellectual Property includes modifications that have not been approved or
adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY
RIGHTS UNDER ANY PATENTS THAT MAY BE IN FORCE ANYWHERE IN THE
WORLD. THE INTELLECTUAL PROPERTY IS PROVIDED "AS IS", WITHOUT
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE DO NOT
WARRANT THAT THE FUNCTIONS CONTAINED IN THE INTELLECTUAL
PROPERTY WILL MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF
THE INTELLECTUAL PROPERTY WILL BE UNINTERRUPTED OR ERROR FREE.
ANY USE OF THE INTELLECTUAL PROPERTY SHALL BE MADE ENTIRELY AT
THE USER’S OWN RISK. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR ANY
CONTRIBUTOR OF INTELLECTUAL PROPERTY RIGHTS TO THE INTELLECTUAL
PROPERTY BE LIABLE FOR ANY CLAIM, OR ANY DIRECT, SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING
FROM ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR UNDER ANY OTHER
LEGAL THEORY, ARISING OUT OF OR IN CONNECTION WITH THE
IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF THIS
INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by

2

destroying the Intellectual Property together with all copies in any form. The
license will also terminate if you fail to comply with any term or condition of
this Agreement. Except as provided in the following sentence, no such
termination of this license shall require the termination of any third party end-
user sublicense to the Intellectual Property which is in force as of the date of
notice of such termination. In addition, should the Intellectual Property, or the
operation of the Intellectual Property, infringe, or in LICENSOR’s sole opinion be
likely to infringe, any patent, copyright, trademark or other right of a third
party, you agree that LICENSOR, in its sole discretion, may terminate this license
without any compensation or liability to you, your licensees or any other party.
You agree upon termination of any kind to destroy or cause to be destroyed the
Intellectual Property together with all copies in any form, whether held by you
or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder
of a copyright in all or part of the Intellectual Property shall not be used in
advertising or otherwise to promote the sale, use or other dealings in this
Intellectual Property without prior written authorization of LICENSOR or such
copyright holder. LICENSOR is and shall at all times be the sole entity that may
authorize you or any third party to use certification marks, trademarks or other
special designations to indicate compliance with any LICENSOR standards or
specifications.

This Agreement is governed by the laws of the Commonwealth of Massachusetts.
The application to this Agreement of the United Nations Convention on
Contracts for the International Sale of Goods is hereby expressly excluded. In
the event any provision of this Agreement shall be deemed unenforceable, void
or invalid, such provision shall be modified so as to make it valid and
enforceable, and as so modified the entire Agreement shall remain in full force
and effect. No decision, action or inaction by LICENSOR shall be construed to be
a waiver of any rights or remedies available to it.

None of the Intellectual Property or underlying information or technology may
be downloaded or otherwise exported or reexported in violation of U.S. export
laws and regulations. In addition, you are responsible for complying with any
local laws in your jurisdiction which may impact your right to import, export or
use the Intellectual Property, and you represent that you have complied with
any regulations or registration procedures required by applicable law to make
this license enforceable.

3

Abstract

With a growing requirement to carry out complex analysis in large multi-
disciplinary, heterogeneous data collections, an approach is required to extract
equivalent information from dissimilar content. The more information can be
normalized, the easier it will be to correlate the content. Given that almost all
data has a spatio-temporal component, this ER will look into the idea of defining
a Spatial-Temporal Service and analyze which collection of data types,
operations and architecture patterns would be necessary to spatial-temporal
enable any content. This OGC® document reviews the General Feature Model
and gives guidelines for necessary modifications to broaden its scope, so that it
can be re-used for non-geospatial centric applications and extended as
necessary into a general model for all object types.

Business Value

The GFM and it’s capabilities have long been regarded as being of interest to the
OGC / the geospatial community only. However, the proof-of-concept carried out
in this activity has successfully demonstrated, that the GFM can accommodate
far more requirements than anticipated. Even rather abstract items such as a
judgement, a decision or the related body of evidence can be expressed as
features and associations. Given that almost all information can be attributed
with some spatio-temporal tag, a GFM based approach can play an important
role in the integration of geospatial and non-geospatial data and systems.

Technology Value

This ER summarizes the work performed in Testbed-12 and provides an outlook
on possible future activities. It serves as a starting point for the OGC community
in general and the Geosemantics Working Group in particular to understand
some of the latest discussions on semantics in geospatial contexts. It provides a
number of references to more detailed material to facilitate more in-depth
research and analysis.

Although this ER does not reflect the work of any OGC Working Group, it
addresses topics which are currently discussed in the Defense & Intelligence
DWG, Disaster Management DWG and Big Data DWG. The initial GEOINT
requirements were derived from capabilities anticipated for Activity Based
Intelligence (ABI), Object Based Production (OBP) and Structured Observation
Management (SOM). It concentrates on summarizing the activities performed in
Testbed-12 that were carried out to analyze the capabilities of the GFM to store
non-geospatial data and associations. As such it provides a starting point for

4

future work on geospatial and non-geospatial data integration.

Keywords

ogcdocs, testbed-12, General Feature Model, heterogeneous data integration

Proposed OGC Working Group for Review and Approval

WFS/FES SWG and Defence and Intelligence DWG

5

Chapter 1. Introduction

1.1. Scope
Given that almost all data has a spatial-temporal component, this OGC® Engineering Report
evaluates the degree to which the General Feature Model can accommodate complex analysis on
large multi-disciplinary, heterogeneous data collections for the purpose of extracting new
information from dissimilar content. It looks into the idea of defining a Spatial-Temporal Service
and Analytics platform and identifies the data types, operations and architecture patterns would be
necessary to spatial-temporal enable any type of content.

This OGC® document reviews the General Feature Model and gives guidelines for necessary
modifications to broaden its scope, so that it can be re-used for non-geospatial centric applications
and extended as necessary into a general model for all object types.

The idea to integrate information and capture knowledge has evolved in OGC over a long period of
time, accommodating the continuous changes in technology and the range of services to be
integrated. The following OGC documents summarize some of this work and have been considered
in the development of the initial concepts:

The Web Object Service Implementation Specification (OGC 02-049 / 03-013) aimed to satisfy a
requirement of the OWS 1.2 project to manage many different types of objects, including styles,
symbols and images, using a repository interface. “The specification defines a set of base XML
types that define the behavior of a Web Object Service. A Web Object Service is a generic web-
based repository interface. The interface supports the following operations: GetCapabilities,
DescribeObjectType, GetObjectById, GetObject, LockObject and Transaction. The specification
assumes that the distributed computing platform is HTTP and may define both XML (suitable for
the POST method) and Keyword-Value Pair (suitable for the GET method) encodings of each
operation.”

The OGC® Testbed-10 Service Integration Engineering Report (OGC 14-13r1) “specifies a means of
discovering and describing associations between web resources (both OGC and non-OGC). The
discovery of associations is accomplished by means a new operation named GetAssociations. The
description or representation of associations is accomplished by the definition of an XML Schema
for expressing associations in XML. The scope of this document is limited to the existing OGC web
service framework, which predominantly uses XML. However, it is anticipated that over time the
association schemas defined in this document will be extended to provide JSON snd JSON-LD
expressions which are rapidly emerging encodings within and outside the OGC.”

The OGC® Testbed-11 Incorporating Social Media in Emergency Response Engineering Report (OGC
15-057) studies two different approaches to incorporating social media information into Emergency
Response applications: “The first [approach] was based on the concept of using an OGC Sensor
Observation Service (SOS) for handling humans as sensors is illustrated from an interoperability
perspective. The developed O&M-based data model is presented and illustrated with examples from
different social media platforms. This is complemented by a description of how data loading from
social media platforms into an SOS server can be achieved. The second approach was based on
using Linked Data to integrate social objects produced by the different social media networks. The
ontology for describing social objects and activities is based on SocialML ontologies that can be

6

extended to accommodate new activities and social objects. The integration of social sites was done
through the use of RDF scrapers accessible through a REST API. The resulting knowledgebase was
made available through a GeoSPARQL endpoint. Another important topic of [OGC 15-057] is the use
of the OGC Web Processing Service (WPS) for analyzing the available social media data (i.e. detect
clusters). “

However, the requirement to integrate heterogenous data using spatial-temporal attributes has also
been addressed outside the OGC. One example explicitly mentioned in the Testbed-12 RFQ is the
FGDC endorsed Time Space Position Information (TSPI) Version 2.0 standard (NGA.STND.0019_2.0),
which "provides a single means of encoding spatiotemporal information for the storage,
manipulation, interchange, and exploitation of spatiotemporal data. It is designed as a set of
reusable data components upon which both Geography Markup Language (GML)-based application
schemas and non-GML-based XML schemas may be developed. It specifies a registry-based
extension mechanism enabling the development and reuse of additional spatiotemporal XML
Schema components. It integrates the XML Schema for the United States Thoroughfare, Landmark,
and Postal Address Data Standard, FGDC-STD-016-2011, including the necessary updates to work
with the OGC® GML 3.3, Extended schemas and encoding rules."

The Testbed-12 General Feature Model ER now takes a step back from specific implementation
requirements and looks into the principle capabilities of the GFM to accommodate non-geospatial
data, information and associations as features.

A simple use case scenario is based on observations from non-geospatial sources, subsequent
decisions based on selected observations and a requirement to create associations, which allow a
user to access all associated features. The objective is to make a body of evidence for a decision
accessible from various angles. This can be the traditional geospatial approach of showing a
decision on a map and providing a report of associated features. However it should also be capable
of providing graph-like overviews of features and associations accessible from non-geospatial
systems.

1.2. Document contributor contact points
All questions regarding this document should be directed to the editor or the contributors:

Table 1. Contacts

Name Organization

Roger Brackin Envitia

Charles Heazel WiSC Enterprises

Gobe Hobona PhD. Envitia

Martin Klopfer Frisia IT

Panagiotis (Peter) A. Vretanos CubeWerx Inc.

1.3. Future Work
This initiative has demonstrated the feasibility of a Spatial-Temporal Service and Analytics Platform

7

based on the General Feature Model. However, much work remains to be done to fully define and
validate that platform. The proposed next steps in this effort can be found in Section 9.

The work carried out in this activity has not resulted in any change requests towards existing
specifications.

1.4. Foreword
Attention is drawn to the possibility that some of the elements of this document may be the subject
of patent rights. The Open Geospatial Consortium shall not be held responsible for identifying any
or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any
relevant patent claims or other intellectual property rights of which they may be aware that might
be infringed by any implementation of the standard set forth in this document, and to provide
supporting documentation.

8

Chapter 2. References
The following documents are referenced in this document. For dated references, subsequent
amendments to, or revisions of, any of these publications do not apply. For undated references, the
latest edition of the normative document referred to applies.

• OGC OGC 06-121r9, OWS Common Implementation Standard

• OGC 16-046, Testbed-12 Semantic Enablement ER

• OGC 02-049 / 03-013, Web Object Service Implementation Specification

• OGC 14-13r1, Testbed-10 Service Integration Engineering Report

• OGC 15-057, Testbed-11 Incorporating Social Media in Emergency Response Engineering Report

• NGA.STND.0019_2.0, Time Space Position Information (TSPI) Version 2.0 standard

• NGA, Everything you wanted to know about the NSG Application Schema (NAS), TB12 Reference
Material Presentation

9

https://https://portal.opengeospatial.org/files/?artifact_id=38867
https://portal.opengeospatial.org/files/?artifact_id=6660
https://portal.opengeospatial.org/files/?artifact_id=1338OGC
https://portal.opengeospatial.org/files/?artifact_id=58892
https://portal.opengeospatial.org/files/?artifact_id=64353
http://earth-info.nga.mil/GandG/wgs84/web_mercator/(U)%20NGA.STND.0019.2.0%20Time%20Space%20Position%20Information%2005Apr2012.pdf
https://portal.opengeospatial.org/files/?artifact_id=67325
https://portal.opengeospatial.org/files/?artifact_id=67325

Chapter 3. Terms and definitions
For the purposes of this report, the definitions specified in Clause 4 of the OWS Common
Implementation Standard [OGC 06-121r9] shall apply. In addition, the following terms and
definitions apply.

3.1. Abbreviated terms
• ABI Activity Based Intelligence

• API Application Program Interface

• COM 	 Component Object Model

• CSW Catalogue Service for the Web

• DCE 	 Distributed Computing Environment

• DCOM	 Distributed Component Object Model

• ebRIM	Electronic Business Registry Information Model

• ER Engineering Report

• GFM General Feature Model

• GMLSF 	Simple Feature Geography Markup Language

• IDL Interface Definition Language

• LDP Linked Data Platform

• NGA National Geospatial-Intelligence Agency

• OBP Object Based Production

• OWL Web Ontology Language

• OWL-S Semantic Markup for Web Services

• RDF Resources Description Format

• RDF-QB RDF Data Cube

• SHACL Shapes Constraint Language

• SKOS Simple Knowledge Organization System

• SOM Structured Object Management

• SPARQL SPARQL Protocol and RDF Query Language

• UML Unified Modeling Language

• VoID Vocabulary of Interlinked Datasets

• WOS Web Object Service

10

Chapter 4. Overview
This ER serves as an entry point to Testbed-12 activities looking into the idea of using the GFM as a
basis for integration of heterogeneous and multi-temporal geospatial and non-geospatial data. It
integrates discussions from the Linked Data and Advanced Semantics for Data Discovery and
Dynamic Integration thread.

The main document starts in Clause 5 with a short overview of the initial requirements,
assumptions and concepts, as well as the use case scenario selected for a proof of concept
demonstration.

It then maps the concepts to the use case scenario and derives an initial model based on the GFM in
Clause 6.

Two demo implementations carried out by Envitia and Cubewerx are briefly described and
discussed in Clause 7 and Clause 8.

The experiences from the proof of concept implementations as well as future work items are finally
summarized inClause 9.

11

Chapter 5. Initial Requirements,
Assumptions and Concepts
With a growing requirement to carry out complex analysis in large multi-disciplinary,
heterogeneous data collections, an approach is required to extract equivalent information from
dissimilar content. The more information can be normalized, the easier it will be to correlate the
content.

Given that almost all data has a spatio-temporal component, this ER looks into the idea of defining a
Spatial-Temporal Platform as a Web Object Service (WOS) and analyzes which collection of data
types, operations and architecture patterns would be necessary to spatial-temporal enable any
content.

It is assumed that the General Feature Model, WFS and CSW already accommodate most
capabilities, although by nature of their origin, they are primarily geared towards geospatial
application.

The envisioned WOS is not about merging WFS and CSW. It is about being able to serve any type of
object, e.g. vector features, raster coverages, other images, sounds, or even representations of a
concept or conclusion.

The WOS is thus a means to handle associations as a first class object to allow the description of
relationships between arbitrary objects in a formal way as described below.

The goal is to review the General Feature Model and to research necessary modifications to
broaden its scope, so that it can be re-used for non-geospatial centric applications and extended as
necessary into a general model for all object types.

5.1. Integration of Data, Analytical Observations and
Judgments
As part of their homeland security mission, NGA has compiled the HSIP Gold database. HSIP Gold is
a compilation of 560 of the best available geospatially enabled baseline infrastructure datasets for
all National & Defense Critical Infrastructure Sectors. Now they want to extend that capability by
providing not just feature data, but a comprehensive integrated information environment. This
environment provides a comprehensive suite of integrated information as well as analytics to
derive knowledge from that information.

Central to this capability is a data aggregation service: Data is collected from open source, crowd
sources, and procured from key data providers.

All data is assigned a unique identifier, and populated with discovery metadata. That metadata
includes the spatial and temporal extent. Core to the data store is a global feature data set. This
foundation feature data is a detailed representation of the global real-world objects. The foundation
feature data provides a spatial-temporal context against which all other data can be understood.

The data holdings do not stop with data. They also include the results of analytic processes applied

12

to the data. These results are classified as observations or judgments.

5.2. Correlation does not necessarily mean causation
Observations identify correlations between data. These may be generated by observation or
through automated analytics. Correlations are statements of fact, but do not indicate meaning.

For example, two suspected criminal operatives are in San Francisco at the same time and stayed in
hotels within ½ mile from each other. This could indicate that they are planning an attack. It could
be simple coincidence. The observation is a simple observance of fact. It makes no judgment as to
the significance of that fact.

5.3. Making Judgments on Facts
Judgments are the result of analytic processes, which develop conclusions from a body of evidence.
They can be the result of automated or human analytic processes. A judgment must include:

• the entity which generated the judgment,

• the analytic process used,

• the body of evidence supporting the judgment, which can include data, observations and other
judgments,

• a measure of confidence for the judgment, which should reflect the aggregate confidence in
each evidence entity, as well as the confidence in the analytic process. A change in any of the
evidence should result in a re-calculation of, or at last a flag against, the confidence in the
judgment.

This information is sufficient for a user to review the analytic process and make their own
assessment as to its value.

5.4. Interaction with an Integrated Information
Environment
Data, observations and judgments reside in the integrated information environment and all
information is spatial-temporally enabled.

This information can be compiled for distribution through a report, i.e. a compilation of
observations and judgments intended for human consumption. However, such reports do not have
to be in a document format. A report may also be an interactive web site, which allows users to
visualize and navigate through the judgments and reasoning. They may also be dynamically
updated as the underlying information changes.

Users can build their own analytics or use the analytics provided by the service. Analytics can be
assembled into workflows resulting in more complex analytics.

This concept is also well described in NGA’s presentation ""Everything you wanted to know about
the NSG Application Schema (NAS)"". The NAS document describes three major components of this

13

integrated information environment:

5.4.1. Activity Based Intelligence (ABI)

An analytic method applied to structured data from all sources, to discover objects, relationships, or
behaviors by resolving significant activity. ABI methods accelerate and deepen insight and the
ability to do OBP; new insight enriches models and understanding of adversary behaviors and
relationships.

5.4.2. Object Based Production (OBP)

A framework for organizing and sharing information, relating observations from all sources to
known objects (be they units, people, locations, or events).

5.4.3. Structured Observation Management (SOM)

NGA’s framework for organizing and sharing GEOINT information, normalizing how to capture and
record observations from all sensors and sources. SOM enables integration of GEOINT in OBP.

5.5. Relationships - Features and Associations
Based on the above mentioned conceptual ideas a feature can be almost anything. To illustrate the
concept, the chosen data for the Use Case Scenario described below includes analytical
observations, judgements, tweets, images and even a police radio message.

The crucial step is to move from individual features to linked features. The association describes
the relationship between features and is thus the binding connection, linking objects with each
other. This GFM approach works with every type of relationship.

The topic of associations has also come up in other TB12 activities and is further described in TB12 -
Evaluate Semantic Enablement ER.

5.6. Use Case Scenario
To evaluate the degree to which the GFM is capable of capturing information from social media and
related human judgments and decisions as features, a simple use case scenario has been developed:

• A large crowd moves from A to B along a predefined route,

• an incident, which could temporarily block the anticipated route is reported,

• the situation needs to be judged and

• decisions need to be taken and potentially justified later on.

Apart from the fabricated incident at the junction, this is based on a Climate Change Protest March
with 5,000+ participants. The event took place in Oakland on 7th February 2015. It was well covered
by tweets before, during and after the event via @DontFrackCA.

14

http://docs.opengeospatial.org/per/16-046#RESTAPIs
http://docs.opengeospatial.org/per/16-046#RESTAPIs

Figure 1. Planned route from Oakland City Hall, Frank H. Ogawa Plaza, intending to march to
Lakeside Park

5.7. Available Scenario Phases
The use case scenario and it’s associated data cover all three phases of a planned event:

During the pre-event phase, information can be derived about the topic, location and date, as well
as the anticipated size and nature of the event. In the case of a planned event, where organizers
and local authorities work together, this might provide information to judge the degree to which

15

planned and actual developments align. In case of an ad hoc event, it could provide early warning
indicators to trigger actions for preparedness.

During the actual event phase, social media information can be used to support situation
awareness and handling. For TB12 we have inserted a tweet message reporting a suspicious
package next to a junction the Climate Change Protest March plans to pass on the planned route.
This requires organizers to make decisions how to proceed. The decisions are based on the current
location of the crowd, which could be machine-processed information from tweets, human
observations reported by radio and judgments on available information. Observations, judgments
and decisions shall all be treated a features with a traceable relationship to each other.

Post-event information might be relevant to rate the effectiveness of decisions resulting actions.

5.8. Scenario Script
Given that the scope of the GFM activity in TB12 is to proof the concept of storing heterogeneous
observations and their associations in a GFM based model, it was decided to break down the
scenario to a very simple chain of events:

• A suspicious parcel is observed on a junction of the planned route and triggers a potential
threat alert

• A decision to investigate is taken based on the location of the crowd relative to the reported
location

• The parcel can be identified and the threat alert is cleared

16

Figure 2. Conceptional View of Selected Scenario

5.9. Accommodating Associations in GFM
One of the key requirements in the TB12 GFM activity is not only to analyze to what degree non-
geospatial objects can be accommodated in the GFM, but also to describe associations between
them in order to maintain traceability, e.g. between an observation and a subsequent decision.

The GFM defines two relationships between GF_FeatureType and GF_AssociationType as illustrated
below:

17

Figure 3. relationships between GF_FeatureType and GF_AssociationType

The "TypeAssociation" between GF_FeatureType and GF_AssociationType indicates that a
GF_AssociationType instance can serve as the "linkBetween" two GF_FeatureType instances. That is,
the GF_Association "includes" the associated GF_Feature instances. Since the GF_AssociationType is
a metaclass derived from GF_FeatureType, this approach allows associations to have properties
(attributes, associations, and operations) analogous to any other instance of GF_FeatureType.

The second relationship between GF_FeatureType and GF_AssociationType is an inheritance
relationship. GF_AssociationType inherits all associations and properties of GF_FeatureType, its
superclass. Since GF_AssociationType is a subclass of GF_FeatureType, then GF_Associations are
also GF_Features. If GF_Associations are also GF_Features, then there can be GF_Association
instances which associate GF_Associations. That is, associations between associations. This leap
allows us to not only establish smart associations between objects, but to build a body of evidence
(a collection of objects and associations) which asserts and supports the confidence level for each
association.

In our example, we use this model to define additional properties for associations. The
BodyOfEvidence Association class allows us to define the trust level and a reason, as illustrated
below:

18

Figure 4. defining properties for associations

The resulting GFM based model is detailed in Clause 6.

5.10. WOS Approaches
The Web Object Server concept allows multi-faceted information to be stored, updated and queried
so as to effectively allow the management and exploitation of the information in an intelligence
way.

Two possible WOS approaches have been identified for evaluation in TB12:

• Based on CSW-ebRIM

• Based on WFS

Both the CSW and WFS support geographic, numeric, and textual queries based on the OGC Filter
query language. Both also deliver data in response to query requests. In the case of the WFS, that
data is in the form of GF_Features. The CSW typically returns "metadata" records. This distinction
is one of use rather than substance. Starting with NAS version 7.0, NGA has re-integrated the NSG
Metadata Foundation (NMF) back into the NAS. Metadata and Feature data become two views into

19

the same data holdings. In the same way, the WFS and CSW based WOSs can be seen as two
different approaches to the same capability.

5.10.1. CSW ebRIM based WOS Approach

Information Types Supported

The CSW ebRIM based approach recognizes that it is unlikely that there is a single ‘store’ type
capable of storing multi-faceted data. For the purposes of this document multi-faceted can be
considered at least:

• Structured Geospatial Data, Vector and Gridded (defined by a schema)

• Unstructured Geospatial Data, add-hoc Attributes and Object Types.

• Tabular Data

• Video and Imagery (geo-referenced and non-geo-referenced)

• Relationship Data (associations, ad-hoc and characterised)

• Stream Objects (no-SQL)

Store Types

To store these artifacts at least the following database/web service are typically used:

• Relational Database/WFS

• Gridded Files/WCS

• Video File Store/H264 Stream + MISB KLV metadata streams

• Imagery File Store/WCS Service

• Sensor Information/SOS/STA

• Event Sources/ATOM+RSS+XMPP feeds

• RDF Store/SPARQL or GeoSPARQL Endpoint

Representation

In order to support the wide range of information required the following general principles will be
adopted in designing the model.

Object Hierarchy

The Object store will support high level conceptual objects which may have multiple
representations in detail, for example different geometries at different scales. Thus there is a
premise that the ‘classic’ geo-feature represented by a geometry (e.g. a road polyline) with for
example ‘width’ properties is an ‘feature style attribute’ of an object. We could call these
‘SimpleFeature Attributes’ as an object could still be considered a Feature but the OGC
SimpleFeature profile feature is more primitive.

20

Feature/Attribute Schema Independence

The proposed model to store the necessary information is an object hierarchy based on Ontological
principles rather than schema principles. The main conceptual difference is to break the specific
link between feature and attribute, avoiding constraining an object to have a fixed set of attributes.
An object can be ‘classed’ by associating one or more classes with it, but these do not define the
attribute profile. Note this also allows an instance attribute to be used by more than one object.

Globally Unique Identifier Principle

In line with ontological principles a WOS object will have a well define characterizing global id (it
can have more than one, but no one id can reference more than one object). In addition all WOS
instance attributes will also have a global id. So in the example of road above, each simpleFeature
object will have a globally unique id. This is critical in allowing an attribute to be retrieved from
another store.

5.10.2. WFS based WOS Approach

Cubewerx is working on a WFS-based WOS, which would be a completely new service with an
dedicated API. Presumably, this service would be able to handle a wide variety of object types
including features, catalogue records, and even coverages. Like CSW or WFS it will use the Filter
encoding standard as its predicate language. The underlying data model remains to be discussed,
with ATOM being a favored candidate.

As a starting point the service proposal (02-049) will be used; it was derived from WFS/CSW and
was the first attempt to move towards a unified data service (features, coverages, etc.).

5.11. Client Requirements
The goal of a WOS client is to enable the search, discovery and exploitation of the content provided
by a WOS. In contrast to other geospatial web services, a WOS is intended to support a wider
variety of types of objects. This section presents those requirements that were identified in the
development of the WOS demonstrations.

The primary requirement for a WOS client is the ability to present both geospatial and non-
geospatial content. An example of geospatial content in a geographically referenced Building. An
example of non-geospatial content is a Decision. In Testbed-12 geospatial content was displayed
both on a map and on a list, whereas non-geospatial content was presented on a list.

A first secondary requirement is an ability to present both text and non-text properties (i.e. multi
media such as audio and video). An example of text properties is the name or length of a road, that
is property values that can be encoded as text. Examples of non-text properties are a picture of a
parcel or an audio clip.

Another secondary requirement is an ability to query and present associations between objects of
content stored or registered in the WOS.

21

5.12. Initial Implementation Experiences

5.12.1. Data Availability

As of September 2016, all tweets of the 2015 Oakland March were still available via the Twitter
search API. However we have not yet been able to find a definite answer to the lifetime of tweets.
Whilst this might seem irrelevant to the monitoring of a live event, it has an impact on preserving
the body of evidence for decisions. For the purpose of the GFM demo, it was therefore decided to
harvest a selected number of tweets and store them in a backup system to emulate the live event.
Deployed in a real-time scenario, this mechanism might also be relevant to the preservation of body
of evidence data.

5.12.2. Data Georeferencing

An analysis of the tweets selected for the scenario revealed that only very few were actually
georeferenced. However, georeferencing can be done based on keywords embedded in a tweet, e.g.
“Front of the March now at <Fox Theatre>”, or identification of local features in pictures or video
streams.

22

Chapter 6. The General Feature Model
The following paragraphs introducing the General Feature Model are based on [1], which even
includes an introduction to object-oriented modeling and design. Readers not familiar with the
object-oriented paradigm are referred advised to consult [1] first. ISO/TC211 follows the model
driven architecture approach with its fundamental concept that an application can be described
independently of the platform on which it runs. This level of abstraction results in the development
of conceptual models, which are used to describe aspects of the real world in an abstract way. These
models always reflect the specific view of the world by the model developer and contain only these
elements from the universe of discourse that are relevant in a particular situation. Conceptual
models have several levels of abstraction:

• Meta-metamodel level: The meta-metamodel contains the defining schema that identifies the
principles to be used in organizing information about the concepts of interest.

• Metamodel level: The metamodel includes a specification of the language to be used in
describing the concepts. A conceptual schema language provides the semantic and syntactic
elements used in a rigorous description of the conceptual model consistent with the defining
schema. ISO/TC211 elected UML the conceptual schema language

• Application Level: The application level contains application schemas that describe the specific
concepts that are instantiated to produce a data set.

• Lowest Level: The lowest level is a data set that instantiates the concepts defined by an
application schema.

6.1. Geographic Information: Key Principles
The defining schema (meta-metamodel) for geographic information contains several key principles:

• The real-world entities of interest for geographic information are described as features.

• Feature characteristics are known as feature attributes. These include spatial characteristics,
which are of particular importance.

• Features may be related to each other in many ways with relationships upon spatial position
being especially important.

• Features may perform a variety of functions in the natural or cultural environment in which
they occur.

• A set of common characteristics, relationships, and functions common to many features define
a feature type.

6.2. Metamodel for Geographic Information: The
General Feature Model
The General Feature Model (GFM) is defined as the metamodel for the development of application
schemas for geographic information. It is defined in ISO 19109. The principal element of the GFM is
the metaclass GF_FeatureType. Metaclass is a stereotype that identifies a classifier whose instances
are themselves classes, i.e. it represents a concept at a higher level of abstraction than do the

23

classes that instantiate it. An instance of GF_FeatureType is a UML class named for a specific
feature type, such as road, alertMessage, or crowd.

As illustrated in the figure below, GF_FeatureType is connected to GF_InheritanceRelation by the
associations Specialization and Generalization. Thus, two instances of GF_FeatureType may be
related to each other as a superclass or a subclass in a generalization hierarchy.

Figure 5. GF_FeatureType

The GFM defines two relationships between GF_FeatureType and GF_AssociationType as illustrated
in figure above. The first association indicates that an instance of GF_FeatureType may be included
in an instance of GF_AssociationType. Generally, this is implemented as a simple UML association
between two classes in an application schema.

The second relationship between GF_FeatureType and GF_AssociationType is an inheritance
relationship, i.e. GF_AssociationType inherits all associations and properties of GF_FeatureType, its
superclass. This second relationship is modeled as an UML Association Class rather than a simple
UML association in an application schema. Thus, a feature association can contain properties and -
even more important - can be treated as a feature in its own right. The properties are shown by the
composition between GF_FeatureType and GF_PropertyType. Both can be constrained, illustrated by
the association to GF_Constraint. Constraints can be applied to any instance of its associated
metaclasses.

GF_PropertyType is an abstract metaclass with three subclasses: GF_Operation, GF_AttributeType,
and GF_AssociationRole as illustrated in figure below to define details about a feature’s properties.

24

Figure 6. GF_PropertyType with subclasses. Highlighted: GF_AssociationRole to describe the role of an
association

GF_AssociationRole describes a role that an instance of a feature type may have in an association
with another instance of the same of another feature type. As illustrated in figure below,
GF_AssociationRole's cardinality attribute specifies the multiplicity for instances of the feature type
acting in this role. It further inherits GF_Constraint from the GF_PropertyType to define further
constraints.

25

Figure 7. GF_AssociationRole

In summary, the fact that GF_AssociationType is a subclass of GF_FeatureType allows modeling any
feature as a first class object, independently if the feature exists as a representation of a real world
object, or is defined as part of an association between two features. Feature association types can
be stored in registries or communicated independently of their associated feature types if
necessary, which allows "show me all association types of this feature" type of requests.

In the example provided below, BodyOfKnowledge is modeled as a GF_AssociationType class that
further defines the association between Decision and CommunicationMessage. As an instance of a
GF_FeatureType specialization, it carries its own property (trustLevel).

Figure 8. Example of an association as a first class object

26

Chapter 7. CSW-eb-RIM based WOS
Implementation
There are a number of possible implementations of WOS using a CSW. The following section
describes a two-tier approach used in Testbed-12. The ‘high level’ objects are stored in an overall
service (the CSW-ebRIM registry). These high level objects have attributes, some simply values but
others complex attributes such as very detailed geometries and properties against these. These
attributes are ‘instanced’ attributes and are stored in other stores and available via web services,
e.g. simpleFeatures, delivered by a WFS. It should be possible to retrieve any instance attribute
using a well defined id query, for example a GetFeatureByID. A screenshot of the CSW-ebRIM
registry used to implement the WOS Catalogue is shown below.

Figure 9. Object Composition

It is possible to abstract simple attributes, for example storing a geospatial extent of the geometric
attribute in the registry. This allows queries on the high level objects such as ‘find me all the objects
within a given area. A first level query can find the objects but a further detained query on each
one is necessary to identify the exact set of objects meeting the criteria.

In this model the overall object server, really an object catalogue, provides what amounts to
‘metadata’ about the object, and the details of the object are dispersed among the various databases
and services which support the ‘instance’ attributes of the object.

27

Figure 10. Object Composition

7.1. Interaction Model
The interaction (search and access model) with the WOS requires a relatively intelligent client that
is able to query objects and the associations between them.

7.2. Searching for WOS Objects
To fully access an object it is necessary to first discover a high level WOS object, either by directly
knowing its identifier or performing a search. When searching it is possible the search may be
simple, for example find object by name. It could be a more complex query such as to find all
objects of type ‘building’ in ‘area’. The latter can partially be resolved based on bounding box or
point but not completely. Glossing over this for the moment, let us say we are happy with all
‘potential’ objects in the area then all is well. Lastly client application can ask for all buildings
related to incident ‘7890’ and can find them all, although again this is a simplification. Each of the
above queries can be satisfied using the ‘CSW-ebRIM’ protocol. We can see thumbnails of the
objects via this interface too (given the above model).

7.3. Interrogation of a WOS Object
Having found an object the user may wish to dive into the detail, looking at the specific details of
the perimeter, a particular image, or the detailed relationships, then it is necessary to use the
appropriate query to one of the attribute servers (WFS, WCS, SPARQL endpoint etc).

The WOS Catalogue can help here, as each attribute instance described and associated to an object
can have a class, and describes the query to be used to retrieve the object. i.e. the ‘id’ can be a fully
populated query, for example a WFS Get request for a feature of id 555.

28

This model therefore does not necessarily require a client to understand the query model, simply to
be able to execute the query specified. However the return result is of whatever type the service
returns. In practice the client needs to understand the attribute delivery service for that attribute
and decide if it can read that attribute type.

There is an argument that this is more complicated than a single WFS interface, but it is easily
scalable. The WOS Catalogue allows addition of multiple database types, and there is no single
query interface applicable to all datatypes so this model does offer a highly scalable approach.
Testbed-12 demonstrated this capability by allowing a photograph and an audio clip to be served
from an Accumulo database as the value of an attribute of an object registered in the WOS.

7.4. Object Insertion
This is to some degree complicated. Firstly attributes can exist in their own right, and so can be
created independently (e.g. Transactional WFS, SPARQL etc). Also WOS objects are easy to create
using an ebRIM Insert transaction. Attributes can also be easily related to a WOS using ebRIM if
their ID is known (which it will be if they are created by the client, or searched for independently).
When creating an attribute reference in an object it is essential that summary metadata is created,
for example the extent of the perimeter object (an abstraction of the full geometry) needs to be
populated to allow spatial searches.

7.5. Update and Deletion
When an attribute instance is updated, several actions are needed. If the attribute is accessed via a
WOS Object, the WOS Object is known and any change to its summary metadata can be enacted.
However we have said an attribute can be related to more than one WOS object. One approach is to
search using an ebRIM query for all attributes with a global id (of the attribute instance) and
update them all. The alternative is back-pointers but this is likely to get even more unwieldy.
Similarly for deletion, if an object is deleted, all references to it need to be deleted. Again these
processes put a load on the client, but some automation is ultimately possible.

29

Chapter 8. WFS based Web Object Service

8.1. Introduction
The Web Object Service (WOS) is a general data access service for objects. It can be considered an
extension of a Web Feature Service where the restriction to operate on features has been relaxed.

The general characteristics of a WOS are:

• Provides a service description document (i.e. capabilities) describing:

• the type of service being offered

• information about the service provider

• a set of parameter and service constraints

• the list of object collections offered by the service

• access to general objects (i.e. members of a collection)

• objects can be features

• objects can also be binary objects

• objects can be abstract (e.g. decisions)

• simple query capability

• the ability to dynamically define collections of object using simple predicates (e.g. time,
space, taxonomy)

• simple transaction capability

• the ability to create/modify/delete single objects

This clause describes, in general terms, the CubeWerx implementation of a WOS for OGC Testbed
12.

8.2. Requirements
The following set of general requirements were used to drive the design and implementation of the
WOS provided by CubeWerx:

1. A WOS can handle any kind of object including binary objects.

2. Objects are exposed through the WOS API using a common query model that includes spatial
and/or temporal properties.

3. A WOS can maintain associations between objects under its control and other non-WOS
resources

4. Associations can be simple links or they can be considered first class objects with properties.

5. A WOS can classify objects using any number of classification schemes.

30

6. A WOS query can include spatial, non-spatial, temporal and taxonomic predicates

8.3. Architecture
The following diagram illustrates the architecture on the CubeWerx WOS implemented for Testbed
12:

Figure 11. Architecture diagram of the CubeWerx’s TB12 WOS

On the back end, the WOS service was a hybrid system composed of a RDBMS (i.e. Oracle 12c) used
to manage the information model (i.e. associations, taxonomies and object metadata) of the WOS
and a NoSQL key-value store (Cassandra 2.2) as the native object repository.

8.4. Basic Service Elements

8.4.1. Service Root

The service metadata document of a WOS is accessible at some service root URL. Additional
resource URLs (i.e. hypermedia controls) can then be determined from the capabilities document.

The response to accessing the service root URL of a WOS with the HTTP GET methods shall be an
XML-encoded, OGC capabilities document. The service root URL is opaque and its form is not
defined in this engineering report.

8.4.2. Object Representation

Objects managed by a WOS have a native representation (i.e. text, video, WORD document, etc.) and
a representation used by the WOS for query purposes (i.e. the query model). The canonical
representation of the WOS' query model is an XML-encoded, ATOM feed.

Other query models may be supported, include deep-searches of the content itself but for Testbed
12, the only supported query model was the ATOM feed.

31

8.4.3. Content Negotiation

Two common approaches for content negotiation are supported by the WOS; HTTP headers (i.e.
Accept header) and HTTP query parameters (i.e. outputFormat or f). In any context there must be
agreement between content negotiation methods used; otherwise an exception shall be raised
(HTTP code=415). Content negotiation using the Accept header shall proceed in the standard
manner describe in the HTTP protocol:

• When submitting an HTTP request to a service, the client shall set the Accept header with a list
of desired response content types in order of preference

• The server shall respond with the most preferred content type it supports

• An exception shall be thrown if none of the specified content types are supported

• In any context, the HTTP OPTIONS method may be used to get the list of support content types.
(NOTE: this is not implemented for Testbed 12)

Content negotiation using the HTTP query parameters shall proceed in the usual OGC way (i.e. the
desired content type is specified using the output format query parameter and the server either
supports it or it does not). The list of supported formats for the query model of a WOS shall be
advertised in the server’s capabilities document.

8.4.4. Exceptions

When a service exception occurs, the server shall respond with an appropriate HTTP error code.
All exceptions that are the result of an invalid client request should have an HTTP error code in the
4xx range (and in most, if not all cases, should specifically be "400 Bad Request"). Server-side issues
should be given an HTTP error code in the 5xx range (and in most if not all cases) should
specifically be "500 Internal Server Error".

The canonical content of an exception shall be an OGC service exception report. This engineering
report does not define behavior for all HTTP methods for all resource (e.g. the behavior of the PUT
method is not described for the capabilities resource "/"). When a server is presented with an
unsupported HTTP method for a particular resource it shall respond with the HTTP error code "405
Method Not Allowed" and should contain an OGC exception message in the body of the response.

NOTE Implementations are free to implement (or not) whatever behavior they want in cases where
behavior is not defined in this engineering report (e.g. for experimental purposes or vendor
extensions) but whatever they do will be outside the scope of this engineering report.

8.5. Authentication and Access Control
All methods and resource described in the engineering report are subject to authentication and
access control. It is envisioned that authentication and access control will be layered on top of a
RESTful WOS but the description of how that would be done is beyond the scope of this engineering
report.

NOTE For OGC Testbed 12, the CubeWerx WOS can be protected using HTTP Basic Authentication.

32

8.6. Hypermedia Controls

8.6.1. Introduction

Hypermedia controls are the means by which, at any given state, a server enumerate for client
what possible next states are available.

Hypermedia controls defined by a WOS shall be encoded, in XML, as ATOM links. ATOM links are
defined in the following schema:

• http://schemas.opengis.net/kml/2.2.0/atom-author-link.xsd

The canonical value for the rel attribute shall either be:

• a token taken from the IANA Link Relation register (see: http://www.iana.org/assignments/link-
relations/link-relations.xhtml)

• or it shall be a URI registered with the OGC Naming Authority

• or it shall be a value defined in this engineering report that shall be submitted to the OGC NA
for registration (eventually)

8.6.2. Hypermedia Control in a WOS' Capabilities Document

The following hypermedia controls shall be included in the capabilities document of a WOS:

• for each offered object collection listed in the capabilities document:

• a link, with rel="collection", shall be included that points to the root URL of the collection

• a server is free to include any other desired hypermedia controls in the server’s capabilities
document

8.6.3. Hypermedia Controls in a WOS' Query Response

The following hypermedia control shall be included in the response to a WOS query:

• the query response element (i.e. ATOM entry) shall contain a link with rel="self" containing the
entry’s URL

A server is free to include any other hypermedia controls within an ATOM entry. Some examples of
common links that may be used include:

• alternate: pointing to alternate representations of the ATOM entity

• edit: pointing to a location where the entry can be updated or deleted

• next/prev: pointing to a related next or previous object within a chain of resources

8.7. Summary of Resources
The following tables summarizes the resources offered by a WOS:

33

http://schemas.opengis.net/kml/2.2.0/atom-author-link.xsd
http://www.iana.org/assignments/link-relations/link-relations.xhtml
http://www.iana.org/assignments/link-relations/link-relations.xhtml

Table 2. Summary of WOS resources

Resource
Class

Description Access path

Capabilities The complete service metadata
document

/

Object
collection

A collection of objects /{collection name}

Object An object (i.e. a specific member of a
named collection)

/{object URL}

Association A directional relationship between
two objects

/associations[/{id}]

ClassificationS
cheme

A taxonomy /classificationSchemes
[/{id}]

ClassificationN
ode

A node in a taxonomy /classificationNodes[/{i
d}]

Classification An association between an object and
a node in a taxonomy

/classifications[/{id}]

8.8. MIME Types
The following MIME types are defined by this engineering report:

• Associations document

• encoded as XML: application/ogc-as+xml

• Classification document:

• encoded as XML: application/ogc-cl+xml

8.9. A Word about Examples
Many of the descriptions in this engineering report are accompanied by examples in the form of
sequence diagrams showing the HTTP interaction between a client and a server. These examples
reference a fictitious service root: http://www.someserver.com/1.0/wos/. The "1.0/wos" component
of the path is the examples is not part of the canonical resource URLs but simply part of this
example’s service root.

In a number of examples, normally packed text that has been wrapped across multiple lines for the
sake of clarity and space.

In many cases, the XML does not contain all the necessary information in order to validate; again,
this is done for the sake of clarity.

34

http://www.someserver.com/1.0/wos/

8.10. Service Metadata

8.10.1. Introduction

A WOS' capabilities document includes hypermedia controls to get the URL of each object collection
offered by the WOS and a URL endpoint that allows objects to be added, modified or removed from
the collection.

8.10.2. Resources

The base or root URL of a server (path = '/') shall resolve to the service metadata document (a.k.a.
the OGC Capabilities document).

8.10.3. Query Parameters

The following table lists the query parameters that may be used with the capabilities resource:

Table 3. Capabilities query parameters

Parameter
Name

Description

acceptVersions A comma-separated list of acceptable version ordered most
preferable first.

sections A comma-separated list of section names to be included in a
capabilities document. Valid values are: ServiceIdentification,
ServiceProvider, OperationsMetadata, ObjectCollections,
FilterCapabilities.

acceptFormats A comma-separated list of acceptable formats for the
capabilities document order most preferable first.

8.10.4. Representations

The canonical representation for a service metadata document shall be the XML-encoded OGC
capabilities document as defined in the wos.xsd schema.

NOTE
The wos.xsd schema may be accessed at online at
http://cubewerx.pvretano.com/schemas/wos/1.0.0.

The recommended other output format for a capabilities document is HTML5. The content of the
HTML5 version of the capabilities document shall be the same a the XML version. This engineering
report does not provide a standard definition for a capabilities document expressed in HTML5.
Implementations are free to make the HTML5 output look as pretty as they like.

Other representations (e.g. JSON) are allowed but are not described in this engineering report.

35

http://cubewerx.pvretano.com/schemas/wos/1.0.0

8.10.5. Methods

The following table describes the actions that server should take when the specified method is
applied to the specified resource. The resources from

Table 4. Methods

Resou
rce

Method Action

/ GET Gets the complete capabilities document

/ POST Not specified by this engineering report.

/ PUT Not specified by this engineering report.

/ DELETE Not specified by this engineering report.

8.10.6. Examples

Example 1: Get the list of object collections offered by a WOS

36

 CLIENT SERVER
 | |
 | GET /1.0/wos?sections=ObjectCollections HTTP/1.1 |
 | Host: www.someserver.com |
 | Accept: text/xml |
 |-->|
 | |
 | HTTP/1.1 200 OK |
 | Content-Type: text/xml |
 | |
 | <?xml version="1.0"?> |
 | <ObjectCollections...> |
 | <ObjectCollection> |
 | <atom:link rel="collection" |
 | type="application/atom+xml" |
 | href="http://www.someserver.com/wos/1.0/objects"/>
 | <atom:link rel="edit" |
 | href="http://www.someserver.com/wos/1.0/objects"/>
 | <Name>Objects</Name> |
 | <Title>The Default Object Collection</Title> |
 | <Abstract>This is the default collection used by the WOS to manage
objects</Abstract>
 | <ows:Keywords> |
 | <ows:Keyword>WOS</ows:Keyword> |
 | <ows:Keyword>web</ows:Keyword> |
 | <ows:Keyword>object</ows:Keyword> |
 | <ows:Keyword>service</ows:Keyword> |
 | </ows:Keywords> |
 | <DefaultCRS>urn:ogc:def:crs:EPSG::6269</DefaultCRS>
 | <OtherCRS>urn:ogc:def:crs:EPSG::32615</OtherCRS> |
 | <OtherCRS>urn:ogc:def:crs:EPSG::32616</OtherCRS> |
 | <OtherCRS>urn:ogc:def:crs:EPSG::32617</OtherCRS> |
 | <OtherCRS>urn:ogc:def:crs:EPSG::32618</OtherCRS> |
 | <ows:WGS84BoundingBox> |
 | <ows:LowerCorner>-180 -90</ows:LowerCorner> |
 | <ows:UpperCorner>180 90</ows:UpperCorner> |
 | </ows:WGS84BoundingBox> |
 | </ObjectCollection> |
 | </ObjectCollections> |
 |<--|

Example 2: Get the complete capabilities document

 CLIENT SERVER
 | |
 | GET /wos/1.0 HTTP/1.1 |
 | Host: www.someserver.com |
 | Accept: text/xml |
 |-->|

37

 | |
 | HTTP/1.1 200 OK |
 | Content-Type: text/xml |
 | |
 | <?xml version="1.0" encoding="UTF-8"?> |
 | <WOS_Capabilities |
 | version="1.0.0" |
 | xmlns="http://www.opengis.net/wos/1.0" |
 | xmlns:gml="http://www.opengis.net/gml/3.2" |
 | xmlns:atom="http://www.w3.org/2005/Atom" |
 | xmlns:fes="http://www.opengis.net/fes/2.5" |
 | xmlns:xlink="http://www.w3.org/1999/xlink" |
 | xmlns:ows="http://www.opengis.net/ows/2.0" |
 | xmlns:xsd="http://www.w3.org/2001/XMLSchema" |
 | xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 | xsi:schemaLocation="http://www.opengis.net/wos/1.0 |
 | http://schemas.opengis.net/wos/1.0/wos.xsd |
 | http://www.opengis.net/ows/2.0 |
 | http://schemas.opengis.net/ows/2.0/owsAll.xsd |
 | http://www.w3.org/2005/Atom |
 | http://schemas.opengis.net/kml/2.2.0/atom-author-link.xsd">
 | <ows:ServiceIdentification> |
 | <ows:Title>OGC Member WOS</ows:Title> |
 | <ows:Abstract> |
 | Web Feature Service maintained by NSDI data |
 | provider, serving FGDC framework layer XXX; |
 | contact Paul.Bunyon@BlueOx.org |
 | </ows:Abstract> |
 | <ows:Keywords> |
 | <ows:Keyword>WOS</ows:Keyword> |
 | <ows:Keyword>web</ows:Keyword> |
 | <ows:Keyword>object</ows:Keyword> |
 | <ows:Keyword>service</ows:Keyword> |
 | <ows:Type>String</ows:Type> |
 | </ows:Keywords> |
 | <ows:ServiceType>WOS</ows:ServiceType> |
 | <ows:ServiceTypeVersion>1.0.0</ows:ServiceTypeVersion>|
 | <ows:Fees>NONE</ows:Fees> |
 | <ows:AccessConstraints>NONE</ows:AccessConstraints> |
 | </ows:ServiceIdentification> |
 | <ows:ServiceProvider> |
 | <ows:ProviderName>CubeWerx Inc.</ows:ProviderName> |
 | <ows:ProviderSite |
 | xlink:href="http://www.cubewerx.com"/> |
 | <ows:ServiceContact> |
 | <ows:IndividualName> |
 | Panagiotis (Peter) A. Vretanos |
 | </ows:IndividualName> |
 | <ows:PositionName> |
 | Senior developer |
 | </ows:PositionName> |

38

 | <ows:ContactInfo> |
 | <ows:Phone> |
 | <ows:Voice>1.800.555.1212</ows:Voice> |
 | <ows:Facsimile>1.800.555.1313</ows:Facsimile>|
 | </ows:Phone> |
 | <ows:Address> |
 | <ows:DeliveryPoint> |
 | 123 Main St. |
 | </ows:DeliveryPoint> |
 | <ows:City>Toronto</ows:City> |
 | <ows:PostalCode>12345</ows:PostalCode> |
 | <ows:Country>Canada</ows:Country> |
 | <ows:ElectronicMailAddress> |
 | pvretano@cubewerx.com |
 | </ows:ElectronicMailAddress> |
 | </ows:Address> |
 | </ows:ContactInfo> |
 | <ows:Role>PointOfContact</ows:Role> |
 | </ows:ServiceContact> |
 | </ows:ServiceProvider> |
 | <ows:OperationsMetadata> |
 | <ows:Operation name="GetCapabilities"> |
 | <ows:DCP> |
 | <ows:HTTP> |
 | <ows:Get |
 | xlink:href="http://www.someserver.com/wos/1.0?"/> |
 | </ows:HTTP> |
 | </ows:DCP> |
 | </ows:Operation> |
 | <ows:Operation name="NoOp"> |
 | <ows:DCP> |
 | <ows:HTTP> |
 | <ows:Get |
 | xlink:href="http://www.someserver.com/wos/1.0?"/> |
 | </ows:HTTP> |
 | </ows:DCP> |
 | </ows:Operation> |
 | <!-- ** -->|
 | <!-- * CONFORMANCE DECLARATION * -->|
 | <!-- ** -->|
 | <ows:Constraint name="WOS"> |
 | <ows:NoValues/> |
 | <ows:DefaultValue>TRUE</ows:DefaultValue> |
 | </ows:Constraint> |
 | <!-- ** -->|
 | <!-- * CAPACITY CONSTRAINTS * -->|
 | <!-- ** -->|
 | <ows:Constraint name="CountDefault"> |
 | <ows:NoValues/> |
 | <ows:DefaultValue>1000</ows:DefaultValue> |
 | </ows:Constraint> |

39

 | <ows:Constraint name="ResponseCacheTimeout"> |
 | <ows:NoValues/> |
 | <ows:DefaultValue>300</ows:DefaultValue> |
 | </ows:Constraint> |
 | <ows:Constraint name="AutomaticDataLocking"> |
 | <ows:NoValues/> |
 | <ows:DefaultValue>TRUE</ows:DefaultValue> |
 | </ows:Constraint> |
 | </ows:OperationsMetadata> |
 | <ObjectCollections> |
 | <ObjectCollection> |
 | <atom:link rel="collection" |
 | type="application/atom+xml" |
 | href="http://.../objects"/> |
 | <atom:link rel="edit" |
 | href="http://.../objects"/> |
 | <Name>Objects</Name> |
 | <Title>The Default Object Collection</Title> |
 | <Abstract> |
 | The default collection used by this WOS |
 | to manage objects. |
 | </Abstract> |
 | <ows:Keywords> |
 | <ows:Keyword>WOS</ows:Keyword> |
 | <ows:Keyword>web</ows:Keyword> |
 | <ows:Keyword>object</ows:Keyword> |
 | <ows:Keyword>service</ows:Keyword> |
 | </ows:Keywords> |
 | <DefaultCRS>urn:ogc:def:crs:EPSG::6269</DefaultCRS>
 | <OtherCRS>urn:ogc:def:crs:EPSG::32615</OtherCRS>
 | <OtherCRS>urn:ogc:def:crs:EPSG::32616</OtherCRS>
 | <OtherCRS>urn:ogc:def:crs:EPSG::32617</OtherCRS>
 | <OtherCRS>urn:ogc:def:crs:EPSG::32618</OtherCRS>
 | <ows:WGS84BoundingBox> |
 | <ows:LowerCorner>-180 -90</ows:LowerCorner>|
 | <ows:UpperCorner>180 90</ows:UpperCorner> |
 | </ows:WGS84BoundingBox> |
 | </ObjectCollection> |
 | <fes:Filter_Capabilities> |
 | ... |
 | <fes:SpatialOperators> |
 | <fes:SpatialOperator name="BBOX"/> |
 | <fes:SpatialOperator name="Equals"/> |
 | <fes:SpatialOperator name="Disjoint"/> |
 | <fes:SpatialOperator name="Intersects"/> |
 | <fes:SpatialOperator name="Touches"/> |
 | <fes:SpatialOperator name="Crosses"/> |
 | <fes:SpatialOperator name="Within"/> |
 | <fes:SpatialOperator name="Contains"/> |
 | <fes:SpatialOperator name="Overlaps"/> |
 | <fes:SpatialOperator name="Beyond"/> |

40

 | <fes:SpatialOperator name="DWithin"/> |
 | </fes:SpatialOperators> |
 | ... |
 | </fes:TemporalOperands> |
 | <fes:TemporalOperators> |
 | <fes:TemporalOperator name="After"/> |
 | <fes:TemporalOperator name="Before"/> |
 | <fes:TemporalOperator name="Begins"/> |
 | <fes:TemporalOperator name="BegunBy"/> |
 | <fes:TemporalOperator name="TContains"/> |
 | <fes:TemporalOperator name="During"/> |
 | <fes:TemporalOperator name="TEquals"/> |
 | <fes:TemporalOperator name="TOverlaps"/> |
 | <fes:TemporalOperator name="Meets"/> |
 | <fes:TemporalOperator name="OverlappedBy"/> |
 | <fes:TemporalOperator name="MetBy"/> |
 | <fes:TemporalOperator name="EndedBy"/> |
 | </fes:TemporalOperators> |
 | ... |
 | </WOS_Capabilities> |
 |<--|

8.11. Object Access & Management
(GetObject/Transaction)

8.11.1. Introduction

This clause describes how objects from a collection can be accessed, added, modified or deleted.

8.11.2. Resources

The following table describes the object resources offered by a WOS.

Table 5. Summary of WOS resources

Resource
Class

Description Access path

Object
collection

A collection of objects /{collection
name}

Object An object (i.e. a specific member of a named
collection). The URL for an object is returned
the an object is added to a collection. The URL
for an object may also be determined from the
response to a query (i.e. the rel="self" link)

/{object URL}

All web object server implementations shall provide at least one object collection named objects.

41

8.11.3. Query parameters

Query parameters may be appended to an object URL to control the output format and content of a
query response and identify a subset of objects from a collection. The following table defines the
query parameters that may be appended to an object URL.

Table 6. Object query parameters

Parameter Description

outputFormat Specifies the representation of the query response

count Specifies the number of objects to present in the query
response

startIndex Specifies the starting point from which objects are presented
in the query response

namespaces Used to declare the namespaces for qualified names

srsName The CRS to be used when presenting geometric values in the
query response

filterLanguage Specifies the language used to define a filter

filter Specifies a query filter in the language specified using the
filterLanguage parameter

bbox Specifies a bounding box predicate

geometry A WKT-encoded geometry

crs The coordinate reference system for the value of the geometry
parameter

spatialOp The spatial operation to use for testing the geometry of an
object against the value of the geometry parameter. Valid
values are: Equals, Disjoint, Touches, Withing, Overlaps,
Crosses, Intersects (default), Contains

time An ISO8601 time instance or interval

temporalOp The temporal operator to apply when comparing an objects
temporal property with the value of the time parameter. Valid
values are: After, Before, Begins, During (default), EndedBy,
Ends, TEquals, Meets, MetBy

classifiedAs The identifier of a node within a classification scheme

classificationS
cope

One of narrow, exact or board

8.11.4. Representations

Each object managed by the WOS has two representations; a native representation and a
corresponding ATOM representation used as the query model by the WOS.

The native representation is whatever representation is presented to the WOS when the object is

42

created (e.g. video format, image, MSWORD document, etc.). The native representation is stored and
can be retrieved with full fidelity.

The canonical representation for the object’s query model is the ATOM entry as described in RFC
5023. When querying a WOS, it is this representation that is queried to identify the set of objects
that satisfy the query predicate.

8.11.5. Methods

The following table describes the actions the server should take when the specified method is
applied to the specified resource.

Table 7. Methods

Resource Method Action

/{collection
name}

GET Get a subset of objects from the specified object
collection. The number of objects returned
depends on the value of the count query
parameter.

POST Adds a new member to the object collection. A
representation of the object is supplied as the
body of the request.

PUT Replaces one or more objects in the specified
collection. A representation of the new object is
supplied in the body of the request.

DELETE Deletes one or more objects from the specified
collection

/{object URL} GET Gets the specified object.

POST Not specified by this engineering report.

PUT Replaces the specified object. A representation of
the replacement object is supplied om the body of
the request.

DELETE Deletes all representations of the specified object

As previously mentioned each object managed by the WOS has its native representation and a
corresponding representation that is used as the query model (i.e. an ATOM entry). A new object
can be added to a collection in one of three ways.

• An ATOM entry is POSTed to the WOS that encodes the object in-line as a base64 string

• An ATOM entry is POSTed to the WOS and then that entry is subsequently updated, using the
HTTP PUT method, to add the native representation of the object

• The native representation of the object is POSTed to WOS which stores that object and creates a
minimal corresponding ATOM entry for the object to be used as the query model. This minimal
ATOM entry may be subsequently updated, using the HTTP PUT method, to enrich its content.

43

8.11.6. Examples:

Example 1: Get a subset of objects from a collection

44

 CLIENT SERVER
 | |
 | GET /1.0/wos/object?count=27 HTTP/1.1 |
 | Host: www.someserver.com |
 | Accept: application/atom+xml |
 |-->|
 | |
 | HTTP/1.1 200 OK |
 | Content-Type: application/atom+xml |
 | |
 | <?xml version="1.0"?> |
 | <feed xmlns="http://www.w3.org/2005/Atom" |
 | xmlns:georss="http://www.georss.org/georss" |
 | xmlns:gml="http://www.opengis.net/gml" |
 | xmlns:cw="http://www.cubewerx.com/cw"> |
 | <title>Web Object Server Default Collection</title> |
 | <link rel="self" |
 | href="http://www.someserver.com/.../objects"/> |
 | <updated>2016-07-30T03:18:16Z</updated> |
 | <subtitle>This is the default collection that the Web|
 | Object Service uses for managing objects. Specific |
 | deployments of the server many have other object |
 | collections as well.</subtitle> |
 | <id>urn:uuid:2e2c23df-a8db-4318-b52a-8b8efffcbb74</id>
 | <generator uri="http://www.someserver.com/..."/> |
 | CubeWerx Web Object Service</generator> |
 | <entry cw:id="CWFID.OBJECTS.0.0"> |
 | <author> |
 | <name>Panagiotis Vretanos</name> |
 | <email>pvretano@cubewerx.com</email> |
 | </author> |
 | <content type="text/plain">Just some dummy content</content>
 | <id>urn:uuid:ce28abbe-d17e-426d-8dae-a7977442a7be</id>
 | <link href="http://www.someserver.com/..." |
 | type="video/mp4" rel="alternate"/> |
 | <link href="http://www.someserver.com/.../objects/CWFID.OBJECTS.0.0"
 | type="application/atom+xml" rel="self"/> |
 | <summary>Example dummy object</summary> |
 | <title>Update an object</title> |
 | <updated>20110118011435</updated> |
 | <georss:where> |
 | <gml:Point> |
 | <gml:pos>44.176426731297 -71.422232532932</gml:pos>
 | </gml:Point> |
 | </georss:where> |
 | </entry> |
 | </feed> |
 |<--|

45

NOTE
The ATOM entry in this example includes a link with rel="alternate" that may be
used to retrieve the native representation of the object.

Example 2: Get the subset of objects that lie within a specified bounding box.

 CLIENT SERVER
 | |
 | GET /1.0/wos/objects?bbox=10,10,20,20 HTTP/1.1 |
 | Host: www.someserver.com |
 | Accept: application/atom+xml |
 |-->|
 | |
 | HTTP/1.1 200 OK |
 | Content-Type: application/atom+xml |
 | |
 | <?xml version="1.0"?> |
 | <feed> ... </feed> |
 |<--|

Example 3: Add a new object to a collection.

 Step 1: Create the ATOM entry for the object.

 CLIENT SERVER
 | |
 | POST /1.0/wos/objects HTTP/1.1 |
 | Host: www.someserver.com |
 | Content-Type: application/atom+xml |
 | |
 | <?xml version="1.0"?> |
 | <entry> |
 | . |
 | . An ATOM entry describing the object... |
 | . |
 | <georss:where> |
 | <gml:Point> |
 | <gml:pos>44.176426731297 -71.422232532932</gml:pos>
 | </gml:Point> |
 | </georss:where> |
 | </entry> |
 |-->|
 | |
 | HTTP/1.1 201 Created |
 | Location: /1.0/wos/object/1014 |
 |<--|

46

 Step 2: Update the object to add the native representation

 CLIENT SERVER
 | |
 | PUT /1.0/wos/objects/1014 HTTP/1.1 |
 | Host: www.someserver.com |
 | Content-Type: video/mp4 |
 | |
 | ... binary content of the video ... |
 |-->|
 | |
 | HTTP/1.1 200 OK |
 | Location: /1.0/wos/object/1014 |
 |<--|

Example 4: Delete an object

 CLIENT SERVER
 | |
 | DELETE /1.0/wos/objects/1014 HTTP/1.1 |
 | Host: www.someserver.com |
 |-->|
 | |
 | HTTP/1.1 200 OK |
 |<--|

8.12. Associations

8.12.1. Introduction

Associations are use to relate objects managed in a WOS to each other and to other OGC and non-
OGC resources. The basic structure of an association is:

<source identifier> <relationship> <target identifier>

The source and target identifiers reference the objects or resources that are participating in the
association. The relationship or association type is an identifier that describes the relationship. For
Testbed 12 relationships are either encoded as tokens taken from the IANA Link Relation register or
are defined in the Web Integration Service engineering report (see OGC 16-043 &
http://www.iana.org/assignments/link-relations/link-relations.xhtml).

8.12.2. Resources

The collection of associations is accessed via a resource with the path /associations.

A specific association is accessed via the URL provided by the system when the association was

47

http://www.iana.org/assignments/link-relations/link-relations.xhtml

created. This URL is normally opaque but in the case of CubeWerx’s TB12 WOS, the URL template
for an association is /associations/{id}.

Query Parameters

The following table summarizes the query parameters that may be used with the /associations
resource. These intent of these parameters is to provide a simple query API for associations. The
values specified for these parameters are logically combined using the AND operation to form a
query predicate for selecting which associations should be presented in a response document.

Table 8. Object query parameters

Parameter Description

outputFormat Specifies the output representation of an association

id The identifier for a specific association

rel A relationship identifier (i.e. IANA token or OGC
URN/URL)

sourceId A source identifier or base URL of an OGC service

localSourceId The local identifier for a source OGC resource

sourceType The source object type

targetId A target identifier or base URL of an OGC service

localTargetId The local identifier for a target OGC resource

targetType The target object type

Representations

The following XML schema fragment defines the XML-encoding for an Association and a collection
of associations.

48

 <xsd:element name="Associations">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="wos:Association"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="version" type="xsd:string"
 use="required" fixed="1.0.0"/>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="Association" type="wos:AssociationType"/>
 <xsd:complexType name="AssociationType">
 <xsd:complexContent>
 <xsd:extension base="wos:BaseElementType">
 <xsd:sequence>
 <xsd:element name="Source" type="wos:ResourceType"/>
 <xsd:element name="Target" type="wos:ResourceType"/>
 <xsd:attribute name="id"
 type="wos:TokenOrAnyURI" use="optional"/>
 <xsd:attribute name="rel"
 type="wos:TokenOrAnyURI" use="required"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

This schema defines two classes of associations:

• Simple associations composed of source, target and relationship identifiers

• Associations with properties composed of source, target and relationship identifiers and
additional, dynamically defined, properties

As shown in the schema above, associations can have identity that makes the management of
associations more convenient and also allows associations between associations and other
resources (including other associations) to be defined.

For Testbed 12, the CubeWerx WOS assigns an identifier when an association is created.

8.12.3. Methods

The following table defines the behavior of the /associations and /{association URL} resources with
respect to the specified HTTP methods.

NOTE
As mentioned earlier, the URL template used by the CubeWerx WOS for an
association is /associations/{id}.

Table 9. Methods

49

Resource Method Action

/associations GET Gets the specified association(s) based
on the values of the specified query
parameters

/associations POST Creates a new association; the body of
the request contains a representation
of the association encoded using the
schema defined in this clause.

/associations PUT Must be specified with a predicate to
define a subset of associations to be
updated; the content of the request
contains a representation of the
replacement content

/associations DELETE Must be specified with a predicate to
define a subset of associations to be
removed

/{association URL} GET Gets the specified association

/{association URL} POST Undefined

/{association URL} PUT Updates an existing association; the
body of the request contains a
representation of the replacement
association

/{association URL} DELETE Removes an association from the
system

8.12.4. Examples

Example 1: Get all the associations for a specific relationship; renders in this example.

50

 CLIENT SERVER
 | |
 | GET /1.0/wos/associations?rel=urn:ogc:associationType:renders" HTTP 1.1
 | Host: www.someserver.com |
 |-->|
 | |
 | HTTP/1.1 200 OK |
 | Content-Type: application/ogc-as+xml |
 | |
 | <?xml version="1.0"?> |
 | <Associations> version="1.0.0"> |
 | <Association rel="...:renders"> |
 | <Source type="...::wms:layer" |
 | xlink:href="https://tb12.cubewerx.com/a011/cubeserv">
 | <Identifier>USGS.Elev_Contour</Identifier> |
 | </Source> |
 | <Target type="...::wfs:featureType" |
 | xlink:href="https://tb12.cubewerx.com/a011/cubeserv?DATASTORE=USGS">
 | <Identifier namespace=".../">Elev_Contour</Identifier>
 | </Target> |
 | </Association> |
 | <Association rel="...:renders"> |
 | <Source type=".../wms:layer" |
 | xlink:href="https://tb12.cubewerx.com/a011/cubeserv">
 | <Identifier>USGS.CellGrid_7_5Minute</Identifier>
 | </Source> |
 | <Target type="...::wfs:featureType" |
 | xlink:href="https://tb12.cubewerx.com/a011/cubeserv?DATASTORE=USGS">
 | <Identifier namespace="...">CellGrid_7_5Minute</Identifier>
 | </Target> |
 | </Association> |
 | ... |
 | </Associations> |
 |<--|

Example 2: Create an association object with a description and dynamic properties.

 CLIENT SERVER
 | |
 | POST /1.0/wos/associations HTTP 1.1 |
 | Host: www.someserver.com |
 | Content-Type: application/ogc-as+xml |
 | |
 | <?xml version="1.0" encoding="UTF-8"?> |
 | <wos:Association |
 | rel="urn:ogc:def:associationType:OGC-CSW-ebRIM::renders"
 | xmlns:wos="http//www.opengis.net/wos/1.0" |
 | xmlns:xlink="http://www.w3.org/1999/xlink" |
 | xmlns:gml="http://www.opengis.net/gml/3.2" |

51

 | xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"|
 | xsi:schemaLocation="http://www.w3.org/1999/xlink |
 | http://www.w3.org/1999/xlink.xsd |
 | http://www.opengis.net/gml/3.2 |
 | http://www.pvretano.com/schemas/gml/3.2.1/gml.xsd
 | http://www.opengis.net/wos/1.0 |
 | http://www.pvretano.com/schemas/wos/1.0.0/wos.xsd">
 | <wos:Description key="title">The association's title.</wos:Description>
 | <wos:Description key="abstract">Some narrative about this
association.</wos:Description>
 | <wos:Property name="prop01" type="xsd:string">Value01</wos:Property>
 | <wos:Property name="geom" type="gml:Polygon"> |
 | <gml:Polygon |
 | srsName="http://www.opengis.net/def/crs/epsg/0/4326" gml:id="P1">
 | <gml:exterior> |
 | <gml:LinearRing> |
 | <gml:posList>-19.06099128723145 -169.9416961669922
-19.05653190612793 -169.9346008300781 -19.0523681640625 -169.9278564453125
-19.04729080200195 -169.9230346679688 -19.03918266296387 -169.9215698242188
-19.04058837890625 -169.9138641357422 -19.04656600952148 -169.9136047363281
-19.05992698669434 -169.9196014404297 -19.06432342529297 -169.9275665283203
-19.06826400756836 -169.9364929199219 -19.06099128723145
-169.9416961669922</gml:posList>
 | </gml:LinearRing> |
 | </gml:exterior> |
 | </gml:Polygon> |
 | </wos:Property> |
 | <wos:Source type="urn:ogc:def:objectType:OGC-CSW-ebRIM::wms:layer"
 | xlink:href="https://tb12.cubewerx.com/a011/cubeserv">
 | <Identifier>USGS.Elev_Contour</Identifier> |
 | </wos:Source>
 | <wos:Target type="urn:ogc:def:objectType:OGC-CSW-ebRIM::wfs:featureType"
 | xlink:href="https://tb12.cubewerx.com/a011/cubeserv?DATASTORE=USGS">
 | <Identifier
namespace="http://schemas.cubewerx.com/namespaces/null">Elev_Contour</Identifier>
 | </wos:Target> |
 | </wos:Association> |
 |-->|
 | |
 | HTTP/1.1 200 OK |
 | Location: /1.0/wos/associations/12345 |
 |<--|

8.13. Classifications

8.13.1. Introduction

Objects managed by a WOS may be classified using multiple taxonomies. The resources defined in
this clause allow taxonomies or classification schemes to be created and managed by the WOS and

52

also allow objects to be tagged with nodes from those classifications schemes thus supporting
taxonomic queries.

NOTE
No support for taxonomies was implemented in CubeWerx’s TB12 WOS because the
proposed demo scenario was primarily focus on general objects and associations.

8.13.2. Resources

This engineering report defines the following resources to support the management and use of
taxonomies:

• /classificationSchemes

• /{classification scheme URL}

• /classificationNodes

• /{classification node URL}

• /classifications

• /{classification URL}

NOTE

The classification scheme, classification node and classification URLs are opaque
but for testbed 12, CubeWerx’s WOS used the following URL templates for these
resources: /classificationSchemes/{id}, /classificationNodex/{id} and
/classifications/{id}.

Query parameters

The following table summarizes the query parameters that may be used with the
//classificationSchemes, /classificationNodes and /classifications resources.

Table 10. Object query parameters

Parameter Description

outputFormat Specifies the output representation for the
corresponding resource

id a comma-separated list of identifiers

NOTE
The outputFormat query parameter may also be employed with the /{classification
scheme URL}, /{classification node URL} and /{classification URL} resources.

Representations

Classification Schemes

The following XML schema fragment defines the XML-encoding for a classification schemes or
taxonomies:

53

 <xsd:element name="ClassificationSchemes">
 <xsd:complexType>
 <xsd:complexContent>
 <xsd:sequence>
 <xsd:element ref="wos:ClassificationScheme"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="version" type="xsd:string"
 use="required" fixed="1.0.0"/>
 </xsd:complexContent>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="ClassificationScheme">
 <xsd:complexType>
 <xsd:complexContent>
 <xsd:extension base="assoc:BaseElementType">
 <xsd:sequence>
 <xsd:element ref="wos:ClassificationNode"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:anyURI" use="required"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 </xsd:element>

The ClassificationSchemes element is a container for all the classification schemes offered by a
WOS.

A classification scheme is the root node of a hierarchically related set of classification nodes. The id
parameter is the unique identifier for the classification scheme.

The following XML schema fragment defines the XML-encoding for a classification node.

54

 <xsd:element name="ClassificationNodes">
 <xsd:complexType>
 <xsd:complexContent>
 <xsd:sequence>
 <xsd:element ref="wos:ClassificationScheme"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="version" type="xsd:string"
 use="required" fixed="1.0.0"/>
 </xsd:complexContent>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="ClassificationNode">
 <xsd:complexType>
 <xsd:complexContent>
 <xsd:extension base="assoc:BaseElementType">
 <xsd:sequence>
 <xsd:element name="code" type="xsd:string" minOccurs="0"/>
 <xsd:element name="path" type="xsd:string" minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:anyURI" use="required"/>
 <xsd:attribute name="parent" type="xsd:anyURI" use="required"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 </xsd:element>

The ClassificationNodes element is an unordered container for all the classification nodes offered
by a WOS.

Each classification node’s unique identifier is encoded using the id parameter. The identifier of the
node’s direct parent node in a hierarchy is encoded using the parent parameter. The parent
identifier of the level 1 nodes in a taxonomy is the identifier of the classification scheme.

A unique code string may be assigned to each node using the code parameter. A string
representation of the node’s path may be included in the definition of the node using the path
element.

Classifications

The following XML schema fragment defines the XML-encoding for classifications:

55

 <xsd:element name="Classifications">
 <xsd:complexType>
 <xsd:complexContent>
 <xsd:sequence>
 <xsd:element ref="wos:Classification"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="version" type="xsd:string"
 use="required" fixed="1.0.0"/>
 </xsd:complexContent>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="Classification">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="ClassifiedObjectId" type="xsd:anyURI"/>
 <xsd:element name="ClassificationScheme"
 type="xsd:anyURI" minOccurs="0"/>
 <xsd:element name="ClassificationNode" type="xsd:anyURI"/>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:anyURI" use="required"/>
 </xsd:complexType>
 </xsd:element>

The Classifications element is a container for all the classifications maintained by a WOS.

A classification is a specialized association between an object managed by a WOS and a node in a
classification scheme. Each classification has a unique identifier encoded using the id parameter.

The ClassifiedObjectId parameter encodes the identifier of the WOS object being classified.

The ClassifiedNode parameter encodes the identifier of the classification nodes being used to
classify the specified object.

The optional ClassificationScheme parameter is used to encode the identified of the classification
scheme used to classify the specified object. It is included for lookup efficiency since this
information can be derived by traversing the classification hierarchy.

8.13.3. Methods

The following table defines the behavior of the /classificationSchemes, /classificationNodes++ and
/classifications resources with respect to the specified HTTP methods.

Table 11. Methods

56

Resource Metho
d

Action

/classificationSchemes GET With an id query parameter, retrieves
classification schemes with the specified
identifiers; otherwise retrieves all the
classification schemes offered by a WOS

/classificationSchemes POST Creates a new classification scheme; the body
of the request shall contain a representation of
a classificationScheme

/classificationSchemes PUT An id query parameter must be specified
enumerating a subset of classification schemes
to be updated; the body of the request shall
contain a representation of the replacement
classificationScheme

/classificationSchemes DELET
E

Ad id query parameter must be specified
enumeration a subset of classification scheme
to be deleted; all non-shared classification
nodes and classifications using this taxonomy
shall be deleted as well

/classificationNodes GET With an id query parameter, retrieves
classification nodes with the specified
identifiers; otherwise retrieves all the
classification node offered by a WOS

/classificationNodes POST Creates a new classification node; the body of
the request shall contain a representation of a
classificationNode

/classificationNodes PUT An id query parameter must be specified
enumerating a subset of classification nodes to
be updated; the body of the request shall
contain a representation of the replacement
classificationNode

/classificationNodes DELET
E

An id query parameter must be specified
enumerating a subset of classification nodes to
be deleted

/classification GET With an id query parameter, retrieves
classifications with the specified identifiers;
otherwise retrieves all the classifications
managed by a WOS

/classification POST Undefined

/classification PUT An id query parameter must be specified
enumerating a subset of classifications to be
updated; the body of the request shall contain
a representation of the replacement
classification

57

Resource Metho
d

Action

/classification DELET
E

An id query parameter must be specified
enumerating a subset of classifications to be
deleted

/{classification scheme
URL}

GET Retrieves the specified classification scheme

/{classification scheme
URL}

POST Undefined

/{classification scheme
URL}

PUT Updates the specified classification scheme;
the body of the request shall contain a
representation of the replacement
classification scheme

/{classification scheme
URL}

DELET
E

Deletes the specified classification scheme, all
unshared classification nodes and any
classifications using this taxonomy

/{classification node
URL}

GET Retrieves the specified classification node

/{classification node
URL}

POST Undefined

/{classification node
URL}

PUT Updates the specified classification node; the
body of the request shall contain a
representation of the replacement
classification node

/{classification node
URL}

DELET
E

Deletes the specified classification node

/{classification} GET Retrieves the specified classification

/{classification} POST Undefined

/{classification} PUT Updates the specified classification; the body
of the request shall contain a representation of
the replacement classification

/{classification} DELET
E

Deletes the specified classification node

8.13.4. Examples

Example 1: Get all the classification schemes offered by a WOS.

58

 CLIENT SERVER
 | |
 | GET /1.0/wos/classifications |
 | Host: www.someserver.com |
 |-->|
 | |
 | HTTP/1.1 200 OK |
 | Content-Type: application/ogc-cl+xml |
 | |
 | <?xml version="1.0" encoding="UTF-8"?> |
 | <ClassificationSchemes |
 | xmlns="http://www.opengis.net/wos/1.0" |
 | xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"|
 | xsi:schemaLocation="http://www.opengis.net/wos/1.0 |
 | ../wos.xsd"> |
 | <ClassificationScheme |
 | id="urn:ClassificationScheme:ISO-19119:Services"> |
 | <ClassificationNode |
 | parent="urn:ISO-19119:Service:Info-Management" |
 | id="urn:ISO-19119:Service:Feature-Type"> |
 | <code>Feature-Type</code> |
 | </ClassificationNode> |
 | <ClassificationNode |
 | parent="urn:ISO-19119:Service:Info-Management" |
 | id="urn:ISO-19119:Service:Catalogue"> |
 | <code>Catalogue</code> |
 | </ClassificationNode> |
 | <ClassificationNode |
 | parent="urn:ISO-19119:Service:Info-Management" |
 | id="urn:ISO-19119:Service:Registry"> |
 | <code>Registry</code> |
 | </ClassificationNode> |
 | <ClassificationNode |
 | parent="urn:ISO-19119:Service:Info-Management" |
 | id="urn:ISO-19119:Service:Gazetteer"> |
 | <code>Gazetteer</code> |
 | </ClassificationNode> |
 | . |
 | . |
 | . |
 | <ClassificationScheme/> |
 | . |
 | . |
 | . |
 | <ClassificationSchemes> |
 |<--|

Example 2: Classify an object as a feature type

59

 CLIENT SERVER
 | |
 | POST /1.0/wos/classification HTTP 1.1 |
 | Host: www.someserver.com |
 | Content-Type: application/ogc-cl+xml |
 | |
 | <?xml version="1.0" encoding="UTF-8"?> |
 | <Classification |
 | xmlns="http://www.opengis.net/wos/1.0" |
 | xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"|
 | xsi:schemaLocation="http://www.opengis.net/wos/1.0 ../wos.xsd">
 | <ClassifiedObjectId>urn:uuid:ce28abbe-d17e-426d-8dae-
a7977442a7be</ClassifiedObjectId>
 | <ClassificationNode>urn:ISO-19119:Service:Feature-Type</ClassificationNode>
 | </Classification> |
 | |
 |-->|
 | |
 | HTTP/1.1 200 OK |
 | Location: /1.0/wos/classifications/12345 |
 |<--|

60

Chapter 9. Future Work
This section summaries the key findings and defines work items that are recommended for future
OGC Innovation Program initiatives to further analyze the GFM capabilities.

The GFM activity has been a proof of concept, targeting the initial requirements from two different
implementation angles. Both approaches have successfully demonstrated that it is very well
possible to accommodate non-geospatial information and it’s associations with related data as
features in the GFM.

So what is next? This testbed experimented with the GFM as such, did an in-depth analysis of the
UML model and its implementation, and verified that the GFM can serve well as an association
model between any type of features. That is, for example, a video stream can be associated to a
Twitter message, or an individual feature in a database can be associated with the results of a
complex stream processing workflow. The associations can be features themselves that, if
necessary, associate further association features. This approach allows for graphs of features and
association features, which is an extremely powerful approach that needs to be further explored. In
order to further demonstrate that the concept is a viable approach and the capabilities of the GFM
go well beyond the traditional geoinformation-centric application areas it was originally designed
for, a larger scale interoperability experiment would be required. The following aspects require
further research:

• Analogy to Linked Data: The feature to feature with association is pretty similar to the Linked
Data approach that uses triplets to describe associations between features. Just, the GFM
approach is even more powerful because the predicate is not constrained but a first class object
in its own right. How does this extend the capabilities of Linked Data and how does it allow
proper integration with existing Linked Data implementations?

• Semantic of Association Features: The approach documented in this engineering report
becomes more powerful if the semantics of the association features are well defined. The
Semantic Web domain uses ontologies to define the semantics behind objects. Semantic Web
approaches should be analyzed to better understand how the full potential of the GFM
approach can be leveraged.

• Integration of different semantics: The flexibility of the approach allows for different
semantics to be incorporated into knowledge graphs (that consist of features and associations
features). Future activities need to analyze how these different semantics can be catered for.
Providing access to ontologies is certainly a first step, but potential access and availability issues
need to be handled.

• Definition of a core set of association features: The development of a core set of association
types and corresponding association features would help the geospatial domain to make use of
the model more efficiently. A process needs to be developed that allows the OGC community to
develop, maintain, and provide this core set. The OGC Naming Authority needs to be part of that
process.

• Implementation details: The Testbed-12 research has used a limited subset of possible data
types and access mechanisms. It is recommended that future initiatives include aspects such as:

• A greater variety of data types and formats

61

• Software analytics generating new information

• Real time data feeds

• More complex exercise scenarios

• Interoperability experiments across the implementation approaches

• Defined client requirements and resources

62

Appendix A: Revision History
Table 12. Revision History

Date Release Editor Primary
clauses
modified

Descriptions

June 30, 2016 0.1 M. Klopfer all draft outline

Sept 30, 2016 0.2 M. Klopfer all draft
engineering
report

Oct 24, 2016 0.3 M. Klopfer all final draft

Oct 31, 2016 0.4 M. Klopfer all milestone draft

Nov 15, 2016 0.5 M. Klopfer all final comments

63

Appendix B: Bibliography
[1] Roswell, Charles: Modeling of Geographic Information. In: Kresse, Wolfgang and D. Danko:
Springer Handbook of Geographic Information. Springer, 2012

64

	Testbed-12 General Feature Model Engineering Report
	Table of Contents
	Chapter 1. Introduction
	1.1. Scope
	1.2. Document contributor contact points
	1.3. Future Work
	1.4. Foreword

	Chapter 2. References
	Chapter 3. Terms and definitions
	3.1. Abbreviated terms

	Chapter 4. Overview
	Chapter 5. Initial Requirements, Assumptions and Concepts
	5.1. Integration of Data, Analytical Observations and Judgments
	5.2. Correlation does not necessarily mean causation
	5.3. Making Judgments on Facts
	5.4. Interaction with an Integrated Information Environment
	5.4.1. Activity Based Intelligence (ABI)
	5.4.2. Object Based Production (OBP)
	5.4.3. Structured Observation Management (SOM)

	5.5. Relationships - Features and Associations
	5.6. Use Case Scenario
	5.7. Available Scenario Phases
	5.8. Scenario Script
	5.9. Accommodating Associations in GFM
	5.10. WOS Approaches
	5.10.1. CSW ebRIM based WOS Approach
	5.10.2. WFS based WOS Approach

	5.11. Client Requirements
	5.12. Initial Implementation Experiences
	5.12.1. Data Availability
	5.12.2. Data Georeferencing

	Chapter 6. The General Feature Model
	6.1. Geographic Information: Key Principles
	6.2. Metamodel for Geographic Information: The General Feature Model

	Chapter 7. CSW-eb-RIM based WOS Implementation
	7.1. Interaction Model
	7.2. Searching for WOS Objects
	7.3. Interrogation of a WOS Object
	7.4. Object Insertion
	7.5. Update and Deletion

	Chapter 8. WFS based Web Object Service
	8.1. Introduction
	8.2. Requirements
	8.3. Architecture
	8.4. Basic Service Elements
	8.4.1. Service Root
	8.4.2. Object Representation
	8.4.3. Content Negotiation
	8.4.4. Exceptions

	8.5. Authentication and Access Control
	8.6. Hypermedia Controls
	8.6.1. Introduction
	8.6.2. Hypermedia Control in a WOS' Capabilities Document
	8.6.3. Hypermedia Controls in a WOS' Query Response

	8.7. Summary of Resources
	8.8. MIME Types
	8.9. A Word about Examples
	8.10. Service Metadata
	8.10.1. Introduction
	8.10.2. Resources
	8.10.3. Query Parameters
	8.10.4. Representations
	8.10.5. Methods
	8.10.6. Examples

	8.11. Object Access & Management (GetObject/Transaction)
	8.11.1. Introduction
	8.11.2. Resources
	8.11.3. Query parameters
	8.11.4. Representations
	8.11.5. Methods
	8.11.6. Examples:

	8.12. Associations
	8.12.1. Introduction
	8.12.2. Resources
	8.12.3. Methods
	8.12.4. Examples

	8.13. Classifications
	8.13.1. Introduction
	8.13.2. Resources
	8.13.3. Methods
	8.13.4. Examples

	Chapter 9. Future Work
	Appendix A: Revision History
	Appendix B: Bibliography

